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Resonance frequency of microbubbles: Effect of viscosity
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The transmitted frequency at which a gas bubble of millimeter or submillimeter size oscillates reso-
nantly in a low-viscosity liquid is approximately equal to the undamped natural frequency (referred to
as the Minnaert frequency if surface tension effects are disregarded). Based on a theoretical analysis
of bubble oscillation, this paper shows that such an approximation cannot be validated for microbub-
bles used in contrast-enhanced ultrasound imaging. The contrast-agent microbubbles represent either
encapsulated bubbles of size less than10 µm or free (nonencapsulated) bubbles of submicron size.
The resonance frequency of the microbubbles deviates significantly from the undamped natural fre-
quency over the whole range of microbubble sizes due to the increased viscous damping coefficient.
The difference between these two frequencies is shown to have a tremendous impact on the resonant
backscatter by the microbubbles. In particular, the first and second harmonics of the backscattered
signal from the microbubbles are characterized by their own resonance frequencies, equal to neither
the microbubble resonance frequency nor the undamped natural frequency.

PACS numbers: 43.35.Ei, 43.80.Qf, 43.35.Bf

I. INTRODUCTION

Due to its safety and low cost, ultrasound scanning, or
echosonography, is actively used in obstetrics and gynecol-
ogy. However it loses other imaging modalities in regard to
the image quality. An excellent way to increase the quality
of sonograms is the use of micron-size bubbles as ultrasound
contrast agents,1–3 i.e., as scatterers of ultrasound waves in-
side the human body. When injected into the bloodstream,
the microbubbles, less than 10µm in size, move with blood
cells toward the measuring site. Once reached the blood
vessel exposed to ultrasound, they break into oscillation and
thus scatter the incoming ultrasound waves in all directions.
Due to the large acoustic impedance difference at the inter-
face between the gas and blood, scattering by microbubbles
is of high intensity and results in a strong signal on the re-
ceiver, i.e., it enhances the echo from blood. Moreover, be-
cause microbubbles are nonlinear scatterers, the backscattered
signal from them contains higher harmonics of the transmit-
ted frequency. This has made possible the contrast harmonic
imaging technique,4,5 which, in the Doppler mode, can image
blood flow in smallest blood capillaries, including myocardial
perfusion.3

Although the overall effect of contrast agents on the
backscattered signal can be easily detected, it is very difficult
to measure oscillations of an individual microbubble in the
population situated within the insonated blood vessel. The mi-
crobubble behavior can be recorded by optical imaging with a
frame rate of several MHz. Such fast-speed imaging of con-
trast agent microbubbles has been reported by de Jong and
co-workers.6 This group of scientists measured the radius-
time curves for microbubbles but did not relate these results
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to the contribution of each microbubble to the backscattered
signal. In the absence of experimental data, we can only rely
upon theory to realize how a given microbubble interacts with
ultrasound. Particularly, a theoretical analysis of microbub-
ble dynamics can be used (a) to evaluate the transmitted fre-
quency at which scattering by a microbubble of a given size
reaches the maximum and (b) to determine the intensity (scat-
tering cross-section) and damping rate of the scattered wave
produced by the microbubble. The acoustic response of the
microbubble population located near the measuring site can
be calculated from these functions of bubble size, if the size
distribution of microbubbles in the population is known or has
been measured.

All theoretical works concerning oscillations of ultrasound
contrast agents are based on the Raleigh-Plesset equation.7

A number of corrections to this model have been made,
including the effects of the encapsulating shell,8,9 blood
compressibility10 and viscoelasticity,11 and interaction be-
tween microbubbles.12 Hilgenfeldt et al.13 analyzed theoret-
ically the effects of nonlinearity and polychromaticity (pulsed
driving) on the resonant backscatter by free microbubbles. Ex-
cept for Refs. 11 and 13, these works analyze backscattering
by contrast agents from the viewpoint of large bubbles. If a
bubble is covered with a high-viscosity shell and its size is
less than 10µm, its resonance frequency differs significantly
from its natural frequency due to the increased viscous damp-
ing coefficient.11 For a free bubble, the shift in resonance fre-
quency due to damping effects were discussed by Leighton14

and Brennen.15 As shown here, the difference between these
two frequencies has a tremendous impact on backscattering
by ultrasound contrast agents. For example, it is believed1 that
contrast-enhanced ultrasound provides images with the high-
est quality if it operates at the frequency at which the major
part of microbubble population resonates. To put it differ-
ently, if the backscattered signal has a peak at the transmit-
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ted frequency or at multiple of this frequency, it comes from
bubbles which resonate at this frequency. However, we will
demonstrate thatthe frequency at which the signal scattered
by a microbubble has a resonance peak is not equal to the
resonance frequency of the microbubble.

