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Resonance frequency of microbubbles: Effect of viscosity
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The transmitted frequency at which a gas bubble of millimeter or submillimeter size oscillates reso-
nantly in a low-viscosity liquid is approximately equal to the undamped natural frequency (referred to

as the Minnaert frequency if surface tension effects are disregarded). Based on a theoretical analysis
of bubble oscillation, this paper shows that such an approximation cannot be validated for microbub-
bles used in contrast-enhanced ultrasound imaging. The contrast-agent microbubbles represent either
encapsulated bubbles of size less thanm or free (nonencapsulated) bubbles of submicron size.

The resonance frequency of the microbubbles deviates significantly from the undamped natural fre-
guency over the whole range of microbubble sizes due to the increased viscous damping coefficient.
The difference between these two frequencies is shown to have a tremendous impact on the resonant
backscatter by the microbubbles. In particular, the first and second harmonics of the backscattered
signal from the microbubbles are characterized by their own resonance frequencies, equal to neither
the microbubble resonance frequency nor the undamped natural frequency.

PACS numbers: 43.35.Ei, 43.80.Qf, 43.35.Bf

I. INTRODUCTION to the contribution of each microbubble to the backscattered
_ _ signal. In the absence of experimental data, we can only rely

Due to its safety and low cost, ultrasound scanning, ofn5on theory to realize how a given microbubble interacts with
echosonography, is actively used in obstetrics and gynecoljirasound. Particularly, a theoretical analysis of microbub-
ogy. However it loses other imaging modalities in regard topje gynamics can be used (a) to evaluate the transmitted fre-
the image quality. An excellent way to increase the qualityy,ency at which scattering by a microbubble of a given size
of sonograms |ssthe use of micron-size bubbles as ultrasound,ches the maximum and (b) to determine the intensity (scat-
contrast agents? i.e., as scatterers of ultrasound waves in-iering cross-section) and damping rate of the scattered wave
side the human body. When injected into the bloodstreamy qqyced by the microbubble. The acoustic response of the
the microbubbles, less than 16n in size, move with blood  nicrobubble population located near the measuring site can
cells toward the measuring site. Once reached the blooge cjculated from these functions of bubble size, if the size

vessel exposed to ultrasound, they break into oscillation anisribytion of microbubbles in the population is known or has
thus scatter the incoming ultrasound waves in all directionspeen measured.

Due to the large acoustic impedance difference at the inter-
face between the gas and blood, scattering by microbubbles All theoretical works concerning oscillations of ultrasound
is of high intensity and results in a strong signal on the recontrast agents are based on the Raleigh-Plesset eqtation.
ceiver, i.e., it enhances the echo from blood. Moreover, beA number of corrections to this model have been made,
cause microbubbles are nonlinear scatterers, the backscatteiadiuding the effects of the encapsulating siéllplood
signal from them contains higher harmonics of the transmitcompressibility® and viscoelasticity> and interaction be-
ted frequency. This has made possible the contrast harmoniween microbubble¥? Hilgenfeldt et al!® analyzed theoret-
imaging techniqué;® which, in the Doppler mode, can image ically the effects of nonlinearity and polychromaticity (pulsed
blood flow in smallest blood capillaries, including myocardial driving) on the resonant backscatter by free microbubbles. Ex-
perfusion’ cept for Refs. 11 and 13, these works analyze backscattering
Although the overall effect of contrast agents on theby contrast agents from the viewpoint of large bubbles. If a
backscattered signal can be easily detected, it is very difficulbbubble is covered with a high-viscosity shell and its size is
to measure oscillations of an individual microbubble in theless than 1Qum, its resonance frequency differs significantly
population situated within the insonated blood vessel. The mifrom its natural frequency due to the increased viscous damp-
crobubble behavior can be recorded by optical imaging with ang coefficient! For a free bubble, the shift in resonance fre-
frame rate of several MHz. Such fast-speed imaging of congquency due to damping effects were discussed by Leighton
trast agent microbubbles has been reported by de Jong aadid Brennert® As shown here, the difference between these
co-workers? This group of scientists measured the radius-two frequencies has a tremendous impact on backscattering
time curves for microbubbles but did not relate these resultby ultrasound contrast agents. For example, it is belietreat
contrast-enhanced ultrasound provides images with the high-
est quality if it operates at the frequency at which the major
part of microbubble population resonates. To put it differ-
a) Electronic addresslamir@duke.edu ently, if the backscattered signal has a peak at the transmit-
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ted frequency or at multiple of this frequency, it comes frombiocompatible surface-active layer lowers the over-pressure,
bubbles which resonate at this frequency. However, we wiland, as a result, makes the microbubble more stable against
demonstrate thahe frequency at which the signal scattered dissolution. The increased stability is the reason why the great
by a microbubble has a resonance peak is not equal to théulk of available contrast agents represent encapsulated mi-
resonance frequency of the microbubble crobubbles. However, the encapsulating shell inevitably con-

The commercially available ultrasound contrast agents caatrains the bubble oscillation due to the shell viscosity, which
be divided into two different types: (i) suspensions of encapis much higher than the viscosity of blood plasma, and thus re-
sulated microbubbles and (ii) emulsions of liquid dodecafluosults in decreasing the amplitude of the backscattered signal.
ropentane (DDFP) and superheated drops. Encapsulated niihe shell-induced damping of the oscillation becomes more
crobubbles are coated by a polymieotein? or lipid laye®  pronounced with increasing the shell thickn&’ss.
with the aim to increase stability of microbubbles in blood The encapsulating shell shows viscoelastic properties.
flow. The thickness and mechanical properties (viscosity anélasticity of the shell material arises from changes in config-
elasticity) of the layer differ for different contrast agents. An urations of its macromolecules under fl8WThe viscoelas-
emulsion of liquid dodecafluoropentdrdoils at 28 C, i.e., tic solid model of the shell, in the form of the Kelvin-Voigt
it becomes a suspension of free (non-encapsulated) microbubenstitutive equation, has been studied in Refs. 9 and 11. Ac-
bles after intravenous injection. A superheated emut8ion cording to this model, the shell elasticity plays a positive role
also transforms itself into a suspension of free microbubblefor scattering. An increase in the shell elasticity leads to in-
but under the action of ultrasound. In this paper, the resoereasing the magnitude of the resonance peaks in the scatter-
nant properties of both free and encapsulated microbubbldag cross-section curveés.in this section, we analyze the ef-
are studied theoretically. fect of viscosity on the resonance frequency of and resonant
backscatter from microbubbles encapsulated by a viscoelastic
solid shell.

