NILAI EKSTRIM

Misal diberikan kurva f(x) dan titik (a,b) merupakan titik puncak (titik maksimum atau minimum). Maka garis singgung kurva di titik (a,b) akan sejajar sumbu X atau mempunyai gradien m=0 [f'(a)=0]. Titik (a,b) disebut **titik ekstrim**, nilai x=a disebut **nilai stasioner**, sedangkan nilai y=b disebut **nilai ekstrim**.

Definisi: Nilai Maksimum dan Nilai Minimum

Nilai f(a) disebut **nilai** (**ekstrim**) **maksimum** pada selang I bila f(a) > f(x) untuk setiap $x \in I$. Sedangkan nilai f(a) disebut **nilai** (**ekstrim**) **minimum** pada selang I bila f(a) < f(x) untuk setiap $x \in I$.

Untuk menentukan jenis nilai ekstrim (maksimum atau minimum) dari fungsi f(x) dapat dilakukan dengan Uji turunan kedua sebagai berikut :

- 1. Tentukan turunan pertama dan kedua, f'(x) dan f''(x)
- 2. Tentukan titik stasioner yaitu pembuat nol dari turunan pertama (f'(x) = 0), misalkan nilai stasioner adalah x = a
- 3. Nilai f(a) merupakan nilai maksimum bila f''(a) < 0, sedangkan nilai f (a) merupakan nilai minimum bila f''(a) > 0.

Contoh:

Tentukan nilai ekstrim dan jenisnya dari fungsi $f(x) = x^4 + 2x^3 + x^2 - 5$

Jawab:

Dari pembahasan pada contoh di sub bab sebelumnya didapatkan nilai stasioner fungsi adalah x = -1, $x = -\frac{1}{2}$ dan x = 0. Turunan kedua, $f''(x) = 12x^2 + 12x + 2$.

Untuk x = -1, f''(-1) = 2 dan fungsi mencapai minimum dengan nilai minimum f(-1) = -5.

Untuk x = - $\frac{1}{2}$, $f''(-\frac{1}{2}) = -1$ dan fungsi mencapai maksimum dengan nilai maksimum $f(-\frac{1}{2}) = -4\frac{15}{16}$

Untuk x = 0, f''(0) = 2 dan fungsi mencapai minimum dengan nilai minimum f(0) = -5

Definisi: Titik Belok

Misal f(x) kontinu di x = b. Maka (b , f(b)) disebut **titik belok** dari kurva f(x) bila terjadi perubahan kecekungan di x = b, yaitu di satu sisi dari x = b cekung ke atas dan disisi lain cekung ke bawah atau sebaliknya.

Syarat perlu x = b merupakan absis dari titik belok bila berlaku f''(b) = 0 atau f(x) tidak diferensiabel dua kali di x = b. Kata "syarat perlu "mirip artinya dengan kata "calon ", maksudnya bahwa untuk nilai x = b yang dipenuhi oleh salah satu dari kedua syarat itu memungkinkan untuk menjadi absis titik belok bergantung apakah dipenuhi syarat seperti halnya yang tertulis pada definisi.

Contoh

Carilah titik belok (bila ada) dari fungsi berikut:

a.
$$f(x) = 2x^3 - 1$$

b.
$$f(x) = x^4$$

c.
$$f(x) = x^{1/3} + 1$$

Jawab:

a. Dari
$$f(x) = 2x^3 - 1$$
 maka $f''(x) = 12x$.

Bila f''(x) = 0 maka x = 0 merupakan calon dari titik belok, sehingga untuk menguji apakah x = 0 merupakan titik belok dilakukan berikut.

Untuk x < 0 maka f''(x) < 0, sedangkan untuk x > 0 maka f''(x) > 0. Oleh karena itu, di x = 0 terjadi perubahan kecekungan. Jadi (0,-1) merupakan titik belok.

b. Dari
$$f(x) = x^4$$
 maka $f''(x) = 12x^2$.

Bila f''(x) = 0 maka x = 0 merupakan calon dari titik belok, sehingga untuk menguji apakah x = 0 merupakan titik belok dilakukan berikut.

Untuk x < 0 dan x > 0 maka f''(x) > 0. Oleh karena itu, di x = 0 tidak terjadi perubahan kecekungan. Jadi (0,0) bukan merupakan titik belok.

c. Dari
$$f(x) = x^{1/3} + 1$$
 maka $f''(x) = \frac{-2}{9x^{1/3}}$. Terlihat bahwa $f(x)$ tidak dapat diturunkan dia

kali di x=0. Untuk x<0 maka f''(x)>0, sedangkan untuk x>0 maka f''(x)<0. Oleh karena itu, di x=0 terjadi perubahan kecekungan. Jadi (0,1) merupakan titik belok

Asymtot

Asymtot suatu grafik fungsi didefinisikan sebagai garis yang didekati oleh suatu kurva. Asymtot dibedakan menjadi tiga yaitu :

- 1. Asymtot mendatar
- 2. Asymtot tegak
- 3. Asymtot miring

Misal diberikan kurva y = f(x). Maka garis y = b disebut **asymtot mendatar** dari y = f(x) bila : $\lim_{x \to \infty} f(x) = b$ atau $\lim_{x \to -\infty} f(x) = b$. Sedangkan garis x = a disebut **asymtot**

tegak bila berlaku salah satu dari:

1.
$$\lim_{x \to a^+} f(x) = \infty$$

$$\lim_{x \to a^+} f(x) = -\infty$$

$$3. \quad \lim_{x \to a^{-}} f(x) = \infty$$

$$4. \quad \lim_{x \to a^{-}} f(x) = -\infty$$

Contoh:

Carilah asymtot datar dan asymtot tegak dari fungsi $f(x) = \frac{-x^2}{x^2 - 1}$

Jawab:

Asymtot datar,
$$y = -1$$
 sebab $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{-x^2}{x^2 - 1} = -1$ atau $\lim_{x \to -\infty} f(x) = -1$

Asymtot tegak, x = -1 dan x = 1 sebab $\lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} \frac{-x^2}{x^2 - 1} = \infty$ dan

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} \frac{-x^{2}}{x^{2} - 1} = -\infty$$

Garis y = a x + b dikatakan sebagai **asymtot miring** dari y = f(x) bila berlaku $\lim_{x \to \infty} \left[f(x) - (ax + b) \right] = 0 \quad \text{atau} \quad \lim_{x \to -\infty} \left[f(x) - (ax + b) \right] = 0. \quad \text{Untuk mendapatkan asymtot}$

miring dari fungsi rasional $f(x) = \frac{P(x)}{Q(x)}$ [pangkat P(x) = 1 + pangkat Q(x)] dilakukan dengan cara membagi P(x) dengan Q(x) sehingga hasilbagi yang didapatkan merupakan asymtot miring dari f(x).

Contoh:

Carilah asymtot dari fungsi
$$f(x) = \frac{x^2 - 2x - 3}{x - 1}$$

Jawab:

Asymtot datar tidak ada sebab $\lim_{x\to\infty} f(x) = \infty$ atau $\lim_{x\to-\infty} f(x) = -\infty$.

Asymtot tegak,
$$x = 1$$
 sebab $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \frac{x^2 - 2x - 3}{x - 1} = \infty$.

Asymtot miring,
$$y = x - 1$$
 sebab $\lim_{x \to \infty} \left(\frac{x^2 - 2x - 3}{x - 1} - (x - 1) \right) = \lim_{x \to \infty} \frac{-4}{x - 1} = 0$

Grafik Fungsi

Dalam mengambarkan grafik suatu kurva dapat dilakukan dengan menentukan terlebih dahulu : selang kemonotongan, selang kecekungan, titik ekstrim dan jenisnya, titik potong terhadap salib sumbu (sumbu X dan sumbu Y), titik belok (bila ada), semua asymtot (bila ada) dan titik lain (sembarang) yang dapat membantu memudahkan menggambarkan grafik.

Soal latihan

(Nomor 1 sd 6) Tentukan nilai ekstrim dan jenisnya dari kurva dengan persamaan berikut :

1.
$$f(x) = x^3 - 3x^2 + 2$$

$$2. \ \ f(x) = x^3 - 3x + 4$$

3.
$$f(x) = \frac{x}{2} - \sin x$$
, $(0 < x < 2\mathbf{p})$

4.
$$f(x) = \cos^2 x, \left(\frac{-\mathbf{p}}{2} < x < \frac{3\mathbf{p}}{2}\right)$$

5.
$$f(x) = \frac{x^4}{4} + 1$$

6.
$$f(x) = 3x^4 - 4x^3$$

(Nomor 7 sd 10) Tentukan titik belok dari kurva berikut (bila ada)

7.
$$f(x) = \frac{1}{6}x^3 - 2x$$

8.
$$f(x) = \sqrt{x} + 2$$

9.
$$f(x) = x^4 + 4$$

10.
$$f(x) = x^4 - 6x^3 - 24x^2 + x + 2$$

(Nomor 11 sd 21) Cari semua asymtot dari fungsi berikut:

11.
$$f(x) = \frac{2x}{x-3}$$

12.
$$f(x) = \frac{x^2}{x^2 - 1}$$

13.
$$f(x) = \frac{1-x}{x^2}$$

14.
$$f(x) = \frac{(x-1)^2}{x^2}$$

15.
$$f(x) = x^2 - \frac{1}{x}$$

16.
$$f(x) = \frac{2x}{\sqrt{x^2 - 4}}$$

17.
$$f(x) = 2 + \frac{3}{x} - \frac{1}{x^3}$$

18.
$$f(x) = \frac{x^2 - 2}{x}$$

19.
$$f(x) = \frac{x^2 - 2x - 3}{x + 2}$$

20.
$$f(x) = \frac{(x-2)^3}{x^2}$$

21.
$$f(x) = \frac{4 - x^3}{x^2}$$

(Nomor 22 sd 28) Gambarkan grafik kurva berikut :

22.
$$f(x) = x^3 - 3x - 1$$

23.
$$f(x) = x^3 - 2x^2 + x + 1$$

24.
$$f(x) = 3x^4 - 4x^3 + 2$$

25.
$$f(x) = x^6 - 3x^4$$

26.
$$f(x) = 3x^5 - 5x^3 + 1$$

27.
$$f(x) = \frac{2x}{1+x}$$

28.
$$f(x) = \frac{3x}{(x+8)^2}$$

Matematika Dasar