The commercially available ultrasound contrast agents can
be divided into two different types: (i) suspensions of encap-
sulated microbubbles and (ii) emulsions of liquid dodecafluo-
ropentane (DDFP) and superheated drops. Encapsulated mi-
crobubbles are coated by a polymer,1 protein,1 or lipid layer16

with the aim to increase stability of microbubbles in blood
flow. The thickness and mechanical properties (viscosity and
elasticity) of the layer differ for different contrast agents. An
emulsion of liquid dodecafluoropentane17 boils at 28◦ C, i.e.,
it becomes a suspension of free (non-encapsulated) microbub-
bles after intravenous injection. A superheated emulsion18

also transforms itself into a suspension of free microbubbles
but under the action of ultrasound. In this paper, the reso-
nant properties of both free and encapsulated microbubbles
are studied theoretically.

II. ENCAPSULATED MICROBUBBLES

Free gas microbubbles dissolve away in blood very quickly.
This is caused by the over-pressure in the gas inside the bubble
compared to the pressure in blood due to surface tension at the
gas-blood interface.19 Encapsulation of the microbubble by a

biocompatible surface-active layer lowers the over-pressure,
and, as a result, makes the microbubble more stable against
dissolution. The increased stability is the reason why the great
bulk of available contrast agents represent encapsulated mi-
crobubbles. However, the encapsulating shell inevitably con-
strains the bubble oscillation due to the shell viscosity, which
is much higher than the viscosity of blood plasma, and thus re-
sults in decreasing the amplitude of the backscattered signal.
The shell-induced damping of the oscillation becomes more
pronounced with increasing the shell thickness.11

The encapsulating shell shows viscoelastic properties.
Elasticity of the shell material arises from changes in config-
urations of its macromolecules under flow.20 The viscoelas-
tic solid model of the shell, in the form of the Kelvin-Voigt
constitutive equation, has been studied in Refs. 9 and 11. Ac-
cording to this model, the shell elasticity plays a positive role
for scattering. An increase in the shell elasticity leads to in-
creasing the magnitude of the resonance peaks in the scatter-
ing cross-section curves.11 In this section, we analyze the ef-
fect of viscosity on the resonance frequency of and resonant
backscatter from microbubbles encapsulated by a viscoelastic
solid shell.

Let us consider a spherical gas bubble covered by a vis-
coelastic layer of finite thickness (Fig. 1). The bubble resides
in an unbounded Newtonian liquid (blood plasma) and oscil-
lates under the action of ultrasound. The radial oscillation of
an encapsulated bubble is described by the equation11:
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Heret is time,a the inner radius of the bubble,R the outer
radius of the bubble (d = R − a is the shell thickness),ρs0

the shell density,ρl0 the initial density of the liquid (blood
plasma),pg0 = p0 the initial gas pressure,pI the incident
pressure in the liquid, andCl the speed of sound in the liq-
uid. Surface tensions at the inner (gas-shell) and outer (shell-
liquid) interfaces are denoted byσ1 andσ2. The parameters
∆ρ andF are defined as

∆ρ =
ρl0 − ρs0

ρs0
, F =

ρl0

ρs0

1 + ∆ρ(a/R)4

1 + ∆ρa/R
. (2)

A polytropic exponentκ is different from γg (ratio of
constant-pressure to constant-volume specific heats for the
gas) because of heat transfer through the bubble walls. It takes
the value between1 (isothermal behavior) andγg (adiabatic
behavior). However, we disregard the energy dissipation due

to thermal effects because the thermal damping coefficient for
an encapsulated microbubble is three orders of magnitude less
than the viscous damping coefficient if the ultrasound scanner
operates at frequenciesf = 1 - 10 MHz.11 In the case of free
microbubbles, thermal damping is two orders of magnitude
less than viscous damping.11

The integrals in (1b) represent the contributions of the shell
and liquid viscoelasticities to the bubble oscillation. The ra-
dial component of the shear stress tensor (radial stress) is de-
noted byτrr. In the shell domain,τrr = τ

(s)
rr . In the liquid

domain,τrr = τ
(l)
rr . The liquid elasticity weakly affects the

bubble oscillation as compared to the shell elasticity.11 There-
fore, we assume that the liquid is Newtonian, i.e.,τ

(l)
rr depends

linearly on the radial component of the rate-of-strain tensor:

τ (l)
rr = 2µl

.
γrr= 2µl

∂vr

∂r
. (3)
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FIG. 1. Schematic sketch of an encapsulated microbubble of outer
radiusR. The microbubble resides in an unbounded Newtonian liq-
uid. It is covered with a shell (viscoelastic layer of finite thicknessd),
i.e., it is characterized by two interfaces: inner (gas-shell) and outer
(shell-liquid) interfaces.