Let us consider a spherical gas bubble covered by a vis-

Free gas microbubbles dissolve away in blood very quicklycoelastic layer of finite thickness (Fig. 1). The bubble resides
This is caused by the over-pressure in the gas inside the bubhile an unbounded Newtonian liquid (blood plasma) and oscil-
compared to the pressure in blood due to surface tension at tha&tes under the action of ultrasound. The radial oscillation of
gas-blood interfac&’ Encapsulation of the microbubble by a an encapsulated bubble is described by the equation

II. ENCAPSULATED MICROBUBBLES

Aya  Fda\ d%a 3 Aya ad 1 d da\?
< 14227 g2 TP o\ (g =
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Heret is time,a the inner radius of the bubbl&, the outer  to thermal effects because the thermal damping coefficient for
radius of the bubbled = R — a is the shell thickness),q an encapsulated microbubble is three orders of magnitude less
the shell densityp;o the initial density of the liquid (blood than the viscous damping coefficient if the ultrasound scanner
plasma),p,0 = po the initial gas pressurey; the incident — operates at frequencigs= 1 - 10 MHz! In the case of free
pressure in the liquid, and; the speed of sound in the lig- microbubbles, thermal damping is two orders of magnitude
uid. Surface tensions at the inner (gas-shell) and outer (shelless than viscous dampirg.
liquid) interfaces are denoted lay ando,. The parameters The integrals in (1b) represent the contributions of the shell
A, andF are defined as and liquid viscoelasticities to the bubble oscillation. The ra-

dial component of the shear stress tensor (radial stress) is de-
P po p_ Polf Apla/R)T (2)  noted byr,,. In the shell domainr,, = 77, In the liquid
Ps0 pso 1+ Apa/R domain, 7, = =Y. The liquid elasticity weakly affects the
A polytropic exponent is different from ~, (ratio of bubble oscillation as compared to the shell elastititfhere-

constant-pressure to constant-volume specific heats for tHere, we assume that the liquid is Newtonian, iré,, depends
gas) because of heat transfer through the bubble walls. It takég€arly on the radial component of the rate-of-strain tensor:
the value betweei (isothermal behavior) angl, (adiabatic o _ O,

behavior). However, we disregard the energy dissipation due T = 200 Vrr= 241 o (3)

A
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(ap and Ry are the equilibrium values of the inner and outer
LiC]Uid radii of the microbubble). The linear and second-order non-
linear acoustic responses of the microbubble (the first and sec-
ond harmonics of microbubble oscillation) are specified by the
functions Xy (t) = epaor1(t) and Xy (t) = e2aoxa(t). They
may be expressed as

A1 (2)

Xi(t) = TPAexp(iQt), (8a)

Xo(t) = AoT(Q)PIZ—&—AQ#(Q)Pf‘ exp(2iQt), (8b)

where Ay, (), A41,(), and Az, () are the complex-valued
functions of the transmitted frequency. The magnitudes
of these functions represent the zeroth-, first-, and second-
harmonic responses of the microbubble to the ultrasound field.
To calculate the contribution of the microbubble to the
backscattered signal, the scattering cross-sections of the mi-
outer crobubble at the transmitted frequency and at twice the trans-
interface mitted frequency are considered. The scattering cross-section
at the transmitted frequency, or the first-harmonic scattering
cross-section, is denoted by, . It is related to the ratio of
FIG. 1. Schematic sketch of an encapsulated microbubble of outethe total acoustic powell; scattered by the microbubble at

radiusR. The microbubble resides in an unbounded Newtonian |Iq-the first harmonic to the intensit&) of the incident acoustic
uid. Itis covered with a shell (viscoelastic layer of finite thicknéss  fjg|ge:

i.e., itis characterized by two interfaces: inner (gas-shell) and outer
(shell-liquid) interfaces. Wy Amr? | Py ‘2 szl
g 1 = —_, 1 = 5 0 = .
I 2pC) 2p1C)

(tu is the liquid viscosity). Near the outer interface of the The symbols,, denotes the scattering cross-section at twice

inner
interface

9)

oscillating bubble, the radial velocity of the liquid is the transmitted frequency, or the second-harmonic scattering
da R dR " cross-section:
Up= 5— = —5 —.
r2dt  r? dt Wy W — 4mr?| Pyo|?

Og2 = —/—, 9 = (10)
I 20, C
Provided.? = 0, substitution of Egs. (3) and (4) into 0 prt

the second inzggoroal of Eq. (1b) gives

(W5 is the total acoustic power scattered by the microbubble
at the second harmonic). Herés the radial coordinate?,;
3/00 (1) Apa? da 4 dR and P;, are the first- and second-harmonic amplitudes of the

Trr
[ dr = R di R dt’ (5) pressure wave scattered by the microbubble. Based on the re-

lationship between the scattered pressure field and the bubble
We restrict our attention to the case of small-amplitude osradiug!?-23
cillation of the microbubble in the sinusoidal pressure field P2
P

P pltr) = Gl gma’©), E=t=r/C @Y
pr = po — Pasin(Qt) = po + > [i exp (i) + c.c.]. (6)

) . o i i the expressions faP,; and P,,; can be found [see Egs. (86)
Here p is the undisturbed liquid pressure in the region farang (87) in Ref.11]. Then, the first- and second-harmonic

from the microbubble (blood pressuré), the acoustic pres- scattering cross-sections depend 4n.(Q) and A,,(Q) as
sure amplitude,2 the angular transmitted frequency [the g(0ws:

transmitted frequency = /(2x)]. The symbolc.c. de-

notes complex conjugate. The acoustic pressure amplitude is o, = 47p?adQ*|A1,.(Q)]?, (12a)
far less tharpy, i.e., there exists a small parametgrsuch 22 ()2
that P4 = e,poP and P is a real number of the order of 1. T2 64mpad PO | Asn(Q) + ﬁ . (12b)
Then, the solution to Eq. (1) is expanded in powers,cdis 2a0

a = ag(l+z), (7a) It is important t<_) say that theT expression for the second-
a3 o3 a3 harmonic scattering cross-section given by Church [Eq. (26b)

R = Ry [1—}—%3@ +-2 ( —%) x2+0(m3)] , (7b)  in Ref.9]is in error because it has been derived without con-
Ry Ry 1y sidering (a) the nonlinear relationship between the scattered

v = w(tiep) = epr1(t) + eama(t) + O(e) (7c)  pressure field and bubble oscillation and (b) the dependence
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of the scattered pressure on the second time derivative of thEhe functionS,.(£2) is the contribution of acoustic radiation
bubble radius. Due to the same reasons, it is also inappropriate the bubble stiffness:
to use the well-known formula for the scattered preséure

. T36Q4 Ploao Apao —1

0C
Odt r Psol

for evaluating nonlinear scattering by microbubbles. If thermal damping is ignored, the total linear damping coef-

If the shell behaves as a viscoelastic solid, its behavior Caﬁcientﬁ(Q) = Buis + Pac(€2), where
be described by the Kelvin-Voigt model. Because we ignore 1 3 a3
the shape deformation of the microbubble, this model is re- 3 .~ — 2 (1+ Apa0> |:Ns‘ (1;%> i ] (20)

duced to the following relatio: JT Ry R
T,.02
s 4a? da () = —2 21
(&) = -— [Gs(a ac) + fs dt} (14) Bac($) 2(1 + T2.02) 1)

whereG, andp, are the elasticity modulus and viscosity of are the viscous damping and acoustic radiation damping coef-
the shella, is the unstrained inner radius of the bubble, whichficients. The functiod’(2) can be written as

is different from the equilibrium radiug, due to radial pre- )

stress in the shelt Under the assumption that the pre-stress [Q2 — aQ? + 5,(Q)]” + 1602232 (Q)

is counterbalanced by the over-pressure, the un_strained radius () = (02 — 402 + 5@0(29)]2 + 169252(29). (22)
depends on the shell elasticity and surface ten&ions

00 =ao(1+7), 7= 1 <01 o ) R0 (15) Here
e — A )
2G, Ro) R} — o - 3L+ Ap(a0/Ro)’] 23)
In view of Eq. (15), substitution of Eq. (14) into the first inte- 2(1+ Apao/Ro)
gral of Eq. (1b) gives o TZOY44T2.0%)
. Snl8) = 50 =i oy r2ary @Y
T 4(R3 — a) aop s da ac ac
Ll — _ 2\ F0J _ 0 2s 77
3/ dr = Gs (1 ) + 1 9k(k + 1)
o T R3 a a dt Q, = 73 Do
aRj (201 202 (16) o lpanllt Bpao/Ball " | 2
aR® \'ay ' Ro _doy _doaa§ o ()66
ag RO R3

BecauseR® = a® + R} — a} due to the shell incompress- 12
ibili i 3ag 3a  9a
ibility, equations (1), (5) and (16) can be combined into a {2+ R3 +< 0 0) Z}} 7 (25)

. . - . . ) 2
single ODE in the inner radiug (or in the outer radiusR). T R} * RS
The resulting differential equation represents the mathemati- 3 A gt af b
cal model for radial oscillation of an encapsulated microbub- 3, (2) = 5 (1+ £ O) [Ms(l 6) + 1y %}
ble in a compressible Newtonian liquid provided the encap- Pso@p Ro ) 2R2 Ry
i i ' i i T,.0%(1 -T2
sulating shell behaves as a viscoelastic solid. By applying + Bae(20) — o ac$2%( wc$¥) (26)

the perturbation technique [see Eqs (6)-(8)] to this model and
using Eqgs (12) , we obtain the following expressions for the _ _ _
first- and second-harmonic scattering cross-sections of the m# and7,. are given in Egs (2) and (19), respectively.
crobubble: By definition}* the linear resonance frequency of bubble
4m(L+ Ao/ Ro)~2p2 a0t oscillation f,..; is the frequency at which the bubble first-

2 (1+4T2.02)(1+T2.02)

g1 = 5 , (17a)  harmonic response (linear amplitude-frequency response) has
0% {[92 Q2+ S..(Q)] + 49262(9)} a local maximum. If the bubble is covered with a shell, its
first-harmonic response is of the form:
oy - 6T(L+ Apao/Ro) MR PROTQ) o P
i a3 { (03— 92+ 5.(2) +492ﬁ2(§2)}2. P ag (1 + Apao/Ro) ™"
Pi0ad ac |A1- ()= 1/2° )

2 2
HereQy = 27 fy and f; is the undamped natural frequency, {[QO_QQ+S“C<Q)] +49252(9)}

i.e., the natural frequency of microbubble oscillation upon ig-

noring viscous damping and liquid compressibility: Even if the surrounding liquid is assumed to be incompress-
ible, the total damping coefficient is sufficient large to influ-
fo = 1 201 202a8 ence the resonance frequency of microbubbles encapsulated
0= omay [pso(1+Apao/Ro)]1/2 kpo— a0 R} by }he r}igh-viscosity shell. Damping has a negligible effect
on i
3 3 1/2 res
ag 3ag
1G4 1——=5 | |1 1+— 17 . 18
raa (1) [+ (1) 7]} 49 BlO) < 02 (28)
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This condition is satisfied if the Reynolds numbers for the

shell Re = agpsoU/us and for the liquid Re= agpioU/ Nycomed microbubbles

. . " 6
are much more than unity(= +/po/pio is the characteristic
velocity). Itis clear that the difference between the resonanc
and undamped natural frequencies increases with decreasil 5

the bubble size and increasing viscosity. For microbubble:
of radius1 pum suspended in water and encapsulated by the
shell, which density is equal to the water densiyg, < 1
if us > 0.01 Pas= 10 cP. Meanwhile, the shell viscosity of
contrast microbubbles is much higher thehcP 25 There-
fore, using the term "resonance frequency” as a synonym o
"natural frequency” is validated only for large bubbles.