(µl is the liquid viscosity). Near the outer interface of the
oscillating bubble, the radial velocity of the liquid is
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We restrict our attention to the case of small-amplitude os-
cillation of the microbubble in the sinusoidal pressure field

pI = p0 − PA sin(Ωt) = p0 +
PA

2
[i exp(iΩt) + c.c.] . (6)

Here p0 is the undisturbed liquid pressure in the region far
from the microbubble (blood pressure),PA the acoustic pres-
sure amplitude,Ω the angular transmitted frequency [the
transmitted frequencyf = Ω/(2π)]. The symbolc.c. de-
notes complex conjugate. The acoustic pressure amplitude is
far less thanp0, i.e., there exists a small parameterεp such
that PA = εpp0P andP is a real number of the order of 1.
Then, the solution to Eq. (1) is expanded in powers ofεp as11
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x = x(t; εp) = εpx1(t) + ε2
px2(t) + O(ε3

p) (7c)

(a0 andR0 are the equilibrium values of the inner and outer
radii of the microbubble). The linear and second-order non-
linear acoustic responses of the microbubble (the first and sec-
ond harmonics of microbubble oscillation) are specified by the
functionsX1(t) = εpa0x1(t) andX2(t) = ε2

pa0x2(t). They
may be expressed as

X1(t) =
A1r(Ω)

2
PA exp(iΩt), (8a)

X2(t) = A0r(Ω)P 2
A +

A2r(Ω)
2

P 2
A exp(2iΩt), (8b)

whereA0r(Ω), A1r(Ω), andA2r(Ω) are the complex-valued
functions of the transmitted frequency. The magnitudes
of these functions represent the zeroth-, first-, and second-
harmonic responses of the microbubble to the ultrasound field.

To calculate the contribution of the microbubble to the
backscattered signal, the scattering cross-sections of the mi-
crobubble at the transmitted frequency and at twice the trans-
mitted frequency are considered. The scattering cross-section
at the transmitted frequency, or the first-harmonic scattering
cross-section, is denoted byσs1. It is related to the ratio of
the total acoustic powerW1 scattered by the microbubble at
the first harmonic to the intensityI0 of the incident acoustic
field9:

σs1 =
W1

I0
, W1 =

4πr2|Ps1|2
2ρlCl

, I0 =
P 2

A

2ρlCl
. (9)

The symbolσs2 denotes the scattering cross-section at twice
the transmitted frequency, or the second-harmonic scattering
cross-section:

σs2 =
W2

I0
, W2 =

4πr2|Ps2|2
2ρlCl

. (10)

(W2 is the total acoustic power scattered by the microbubble
at the second harmonic). Herer is the radial coordinate,Ps1

andPs2 are the first- and second-harmonic amplitudes of the
pressure wave scattered by the microbubble. Based on the re-
lationship between the scattered pressure field and the bubble
radius11,21–23

ps(t, r) =
ρl0

3r

d2

dξ2
a3(ξ), ξ = t− r/Cl, (11)

the expressions forPs1 andPs2 can be found [see Eqs. (86)
and (87) in Ref. 11]. Then, the first- and second-harmonic
scattering cross-sections depend onA1r(Ω) and A2r(Ω) as
follows:

σs1 = 4πρ2
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4
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4|A1r(Ω)|2, (12a)
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It is important to say that the expression for the second-
harmonic scattering cross-section given by Church [Eq. (26b)
in Ref. 9] is in error because it has been derived without con-
sidering (a) the nonlinear relationship between the scattered
pressure field and bubble oscillation and (b) the dependence
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of the scattered pressure on the second time derivative of the
bubble radius. Due to the same reasons, it is also inappropriate
to use the well-known formula for the scattered pressure24

ps = iΩρl0

(
a2
0

da

dt

)
exp[−i(Ω/Cl)r]

r
(13)

for evaluating nonlinear scattering by microbubbles.
If the shell behaves as a viscoelastic solid, its behavior can

be described by the Kelvin-Voigt model. Because we ignore
the shape deformation of the microbubble, this model is re-
duced to the following relation11:
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whereGs andµs are the elasticity modulus and viscosity of
the shell,ae is the unstrained inner radius of the bubble, which
is different from the equilibrium radiusa0 due to radial pre-
stress in the shell.11 Under the assumption that the pre-stress
is counterbalanced by the over-pressure, the unstrained radius
depends on the shell elasticity and surface tensions9:
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In view of Eq. (15), substitution of Eq. (14) into the first inte-
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BecauseR3 = a3 + R3
0 − a3

0 due to the shell incompress-
ibility, equations (1), (5) and (16) can be combined into a
single ODE in the inner radiusa (or in the outer radiusR).
The resulting differential equation represents the mathemati-
cal model for radial oscillation of an encapsulated microbub-
ble in a compressible Newtonian liquid provided the encap-
sulating shell behaves as a viscoelastic solid. By applying
the perturbation technique [see Eqs (6)-(8)] to this model and
using Eqs (12) , we obtain the following expressions for the
first- and second-harmonic scattering cross-sections of the mi-
crobubble:
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HereΩ0 = 2πf0 andf0 is the undamped natural frequency,
i.e., the natural frequency of microbubble oscillation upon ig-
noring viscous damping and liquid compressibility:
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The functionSac(Ω) is the contribution of acoustic radiation
to the bubble stiffness:
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If thermal damping is ignored, the total linear damping coef-
ficientβ(Ω) = βvis + βac(Ω), where
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are the viscous damping and acoustic radiation damping coef-
ficients. The functionΓ(Ω) can be written as
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F andTac are given in Eqs (2) and (19), respectively.
By definition,14 the linear resonance frequency of bubble

oscillation fres is the frequency at which the bubble first-
harmonic response (linear amplitude-frequency response) has
a local maximum. If the bubble is covered with a shell, its
first-harmonic response is of the form:

|A1r(Ω)|= ρ−1
s0 a−1

0 (1 + ∆ρa0/R0)−1

{
[Ω2

0−Ω2+Sac(Ω)]2+4Ω2β2(Ω)
}1/2

, (27)

Even if the surrounding liquid is assumed to be incompress-
ible, the total damping coefficient is sufficient large to influ-
ence the resonance frequency of microbubbles encapsulated
by the high-viscosity shell. Damping has a negligible effect
onfres if

β(Ω) ¿ Ω0/2 (28)
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This condition is satisfied if the Reynolds numbers for the
shell Res = a0ρs0U/µs and for the liquid Rel = a0ρl0U/µl

are much more than unity (U =
√

p0/ρl0 is the characteristic
velocity). It is clear that the difference between the resonance
and undamped natural frequencies increases with decreasing
the bubble size and increasing viscosity. For microbubbles
of radius1 µm suspended in water and encapsulated by the
shell, which density is equal to the water density,Res < 1
if µs > 0.01 Pa·s = 10 cP. Meanwhile, the shell viscosity of
contrast microbubbles is much higher than10 cP.8,25 There-
fore, using the term ”resonance frequency” as a synonym of
”natural frequency” is validated only for large bubbles.

Upon neglecting the liquid compressibility, the simple ex-
pression for the resonance frequency is obtained from the
maximization of|A1r(Ω)|:

fres = fres0 =

√
f2
0 −

β2
vis

2π2
. (29)

As follows from Eq. (27), microbubbles resonate in a com-
pressible viscous liquid at the frequency
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1
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+
[
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1+ 4Tacβvis(1+Tacβvis)

]1/2
}1/2

. (30)

Note that the acoustic contribution to the resonance frequency
of free bubbles was discussed by Prosperetti.26

Figure 2 compares the resonance frequency with the un-
damped natural frequency for air microbubbles encapsulated
by the shell of viscosityµs = 0.45 Pa·s and elasticityGs =
12 MPa. The shell thicknessd is 5% of the initial outer ra-
dius R0. As estimated by Hoffet al.,25 these values of pa-
rameters are typical of ”polymeric microbubbles” prepared
by Nycomed.27 We assume that the microbubbles reside in
blood plasma (viscosityµl = 0.0012 Pa·s, densityρl0 = 1027
kg·m−3, and speed of soundCl = 1543 m·s−1).28 The shell
density is supposed to be slightly higher than the plasma den-
sity: ρs0 = 1100 kg·m−3. The initial pressure in the liquid
p0 = 0.1 MPa. The surface tensionsσ1 = 0.04 N·m−1 and
σ2 = 0.005 N·m−1 (see Ref. 9). In the case of encapsulated
microbubbles, the best matching between the numerical solu-
tion, which accounts for heat conduction through the bubble
wall, and the analytical formula is observed atκ = 1.1.11

This value of the polytropic exponent is used in all calcula-
tions here.

As illustrated in Fig. 2, there is a notable difference be-
tween the resonance and undamped natural frequencies over
the whole range of microbubble sizes. In the case of Nycomed
suspension, this difference varies from -0.39 MHz (15.9%) at
R0 = 5 µm to -3.30 MHz (141.8%) atR0 = 2.5 µm. In addi-
tion, encapsulated microbubbles are characterized by a critical
size below which they never resonate. The critical size is in
the size range of contrast agents. The critical radius of Ny-
comed microbubbles is 2.24µm. From both Eqs. (29) and
(30) it follows that microbubbles cease to resonate if

βvis ≥ π
√

2f0. (31)
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FIG. 2. Resonance frequency (solid) of an air microbubble encap-
sulated by a polymeric shell25,27 as a function of the outer radius
of the microbubble, compared with the undamped natural frequency
(dotted). The microbubble resides in human blood plasma. The
dashed line is the resonance frequency under the assumption that
blood plasma is incompressible [Eq. (29)]. The solid and dotted lines
are calculated from Eqs. (30) and (18), respectively. The encapsu-
lating shell is characterized by viscosity of 0.45 Pa·s and elasticity
of 12 MPa. Its thickness is 5% of the bubble outer radius. Other
parameters:µl = 0.0012 Pa·s, Cl = 1543 m·s−1, ρl0 = 1027
kg·m−3, ρs0 = 1100 kg·m−3, p0 = 0.1 MPa,σ1 = 0.04 N·m−1,
σ2 = 0.005 N·m−1, andκ = 1.1.

The more the shell and liquid viscosities, the more the critical
radius (and hence the difference between the resonance and
undamped natural frequencies). Although the critical radius
decreases with increasing the shell elasticity, the shell viscos-
ity is a more important parameter: a ten-fold decrease in shell
viscosity has approximately the same effect on the critical ra-
dius of Nycomed microbubbles as a 100-fold increase in shell
elasticity.