Upon neglecting the liquid compressibility, the simple ex-
pression for the resonance frequency is obtained from thi
maximization of| A,,(Q)/:

N

(=Y
H\\\\|\\\\|\\\\|\\\\|\\\\|\\\\|

Frequency (MHz)
w

N

2 B
fres = fresO = f() - ﬁ . (29) | I I
As follows from Eq. (27), microbubbles resonate in a com- 0 ‘2_‘24‘ 4 7 ‘ 10
pressible viscous liquid at the frequency Bubble radius, R, (1tm)
1
fres = -1
27T FIG. 2. Resonance frequency (solid) of an air microbubble encap-
12y 1/2 sulated by a polymeric shél*” as a function of the outer radius
AT2. (272 f3 — B2.) of the microbubble, compared with the undamped natural frequency
1+ 1+ 4T Buois(1+TaeBuis) - (30) (dotted). The microbubble resides in human blood plasma. The

dashed line is the resonance frequency under the assumption that
Note that the acoustic contribution to the resonance frequendylood plasma is incompressible [Eq. (29)]. The solid and dotted lines
of free bubbles was discussed by Prospefétti. are calculated from Egs. (30) and (18), respectively. The encapsu-
Figure 2 compares the resonance frequency with the urlating shell is characterized by viscosity of 0.45$and elasticity

damped natural frequency for air microbubbles encapsulate arljm"é'tzz_ ItslhlglgnoelstFl)z :O/ocof_thtlag)t:;brl;lgoluter ra_d'ung?Other
by the shell of viscosityi, = 0.45 Pas and elasticityG, = o ansiersu = u. i b= o= e

. . s kg:m™, pso = 1100 kgm~>, po = 0.1 MPa,o; = 0.04 N-m~",
12 MPa. The shell thicknes# is 5% of the initial outer ra- " _ 4 505 N.m~!, andx = 1.1.
dius Ry. As estimated by Hofet al,?® these values of pa- '
rameters are typical of "polymeric microbubbles” prepared

] _ bare
by Nycomedt” We assume that the microbubbles reside intpe more the shell and liquid viscosities, the more the critical

blood plasma (viscosity, = 0.0012 Pas, densityn = 1027~ rajys (and hence the difference between the resonance and
kg-m. ,.and speed of sour@ - 15.43 m-s~7).** The shell undamped natural frequencies). Although the critical radius
d_en5|ty is supposed toﬁge sllgh_tly _hlgher than the plas_ma_ deYecreases with increasing the shell elasticity, the shell viscos-
Sity: pso = 1100 kgm™. The initial pressure in ”161" liquid ity is a more important parameter: a ten-fold decrease in shell
po = 0.1 MPa. The surface tensions = 0.04 N-m™ and  \iscqsity has approximately the same effect on the critical ra-

— —1
g2 = 0.005 N-m™" (see Ref. 9.)' In the case of encapsulateddius of Nycomed microbubbles as a 100-fold increase in shell
microbubbles, the best matching between the numerical so"é'lasticity.

tion, which accounts for heat conduction through the bubble
wall, and the analytical formula is observedrat= 1.1.1
This value of the polytropic exponent is used in all calcula-

Figure 2 also shows that ignoring the liquid compressibil-
ity leads to overestimation of the resonance frequency: the
tions here microbubble situated in a less compressible liquid resonates
N A . : at a higher frequency. This happens due to acoustic radia-
As illustrated in Fig. 2, there is a notable difference be'tion damping. The difference betwegn..o and f,... reaches

tween the resonance and undamped natural frequencies o h65 MHz & 5.6%) for Nycomed bubbles of radius 3
the wholg range of.m|crobubble' sizes. In the case of Nycg)me nother result of Fig. 2 is that there exists an upper limit to the
suspension, this difference varies from -0.39 MHz (15.9%) ai esonance frequency of microbubbles: the Nycomed suspen-

tEO =5 pmto I-Q:[Bdo MHZélétiS%) aROh: 2“2 pm. (Ijnbaddl- i sjon does not resonate if the transmitted frequency exceeds 3
lon, eéncapsuiated microbubbles aré characterized by a CritiCy ., - i ragult is, however, not applicable to the backscat-

size below which they never resonate. The critical size is ir}ered signal produced by the suspension, as shown later
the size range of contrast agents. The critical radius of Ny- Even in the case of Albuneg, which is, a suspension 'Of

comed microbubbles is 2.24m. From both Egs. (29) and protein-encapsulated microbubbles, there is a significant de-

(30) it follows that microbubbles cease to resonate if .
viation of the resonance frequency from the undamped natu-
Buis > TV 2f,. (31) ral frequency for all possible sizes of microbubblé#s es-
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the resonance and undamped natural frequencies of bubble
oscillation is negligible small, it is correctly reasoned that

Considering the liquid compressibility, the first-harmonic
resonance frequency of the backscattered sigpak v X.

6j5.47MHz fi = fres = fo- In such a situation, resonating bubbles
o \ are responsible for the resonance peaks in the output-level
5L Iy — Nycomed versus frequency curve. In the case of small bubbles, the
i Iy — — — - Albunex viscous damping coefficient is large and, therefore, nonres-
i [ onating bubbles make the major contribution to the resonant
4 I \ backscatter.

Resonance frequency (MHz)

3r The quantityX, as is evident from the maximization of1,
i is one of the positive real roots of the cubic equation
2 X34 X2+ X +¢=0 (33)
L i with
i o = fo , (34a)
- 1.46| | 2.24 | | | | 27T2T(l20(1 + QTH,cﬂvi,s)z
% 2 4 6 8 10 . 8m2T2. 13 + B2,/ (2n?) — f2 (34b)
Bubble radius, R (1 m) ! 2m2T2.(1 4 2T acBuis)?
2(4 2T2. 4 2. 2 _ 2 2
cy = ( ™ a(‘fO +ﬁms/ﬂ- fO) (34C)

2
FIG. 3. Resonance frequencies of Nycomed and Alb@eri- (14 2T Buis)
crobubbles (solid and dashed) as functions of the outer radius [based Figure 4(a) plots the resonance and undamped natural fre-
Eqg. (30)]. The Alb icrobubble i lated b - ; ;
?er;n ghéll 0)2 visc%sity:h?F;(;rgai e;lsstigir;;gpsiaSZ < '\%sapro quencies of the Nycomed microbubble (dash-dot and dashed
: s : ’ s - " lines) situated in blood plasma as well as the first-harmonic
and constant thickness= 15 nm (see Ref.9). Both microbubbles f f the si | d by th icrobub
reside in human blood plasma. The parameters of the Nycomed m -‘Tsonalng?_ reque?cyq the S]'('gr?a scatteri_ y'tl'he rfT_ucro ub-
crobubble and blood plasma are as in Fig. 2. e (so i ine) as functions of t e outer radifts. The first-
harmonic resonance frequency is calculated from the solution
of Eq. (33) (see p. 17 in Ref. 29). Like the undamped natural

timated by ChurcH,the protein (albumin) shell of these mi- frequencyfy, the first-harmonic resonance frequency of the
crobubbles is thind = 15 nm), very viscousy{, = 1.77 Pas)  backscattered sign#l decreases monotonically with increas-
and elastic ¢, = 88.8 MPa). Figure 3 shows that the criti- ing the bubble radius. Howevef; tends to infinity when the
cal radius of Albune® bubblesR, = 1.46 um. This value inner radiusa, approaches zero, whil§ reaches the high-
is less than the critical radius of Nycomed bubbles mainlyest value (several tens of MHz) a§ > 0. If we continue
due to a difference in shell thickness between these two cori0 use the assumptiofy = f,.s = fo for bubbles of arbi-

trast agents. The upper limit to the resonance frequency igary small size, we will be led to the conclusion that the bub-
higher for Albunex® (f™%* = 5.47 MHz) than for Nycomed ble resonance and the resonance peak in the first-harmonic

TES

(fmaer — 2 97 MHz). This can be explained only by a higher scattering cross-section always exist, no matter how bubbles

Tes

elasticity of the albumin shell. (A decrease in shell thicknesgire small. We will, then, argue that very small bubbles res-
leads to a decrease in the critical radius but has no effect opnate at very high frequencies. Figure 4 demonstrates that
the upper limit to the resonance frequenty.) this conclusion is wrong. Bubbles are characterized by the
The widely used assumption that the resonances of theritical radius. Not only bubbles of subcritical size cease to
backscattered signal (resonance peaks in the output-level veéigsonate, but they also never produce the resonant backscatter
sus frequency curve) are produced by microbubbles resonadt the transmitted frequency. (As will be shown later, bub-
ing at the transmitted frequency may lead to misinterpretables of subcritical size can produce the resonant backscatter
tion of experimental data. The first-harmonic resonance ofit twice the transmitted frequency.) The difference between
the signal scattered by an encapsulated microbubble occurst&e first-harmonic resonance frequency of the backscattered
the frequencyf;, which is different from the resonance fre- signal and the microbubble resonance frequency always ex-
quency of the microbubblé,.,. If the surrounding liquid is ~ceeds the difference between the undamped natural and reso-
considered to be incompressible, the maximization of the firsthance frequencies of the microbubble. For Nycomed bubbles
harmonic scattering cross-section [see Eq. (17a)] gives the Of outer radiusizy = 5 um, f1 — fres ~ 0.73 MHz (30.0%),

following formula for f; while fo — fres ~ 0.38 MHz (15.9%). If Ry = 2.54 um,
Fi— fres ~ 11.89 MHZ (487.2%) andfo — fes ~ 3.09 MHz

2 5 126.8%)).

fl fO o fO (32) ( 0)

- freso /F2 — 512)i5/(27rz)' As indicated in Fig. 4(b), a restriction on the first_—ha_rmonic
resonance frequency is solely the effect of the liquid com-

In the case of large bubbles, i.e., when the difference betwegapressibility. If blood plasma is treated as an incompressible
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liquid, f; is calculated from Eq. (32). According to this equa-

tion, f, tends to infinity when the bubble radius approaches Nycomed microbubbles
the critical value R..;; = 2.24 um for Nycomed microbub- (a)
bles). However, Nycomed microbubbles oscillating in blood 16 \

plasma are not able to produce the resonance peak in the firs L
harmonic scattering cross-section if the transmitted frequenc -
exceeds 14.33 MHz. The existence of the upper limifto B
results in another value of the critical bubble radius, specific
for f1. In particular, the resonant backscatter from Nycomed
bubbles of radius less thaR,.,;;; = 2.54 um seems not to
exist.

In the most experimental works on contrast agents, the
properties of microbubbles, such as the shell viscosity ant
elasticity?>%0 are evaluated through frequency analysis of
the backscattered echo, i.e., from the output-level versus fre
quency curves. It is generally believed that the highest L
peaks in these curves are associated with the resonance fi -
guency of microbubbles. In reality, the highest peaks are as f
sociated with the first-harmonic resonance frequency of the obeo v ot v
backscattered signgl, which is not coincident with the mi- 0 1 29924 3 4 5
crobubble resonance frequengys. Moreover, it is believed Bubble radius, R )
that the frequency at which the highest peak is observed de
pends on the microbubble parameters according to Eq. (18
In reality, equation (18) describes the undamped natural fre
qguency fy, which is different from the first-harmonic reso-
nance frequency of the backscattered signal. The undampe
natural frequency can be used insteadfpfand f,. if the
microbubble radius is more thanum, i.e., beyond the size
range of contrast agents. Figure 5 shows how the differenc
betweenf; (measured in experiments) arfgl (used instead
of f1) depends on the microbubble radius for two types of
contrast agents: Nycom&d’ and Albunex®.® Although this
difference is relatively small for bubbles of radilig = 5
um, in particular,f; — fo = 0.34 MHz for Nycomed bubbles
and0.025 MHz for Albunex® bubbles, it becomes very large
when the bubble radius approaches the critical vatug;;.
Note that in the case of Albun@x bubbles the critical ra-
dius for f; is again more than the critical radius fgy.,:
Reripn = 1.61 pm > Ry = 1.46 pm. The maximal dif-
ference betweerf; and f is 8.8 MHz for Nycomed bubbles
and14.1 MHz for Albunex® bubbles. Therefore, the use of L L ‘
Eq. (18) for the interpretation of experimental data on the res: 2 2.25 25 2.75 3
onant backscatter from microbubbles cannot be tolerated. Bubble radius, R( pm)