Figure 2 also shows that ignoring the liquid compressibil-
ity leads to overestimation of the resonance frequency: the
microbubble situated in a less compressible liquid resonates
at a higher frequency. This happens due to acoustic radia-
tion damping. The difference betweenfres0 andfres reaches
0.165 MHz (≈ 5.6%) for Nycomed bubbles of radius 3.1µm.
Another result of Fig. 2 is that there exists an upper limit to the
resonance frequency of microbubbles: the Nycomed suspen-
sion does not resonate if the transmitted frequency exceeds 3
MHz. This result is, however, not applicable to the backscat-
tered signal produced by the suspension, as shown later.

Even in the case of Albunexr, which is a suspension of
protein-encapsulated microbubbles, there is a significant de-
viation of the resonance frequency from the undamped natu-
ral frequency for all possible sizes of microbubbles.11 As es-
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FIG. 3. Resonance frequencies of Nycomed and Albunexr mi-
crobubbles (solid and dashed) as functions of the outer radius [based
on Eq. (30)]. The Albunexr microbubble is encapsulated by a pro-
tein shell of viscosityµs = 1.77 Pa·s, elasticityGs = 88.8 MPa,
and constant thicknessd = 15 nm (see Ref.9). Both microbubbles
reside in human blood plasma. The parameters of the Nycomed mi-
crobubble and blood plasma are as in Fig. 2.

timated by Church,9 the protein (albumin) shell of these mi-
crobubbles is thin (d = 15 nm), very viscous (µs = 1.77 Pa·s)
and elastic (Gs = 88.8 MPa). Figure 3 shows that the criti-
cal radius of Albunexr bubblesRc = 1.46 µm. This value
is less than the critical radius of Nycomed bubbles mainly
due to a difference in shell thickness between these two con-
trast agents. The upper limit to the resonance frequency is
higher for Albunexr (fmax

res = 5.47 MHz) than for Nycomed
(fmax

res = 2.97 MHz). This can be explained only by a higher
elasticity of the albumin shell. (A decrease in shell thickness
leads to a decrease in the critical radius but has no effect on
the upper limit to the resonance frequency.)11

The widely used assumption that the resonances of the
backscattered signal (resonance peaks in the output-level ver-
sus frequency curve) are produced by microbubbles resonat-
ing at the transmitted frequency may lead to misinterpreta-
tion of experimental data. The first-harmonic resonance of
the signal scattered by an encapsulated microbubble occurs at
the frequencyf1, which is different from the resonance fre-
quency of the microbubblefres. If the surrounding liquid is
considered to be incompressible, the maximization of the first-
harmonic scattering cross-sectionσs1 [see Eq. (17a)] gives the
following formula forf1:

f1 =
f2
0

fres0
=

f2
0√

f2
0 − β2

vis/(2π2)
. (32)

In the case of large bubbles, i.e., when the difference between

the resonance and undamped natural frequencies of bubble
oscillation is negligible small, it is correctly reasoned that
f1 = fres = f0. In such a situation, resonating bubbles
are responsible for the resonance peaks in the output-level
versus frequency curve. In the case of small bubbles, the
viscous damping coefficient is large and, therefore, nonres-
onating bubbles make the major contribution to the resonant
backscatter.

Considering the liquid compressibility, the first-harmonic
resonance frequency of the backscattered signalf1 =

√
X.

The quantityX, as is evident from the maximization ofσs1,
is one of the positive real roots of the cubic equation

X3 + c2X
2 + c1X + c0 = 0 (33)

with

c0 =
f4
0

2π2T 2
ac(1 + 2Tacβvis)2

, (34a)

c1 =
8π2T 2

acf
4
0 + β2

vis/(2π2)− f2
0

2π2T 2
ac(1 + 2Tacβvis)2

, (34b)

c2 =
2(4π2T 2

acf
4
0 + β2

vis/π2 − 2f2
0 )

(1 + 2Tacβvis)2
. (34c)

Figure 4(a) plots the resonance and undamped natural fre-
quencies of the Nycomed microbubble (dash-dot and dashed
lines) situated in blood plasma as well as the first-harmonic
resonance frequency of the signal scattered by the microbub-
ble (solid line) as functions of the outer radiusR0. The first-
harmonic resonance frequency is calculated from the solution
of Eq. (33) (see p. 17 in Ref. 29). Like the undamped natural
frequencyf0, the first-harmonic resonance frequency of the
backscattered signalf1 decreases monotonically with increas-
ing the bubble radius. However,f0 tends to infinity when the
inner radiusa0 approaches zero, whilef1 reaches the high-
est value (several tens of MHz) ata0 > 0. If we continue
to use the assumptionf1 = fres = f0 for bubbles of arbi-
trary small size, we will be led to the conclusion that the bub-
ble resonance and the resonance peak in the first-harmonic
scattering cross-section always exist, no matter how bubbles
are small. We will, then, argue that very small bubbles res-
onate at very high frequencies. Figure 4 demonstrates that
this conclusion is wrong. Bubbles are characterized by the
critical radius. Not only bubbles of subcritical size cease to
resonate, but they also never produce the resonant backscatter
at the transmitted frequency. (As will be shown later, bub-
bles of subcritical size can produce the resonant backscatter
at twice the transmitted frequency.) The difference between
the first-harmonic resonance frequency of the backscattered
signal and the microbubble resonance frequency always ex-
ceeds the difference between the undamped natural and reso-
nance frequencies of the microbubble. For Nycomed bubbles
of outer radiusR0 = 5 µm, f1 − fres ≈ 0.73 MHz (30.0%),
while f0 − fres ≈ 0.38 MHz (15.9%). If R0 = 2.54 µm,
f1− fres ≈ 11.89 MHz (487.2%) andf0− fres ≈ 3.09 MHz
(126.8%).

As indicated in Fig. 4(b), a restriction on the first-harmonic
resonance frequency is solely the effect of the liquid com-
pressibility. If blood plasma is treated as an incompressible
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liquid, f1 is calculated from Eq. (32). According to this equa-
tion, f1 tends to infinity when the bubble radius approaches
the critical value (Rcrit = 2.24 µm for Nycomed microbub-
bles). However, Nycomed microbubbles oscillating in blood
plasma are not able to produce the resonance peak in the first-
harmonic scattering cross-section if the transmitted frequency
exceeds 14.33 MHz. The existence of the upper limit tof1

results in another value of the critical bubble radius, specific
for f1. In particular, the resonant backscatter from Nycomed
bubbles of radius less thanRcrit1 = 2.54 µm seems not to
exist.

In the most experimental works on contrast agents, the
properties of microbubbles, such as the shell viscosity and
elasticity,25,30 are evaluated through frequency analysis of
the backscattered echo, i.e., from the output-level versus fre-
quency curves. It is generally believed1,31 that the highest
peaks in these curves are associated with the resonance fre-
quency of microbubbles. In reality, the highest peaks are as-
sociated with the first-harmonic resonance frequency of the
backscattered signalf1, which is not coincident with the mi-
crobubble resonance frequencyfres. Moreover, it is believed
that the frequency at which the highest peak is observed de-
pends on the microbubble parameters according to Eq. (18).
In reality, equation (18) describes the undamped natural fre-
quencyf0, which is different from the first-harmonic reso-
nance frequency of the backscattered signal. The undamped
natural frequency can be used instead off1 and fres if the
microbubble radius is more than5 µm, i.e., beyond the size
range of contrast agents. Figure 5 shows how the difference
betweenf1 (measured in experiments) andf0 (used instead
of f1) depends on the microbubble radius for two types of
contrast agents: Nycomed25,27and Albunexr.9 Although this
difference is relatively small for bubbles of radiusR0 = 5
µm, in particular,f1 − f0 = 0.34 MHz for Nycomed bubbles
and0.025 MHz for Albunexr bubbles, it becomes very large
when the bubble radius approaches the critical valueRcrit1.
Note that in the case of Albunexr bubbles the critical ra-
dius for f1 is again more than the critical radius forfres:
Rcrit1 = 1.61 µm > Rcrit = 1.46 µm. The maximal dif-
ference betweenf1 andf0 is 8.8 MHz for Nycomed bubbles
and14.1 MHz for Albunexr bubbles. Therefore, the use of
Eq. (18) for the interpretation of experimental data on the res-
onant backscatter from microbubbles cannot be tolerated.

A monodisperse suspension of encapsulated microbubbles
cannot produce the resonant backscatter at both the transmit-
ted frequency and twice the transmitted frequency. It is not
quite correct to argue that if bubbles of one radius resonate,
all the harmonics, subharmonics, and ultraharmonics of the
backscattered signal they produce will be resonant. This state-
ment is validated only for large bubbles. In particular, the sec-
ond harmonic of the backscattered signal from encapsulated
microbubbles of radiusR0 has a resonance peak at the fre-
quencyf2 (second-harmonic resonance frequency), which is
equal to neither the first-harmonic resonance frequencyf1 nor
the undamped natural frequencyf0. This is apparent from the
maximization of the second-harmonic scattering cross-section
σs2. It should be noted thatf2 is defined as thetransmitted fre-
quencyat which the second harmonic of the backscattered sig-
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FIG. 4. (a) Resonance and undamped natural frequencies of Ny-
comed microbubbles (dash-dot and dashed) and first-harmonic reso-
nance frequency of the backscattered signal from the microbubbles
(solid line) as functions of the bubble outer radius. The liquid (blood
plasma) compressibility is taken into account. Open circle denotes
the highest frequency at which the resonant peak in the first-harmonic
scattering cross-section can be observed. (b) The first-harmonic res-
onance frequency of the backscattered signal produced by Nycomed
microbubbles surrounded by compressible and incompressible liq-
uids (thick and thin solid lines) as a function of the bubble outer
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nal is resonant, i.e., in the output-level versus frequency curve,
the second-harmonic resonance peak will be at2f2. Theσs2 is
a very complicated function of the angular frequencyΩ [see
Eq. (17b)]. It is impossible to obtain the analytical formula
for f2 even in the incompressible case. (IfTac = 0, the max-
imization ofσs2 results in a fifth-order algebraic equation in
Ω2.) To calculate numerically the second-harmonic resonance
frequency as a function of bubble radius, we use MapleTM

(Maplesoft, a division of Waterloo Maple Inc.). The results of
the numerical calculation are presented in Figs. 6 and 7.