A monodisperse suspension of encapsulated microbubble -
cannot produce the resonant backscatter at both the transmit-
ted frequency and twice the transmitted frequency. It is nof!IG. 4. (a) Resonance and undamped natural frequencies of Ny-
quite correct to argue that if bubbles of one radius resonatéomed microbubbles (dash-dot and dashed) and first-harmonic reso-
all the harmonics, subharmonics, and ultraharmonics of th8ance frequency of the backscattered signal from the microbubbles
backscattered signal they produce will be resonant. This stat solid line) as functions of the bubble outer radius. The liquid (blood

plasma) compressibility is taken into account. Open circle denotes

ment is validated only for large bubbles. In particular, the S€Cthe highest frequency at which the resonant peak in the first-harmonic

or}d harmonic of the, backscattered signal from encapsulat attering cross-section can be observed. (b) The first-harmonic res-
microbubbles of radiugz, has a resonance peak at the fre-gnance frequency of the backscattered signal produced by Nycomed
quencyf, (second-harmonic resonance frequency), which isnicrobubbles surrounded by compressible and incompressible lig-
equal to neither the first-harmonic resonance frequgheywr  uids (thick and thin solid lines) as a function of the bubble outer
the undamped natural frequengy. This is apparent from the radius.

maximization of the second-harmonic scattering cross-section

os2. Itshould be noted that, is defined as theansmitted fre-

guencyat which the second harmonic of the backscattered sig-

-
N
I

Frequency (MHZz)
(o]
I

N
I

(b)

N
o
1

incompressible liquid

w
o
I

-14.33 MHz _
o ................ : CompI'ESSIb|e
I : - liquid

[EY
o

224 254

(@)

First-harmonic resonance frequency (MHz)
N
o
I

J. Acoust. Soc. Am. D. B. Khismatullin: Resonance frequency of microbubbles 7



Nycomed microbubbles

16
14.1[Q — Nycomed
- : — — — — Albunex
12t !
- 1 ~
< - 1 g
T 88l..ii =
2 gk 1 3
: c
- - | 7]
1 | : >
el g
L \ L
Ar
- A\
- \
L ~
0 ! = O\\\\I\\\\I\\\\I\\\\I\\\\I
1 161 2 254 3 4 5 0 1 2 3 4 5
Bubble radius, Ry( im) Bubble radius, R, (L m)

FIG. 5. The difference between the first-harmonic resonance freFIG. 6. First- and second-harmonic resonance frequencies of the
guencyf; and the undamped natural frequerfgyfor Nycomed and  backscattered signal (dash-dot and solid) and undamped natural fre-
Albunex® microbubbles (solid and dashed) as functions of the bub-quency of Nycomed microbubbles (dashed) as functions of the outer
ble outer radius. Nycomed microbubbles of radis < 2.54 um radius. The liquid compressibility is taken into account. The second-
and Albunex®) microbubbles of radiufy < 1.61 um do not pro-  harmonic resonance frequency is defined as the transmitted fre-
duce resonant scattering at the transmitted frequency. The paramegdency at which the second harmonic of the backscattered signal is
ters are listed in Figs. 2 and 3. resonant. Open circle denotes the highest frequency at which the
resonant peak in the first-harmonic scattering cross-section can be
observed. P4 = 30 kPa. The remaining parameters are listed in

nal is resonant, i.e., in the output-level versus frequency curvd,9- 2

the second-harmonic resonance peak will iefat Theo s is

a very complicated function of the angular frequetitysee

Eqg. (17b)]. It is impossible to obtain the analytical formula mitted frequency for second-harmonic imaging by usjiag

for fy even in the incompressible case. Tlf. = 0, the max-  reaches several tens of MHz for microbubbles of radius less

imization of o5 results in a fifth-order algebraic equation in than1 uym. In this figure, the difference betwegh and f;

02.) To calculate numerically the second-harmonic resonancis plotted as a function of the outer radius for Nycomed and

frequency as a function of bubble radius, we use M&le  Albunex® microbubbles (solid and dashed lines). This differ-

(Maplesoft, a division of Waterloo Maple Inc.). The results of ence remains relatively small (but cannot be ignored) for mi-

the numerical calculation are presented in Figs. 6 and 7. crobubbles of radius betweern@n and 5um. In this range,
Figure 6 compares the second-harmonic resonance frefz — fo varies from—0.55 to —1.43 MHz for Nycomed bub-

quencyf, (solid line), the first-harmonic resonance frequencybles and from-0.063 to —0.485 for Albunex® bubbles. The

f1 (dash-dot line), and the undamped natural frequeficy Second-harmonic resonance frequency deviates significantly

(dashed line) for Nycomed microbubbles of radiRg < 5 from the undamped natural frequency if the bubble radius is

pm. While f; is always higher thary, f» is always less less thar8 um (or its size is less than @m).

than fy. Hence, the difference betwegh and f> is more The microbubble population is highly polydisperse. The

than betweerf; and fy. It increases with decreasing the bub- polydisperse suspension is less sensitive to the transmitted fre-

ble radius. For instance, when the outer radius of Nycomeduency than the monodisperse suspension. If the ultrasound

microbubbles is changed fronpm to 2.54 pm, fo — f1in-  transducer operates at the frequency of several MHz (frton

creases frond.9 MHz to 10.6 MHz. Also, there is no critical 14 MHz), there always exist bubbles of one size, &y that

radius for the second-harmonic resonance. Even submicrgsroduce the resonant backscatter at the transmitted frequency

bubbles may have a resonance peak at twice the transmitteshd bubbles of another size, sRy, that produce the resonant

frequency. Hence, ultrasound-based methods for detection dlckscatter at twice the transmitted frequency. The backscat-

very small bubbles inside materials should exploit the secongered signal from this suspension, therefore, has peaks at the

harmonic, not the first harmonic. transmitted frequency and multiple of this frequency. It is im-
As illustrated in Fig. 7, overestimation of the optimal trans- portant to say thakR; is not equal taR; in the case of encap-
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crobubbles of the suspension. Smaller microbubbles plays an
insignificant role for first-harmonic imaging. Optimal second-

O;_ harmonic imaging is possible if the mean radius of the Ny-
AF comed suspension i3, = 2.77 pm. This value is sufficiently
E close to the actual mean radius of the Nycomed suspension
2F (betweer2.0 and2.5 um), i.e., Nycomed microbubbles will
3k scatter ultrasound more or less efficiently at twice the trans-
- mitted frequency. Nevertheless, one can increase the quality
'II\T 4 of second-harmonic imaging from Nycomed microbubbles by
S E a slight decrease in the transmitted frequency. As illustrated
:; SE Nvcomed in Fig. 8(b), the optimal transmitted frequency for second-
'\ -6 E / yco harmonic imaging isf = 4.61 MHz, if the mean radius of
= F | — — — Albunex Nycomed microbubbles i8.0 ym. Figure 8(b) also shows
= that there is no optimal frequency for first-harmonic imag-
- | ing. This is becaus@.0 ym is less than the critical radius
-8 - R..;v1 = 2.54 pm. It is necessary to say that the present anal-
9F I ysis is expected to hold quantitatively for experiments on scat-
- I, | | | | tering by microbubbles under low-intensity continuous ultra-
A0y T sound. Finite-amplitude effects and polychromaticity of the

ultrasound signal can lead to additional shifts in resonance
frequencies?
Because a lipid monolayer is very thin as compared to a

FIG. 7. The difference between the second-harmonic resonance fr0lymeric or protein layer, the viscoelastic solid shell model
quencyf2 and the undamped natura| frequerfﬁwor Nycomed and doeS not WOI‘k We” fOI’ |Ip|d-Coated mICI’ObUbb|eS In thIS
Albunex® microbubbles (solid and dashed) as functions of the oute€ase, a Newtonian interface model suggested by Chatterjee
radius.P4 = 30 kPa. The remaining parameters are listed in Figs. 2and Sarka¥ is more appropriate. This model introduces the
and 3. interfacial dilatational viscosity, instead of the shell viscos-

ity us. (In this model, an encapsulated shell has zero thick-

ness.) Therefore lipid-coated microbubbles can be considered
sulated microbubbles. as free microbubbles with the decreased surface tension coef-

To increase the quality of contrast-enhanced uItrasoumqClent and the liquid viscosity replaced by
imaging, one needs (a) to create a suspension of microbub- K
bles with a mean radius equal to eith@; (for fundamen- Hiy = i + w0 (35)
tal mode imaging) ok, (for second-harmonic mode imag-
ing) or (b) to operate the transducer at the frequeficyn  [see Eqgs. (16) and (17) in Ref.32]. Hence the viscous
the fundamental (first-harmonic) mode orfatin the second-  damping coefficient for lipid-coated microbubbles is calcu-
harmonic mode, wher¢, and f, are taken at the mean ra- |ated from Eq. (37), given below, wheye, is used instead
dius of microbubble population. The former way should beof ;,;. The viscosity-induced shift in resonance frequency will
used if the transducer is characterized by a narrow range @fiearly exist for these microbubbles because the second term
operating frequencies. Unfortunately, neither AlouRERor in the right-hand side of Eq. (35) becomes very large when
Nycomed (and other polymeric contrast agents) are good caubble sizes are in micron or submicron range.
didates for the fundamental mode imaging. The mean radius
of Albunex® bubbles is about.7 m,® which is very close
to the critical radius forf;. As shown in Fig. 5R¢-;11 = 1.61 lll. FREE MICROBUBBLES
pm for Albunex®. (The critical radius will be even higher if . _
thermal damping is taken into account.) Polymeric microbub- Another type of the commercially available ultrasound con-
bles are worse than Albun@xbecause of the thick shell. The trast ggents represents.emulsmns t_hat_transform itself into sus-
mean radius of Nycomed microbubbles is betweégnand ~ Pensions of free gas microbubbles |nS|de_the human baaly.
2.5 um?27 less than the critical radiusi(,;;1 = 2.54 um for _partlcul_ar, Echoger_l (Songs Pharmaceutlcals, Bothell, Wash-
Nycomed). These contrast agents can, however, be used flgton) is an emulsion Of1|IQUId dodecafluoropentane (DDFP)
second-harmonic imaging. Figure 8(a) shows that if the trang/hich boils at abou2°C.~ In the liquid phase, such an emul-
ducer operates at frequengy= 5.0 MHz (this frequency was S'0N IS st_able against dlssqlutlon. In the gas pha_se, it is more
used in experiments with Nycomed bubbles by Hiffl),25 echogenic than a suspension of encapsulated microbubbles.
a Nycomed suspension should be of mean radiys= 4.36 To evaluate backscattering by Echogen microbubbles at the
(first-harmonic) mode. Such a high value®f signifies that ~ can still use Egs. (17) in whiclky = ao, 01 = 02 = o,
the major contribution to the first harmonic of the backscat-Z = 0. pgo = po + 20/ ag (without the stabilizing layer, there
tered signal is from 4-am bubbles, i.e., from the largest mi- is the over-pressure in the gasinside a microbubh@,: 0,

Bubble radius, R{ )

J. Acoust. Soc. Am. D. B. Khismatullin: Resonance frequency of microbubbles 9



Nycomed The expressions fof,.(2) and 5,.(2) remain unchanged

10t (a) [see Egs. (19) and (21)].

— g The viscous damping coefficient of free microbubbles is
N 100:_ - = - smaller than that of encapsulated microbubbles. For exam-

=3 P g %_ ple, a free bubble of radius xm situated in blood plasma

Z 10tL P - 1 (p1o = 1027 kg-rrgS 3,’1/” = 0.0012 Pas) is characterlze_d_by

c g 4 P Buis = 2.337x10° s~*, while the viscous damping coefficient

-8 of 4 _ L of an Albunex® microbubble of the same (outer) radius is ap-

o 10 3 /7 f=50MHz o proximately1.596 x 102 s=1. Therefore, the deviation of the

un - Lf / ] resonance frequency from the undamped natural frequency is

a 10 E /| T S_econd har monic expected to be less for Echogen than for Albu®exHow-

< B — — — Firstharmonic ever, it is not negligible. Like encapsulated bubbles, free bub-

G 10 E : bles are characterized by a critical radius for bubble resonance

2 . / Rerir. From (31) it follows that

q:_) 10 7

5 F o <3nl)a B 24k po

(;L‘); 10 g Rcmt - 3k Do 1 + 1 + (35_1)2(72Pl0 (38)

10'70 SR T — : I S for free bubbles. I = 0, the critical radius varies directly

. with the liquid viscosity;:
Bubble radius, R, (KLm)
2v2

NETTN

Rerit = (3 9)