Figure 6 compares the second-harmonic resonance fre-
quencyf2 (solid line), the first-harmonic resonance frequency
f1 (dash-dot line), and the undamped natural frequencyf0

(dashed line) for Nycomed microbubbles of radiusR0 ≤ 5
µm. While f1 is always higher thanf0, f2 is always less
than f0. Hence, the difference betweenf1 and f2 is more
than betweenf1 andf0. It increases with decreasing the bub-
ble radius. For instance, when the outer radius of Nycomed
microbubbles is changed from5 µm to 2.54 µm, f2 − f1 in-
creases from0.9 MHz to 10.6 MHz. Also, there is no critical
radius for the second-harmonic resonance. Even submicron
bubbles may have a resonance peak at twice the transmitted
frequency. Hence, ultrasound-based methods for detection of
very small bubbles inside materials should exploit the second
harmonic, not the first harmonic.

As illustrated in Fig. 7, overestimation of the optimal trans-
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resonant peak in the first-harmonic scattering cross-section can be
observed.PA = 30 kPa. The remaining parameters are listed in
Fig. 2.

mitted frequency for second-harmonic imaging by usingf0

reaches several tens of MHz for microbubbles of radius less
than1 µm. In this figure, the difference betweenf2 andf0

is plotted as a function of the outer radius for Nycomed and
Albunexr microbubbles (solid and dashed lines). This differ-
ence remains relatively small (but cannot be ignored) for mi-
crobubbles of radius between 3µm and 5µm. In this range,
f2 − f0 varies from−0.55 to−1.43 MHz for Nycomed bub-
bles and from−0.063 to−0.485 for Albunexr bubbles. The
second-harmonic resonance frequency deviates significantly
from the undamped natural frequency if the bubble radius is
less than3 µm (or its size is less than 6µm).

The microbubble population is highly polydisperse. The
polydisperse suspension is less sensitive to the transmitted fre-
quency than the monodisperse suspension. If the ultrasound
transducer operates at the frequency of several MHz (from2 to
14 MHz), there always exist bubbles of one size, sayR1, that
produce the resonant backscatter at the transmitted frequency
and bubbles of another size, sayR2, that produce the resonant
backscatter at twice the transmitted frequency. The backscat-
tered signal from this suspension, therefore, has peaks at the
transmitted frequency and multiple of this frequency. It is im-
portant to say thatR1 is not equal toR2 in the case of encap-
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sulated microbubbles.

To increase the quality of contrast-enhanced ultrasound
imaging, one needs (a) to create a suspension of microbub-
bles with a mean radius equal to eitherR1 (for fundamen-
tal mode imaging) orR2 (for second-harmonic mode imag-
ing) or (b) to operate the transducer at the frequencyf1 in
the fundamental (first-harmonic) mode or atf2 in the second-
harmonic mode, wheref1 andf2 are taken at the mean ra-
dius of microbubble population. The former way should be
used if the transducer is characterized by a narrow range of
operating frequencies. Unfortunately, neither Albunexr nor
Nycomed (and other polymeric contrast agents) are good can-
didates for the fundamental mode imaging. The mean radius
of Albunexr bubbles is about1.7 µm,9 which is very close
to the critical radius forf1. As shown in Fig. 5,Rcrit1 = 1.61
µm for Albunexr. (The critical radius will be even higher if
thermal damping is taken into account.) Polymeric microbub-
bles are worse than Albunexr because of the thick shell. The
mean radius of Nycomed microbubbles is between2.0 and
2.5 µm,27 less than the critical radius (Rcrit1 = 2.54 µm for
Nycomed). These contrast agents can, however, be used for
second-harmonic imaging. Figure 8(a) shows that if the trans-
ducer operates at frequencyf = 5.0 MHz (this frequency was
used in experiments with Nycomed bubbles by Hoffet al.),25

a Nycomed suspension should be of mean radiusR1 = 4.36
µm in order to provide optimal imaging in the fundamental
(first-harmonic) mode. Such a high value ofR1 signifies that
the major contribution to the first harmonic of the backscat-
tered signal is from 4-5µm bubbles, i.e., from the largest mi-

crobubbles of the suspension. Smaller microbubbles plays an
insignificant role for first-harmonic imaging. Optimal second-
harmonic imaging is possible if the mean radius of the Ny-
comed suspension isR2 = 2.77 µm. This value is sufficiently
close to the actual mean radius of the Nycomed suspension
(between2.0 and2.5 µm), i.e., Nycomed microbubbles will
scatter ultrasound more or less efficiently at twice the trans-
mitted frequency. Nevertheless, one can increase the quality
of second-harmonic imaging from Nycomed microbubbles by
a slight decrease in the transmitted frequency. As illustrated
in Fig. 8(b), the optimal transmitted frequency for second-
harmonic imaging isf2 = 4.61 MHz, if the mean radius of
Nycomed microbubbles is2.0 µm. Figure 8(b) also shows
that there is no optimal frequency for first-harmonic imag-
ing. This is because2.0 µm is less than the critical radius
Rcrit1 = 2.54 µm. It is necessary to say that the present anal-
ysis is expected to hold quantitatively for experiments on scat-
tering by microbubbles under low-intensity continuous ultra-
sound. Finite-amplitude effects and polychromaticity of the
ultrasound signal can lead to additional shifts in resonance
frequencies.13