~ 10 (b) o y .
g The liquid viscosity has a more effect on the critical radius
Ncso 10°L than the surface tension. According to Eq. (38), if the sur-
E 2 - T face tension increases frointo 0.04 N-m~!, the critical ra-
~ 10tk P dius of bubbles oscillating almost isothermally £ 1.1) in
g g - blood plasma decreases frar4 to 56 nm. An increase in
2 102k 7 R =2.0um the liquid viscosity from0.0012 to 0.004 Pas (high-shear-
8 g 4 0 ’ rate viscosity of blood) at = 0.04 N-m~! leads to increas-
i 3L / . ing R..;; from 56 to 396 nm. Because the mean radius of
8 10 / E’ecsct)rr]]d harm_onlc Echogen microbubbles is aboti nm2” a slight increase in
g 10°L — — — rirstharmonic viscosity and/or a decrease in surface tension, induced by sol-
> c/ uble polymers and another surface-active molecules in blood,
£ 10°L will make this suspension nonresonant. Experimérthow
Q gl no first-harmonic resonance of the backscattered signal from
% 10°Y : these microbubbles. Note that the presence of a thin surfactant
(% 2 §f = 4.61 MHz layer on the bubble surface, which is realized in lipid-shelled
10,71 Y A A N contrast agents and leads to a decrease in surface tension, will
0 2 4 6 8 10 further magnify the critical radius and hence the difference

betweenf, and f, ..

As illustrated in Fig. 9, the undamped natural frequeficy
(dotted line) should not be used as the microbubble resonance
FIG. 8. First- and second-harmonic scattering cross-sections normairequencyf;..s (solid line) for free bubbles in blood plasma if
ized by4rad (dashed and solid) as functions of (a) bubble radiys  the bubble radius is less than Q:.B. Also, in this size range,
at the transmitted frequengy = 5.0 MHz and (b) transmitted fre-  poth the first- and second-harmonic resonance frequencies of
quency atRo = 2.0 um. The parameters correspond to Nycomed the backscattered signfl and f, (dash-dot and dashed lines)
microbubbles situated in blood plasma. deviate strongly from the undamped natural frequency. In par-

ticular, f1 — fo and fo — f2 are equal td.28 MHz and0.61

frequencyf, and the characteristic tin,. are given b atag = 0.1 um. The critical radius forf; qt vyhich the firsF
quencyfo Istic tintg, gv y resonance frequency reaches the upper limit (357 MH&j is

1 3 2 nm.
fom \/””°+<3n1> C L.—%. ()

Transmiited frequency (MHz)

2map V' pio Proao’ O
The viscous damping coefficient IV. CONCLUSION
1% e transmitted frequency at which the resonant excitation
5'_2 (37) Th itted f hich th itati
Y poad’ of microbubble oscillation occurs is taken to be equal to the
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Free microbubbles undamped naturallfrequency. Every harmonic of the backs_cat—

100 — ) tered signal has its own resonance frequency. In particu-
I ‘ lar, a monodisperse suspension of microbubbles cannot pro-
= P i duce the resonant backscatter at both the trasmitted frequency
N \ B \ and twice the transmitted frequency. (Because a microbub-
; ble suspension is polydisperse, there exist bubbles of one size

. S B \ 3 \. that produce the resonant backscatter at the transmitted fre-
E - Vo \_ _ f@ guency and bubbles of another size that produce the resonant
= IR - — — — f backscatter at twice the transmitted frequency.) The differ-
>l [\ 2y oo fz ence between the first- and second-harmonic resonance fre-
S 20 I R NS U fl quencies of the backscattered sigrialand f, reaches sev-
=R 0 eral MHz in the case of encapsulated microbubbles of radius
) = less tharB um. To increase the quality of contrast-enhanced
LL L

ultrasound imaging, the transducer should operate at the fre-
guencyf; in the fundamental mode and at the frequeficin

the second-harmonic mode, whefieand f> are taken at the
mean radius of the ultrasound contrast agent.

o ‘5‘6 In‘m‘ i Also, there exists a critical radius for the first-harmonic res-
00 0.1 0.2 0.3 0.4 05 onance of the backscattered signal, larger than the critical ra-
: dius for the bubble resonance. The microbubbles of this radius
Bubble radius (Um ;

(Hm) produce the resonant backscatter at the transmitted frequency
equal to the upper limit to the first-harmonic resonance fre-
FIG. 9. Resonance and undamped natural frequencies of free mfluency. There is no critical radius for the second harmonic
crobubbles in blood plasma (solid and dotted) and first- and secondesonance of the backscattered signal.
harmonic resonance frequencies of the backscattered signal from The resonance peak in the first harmonic of the backscat-
the microbubbles (dash-dot and dashed) as functions of the bug eq signal is not observed in many experiments with ultra-
ble radius. The blood plasma compressibility is taken into accoungound contrast agents. It is worth to mention Refs. 33 [Figs
Cpitudor, ~ 30 kea. Other paametra - o1 N 4 5 and 7], 34 [Figs. 4@ and 9] and 25 [Fig. 5, see

i i - also Fig. 9]. The indirect evidence for the disappearance of

w = 0.0012 Pas, po = 0.1 MPa, andx = 1.1. Free bubbles do . .
not resonate if their size is less th@h,.; = 56 nm. The upper the bubble resonance (and hence of the first-harmonic reso-

limit to the first-harmonic resonance frequengyis 357 MHz (not ~ hance of the backscattered signal) is presented in experiments

shown here). The critical radius for the resonant backscatter at they Chenet al..3® As noted by Hoffet al. > "the resonance fre-

first harmonic isRcst1 = 66 nm. guency increases and the resonance peak broadens and almost
disappears due to the viscoelastic polymeric shell”.

Our next concerns will incorporating bubble polydispersity
undamped natural frequency in most experimental and theand pulsed driving conditions (with different pulse shapes and
retical works on scattering by contrast agents. We have showngths) into the theoretical model and performing a direct
that this assumption does not work for both free and encapcomparison between theoretical predictions and experimental
sulated microbubbles used in contrast-enhanced ultrasourfhta on the resonance frequencies of the backscattered signal
imaging. The resonance frequency of microbubbles deviateom ultrasound contrast agents.
from the undamped natural frequency due to the increased
viscous damping coefficient. The difference between these
two frequencies rises as the bubble size decreases because
the viscous damping coefficient is inversely proportional toACKNOWLEDGMENTS
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