Because a lipid monolayer is very thin as compared to a
polymeric or protein layer, the viscoelastic solid shell model
does not work well for lipid-coated microbubbles. In this
case, a Newtonian interface model suggested by Chatterjee
and Sarkar32 is more appropriate. This model introduces the
interfacial dilatational viscosityκs instead of the shell viscos-
ity µs. (In this model, an encapsulated shell has zero thick-
ness.) Therefore lipid-coated microbubbles can be considered
as free microbubbles with the decreased surface tension coef-
ficient and the liquid viscosity replaced by

µlb = µl +
κs

a0
(35)

[see Eqs. (16) and (17) in Ref. 32]. Hence the viscous
damping coefficient for lipid-coated microbubbles is calcu-
lated from Eq. (37), given below, whereµlb is used instead
of µl. The viscosity-induced shift in resonance frequency will
clearly exist for these microbubbles because the second term
in the right-hand side of Eq. (35) becomes very large when
bubble sizes are in micron or submicron range.

III. FREE MICROBUBBLES

Another type of the commercially available ultrasound con-
trast agents represents emulsions that transform itself into sus-
pensions of free gas microbubbles inside the human body.1 In
particular, Echogen (Sonus Pharmaceuticals, Bothell, Wash-
ington) is an emulsion of liquid dodecafluoropentane (DDFP)
which boils at about28◦C.1 In the liquid phase, such an emul-
sion is stable against dissolution. In the gas phase, it is more
echogenic than a suspension of encapsulated microbubbles.

To evaluate backscattering by Echogen microbubbles at the
transmitted frequency and twice the transmitted frequency, we
can still use Eqs. (17) in whichR0 = a0, σ1 = σ2 = σ,
Z = 0, pg0 = p0 + 2σ/a0 (without the stabilizing layer, there

is the over-pressure in the gas inside a microbubble),τ
(s)
rr = 0,

J. Acoust. Soc. Am. D. B. Khismatullin: Resonance frequency of microbubbles 9
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ρs0 = ρl0, and∆ρ = 0. In this case, the undamped natural
frequencyf0 and the characteristic timeTac are given by

f0 =
1

2πa0

√
3κp0

ρl0
+ (3κ−1)

2σ

ρl0a0
, Tac =

a0

Cl
. (36)

The viscous damping coefficient

βvis =
2µl

ρl0a2
0

. (37)

The expressions forSac(Ω) and βac(Ω) remain unchanged
[see Eqs. (19) and (21)].

The viscous damping coefficient of free microbubbles is
smaller than that of encapsulated microbubbles. For exam-
ple, a free bubble of radius1 µm situated in blood plasma
(ρl0 = 1027 kg·m−3, µl = 0.0012 Pa·s) is characterized by
βvis ≈ 2.337×106 s−1, while the viscous damping coefficient
of an Albunexr microbubble of the same (outer) radius is ap-
proximately1.596× 108 s−1. Therefore, the deviation of the
resonance frequency from the undamped natural frequency is
expected to be less for Echogen than for Albunexr. How-
ever, it is not negligible. Like encapsulated bubbles, free bub-
bles are characterized by a critical radius for bubble resonance
Rcrit. From (31) it follows that

Rcrit =
(

3κ−1
3κ

)
σ

p0

[
−1 +

√
1 +

24κµ2
l p0

(3κ−1)2σ2ρl0

]
(38)

for free bubbles. Ifσ = 0, the critical radius varies directly
with the liquid viscosityµl:

Rcrit =
2
√

2 µl√
3κp0ρl0

. (39)

The liquid viscosity has a more effect on the critical radius
than the surface tension. According to Eq. (38), if the sur-
face tension increases from0 to 0.04 N·m−1, the critical ra-
dius of bubbles oscillating almost isothermally (κ = 1.1) in
blood plasma decreases from184 to 56 nm. An increase in
the liquid viscosity from0.0012 to 0.004 Pa·s (high-shear-
rate viscosity of blood) atσ = 0.04 N·m−1 leads to increas-
ing Rcrit from 56 to 396 nm. Because the mean radius of
Echogen microbubbles is about75 nm,17 a slight increase in
viscosity and/or a decrease in surface tension, induced by sol-
uble polymers and another surface-active molecules in blood,
will make this suspension nonresonant. Experiments17 show
no first-harmonic resonance of the backscattered signal from
these microbubbles. Note that the presence of a thin surfactant
layer on the bubble surface, which is realized in lipid-shelled
contrast agents and leads to a decrease in surface tension, will
further magnify the critical radius and hence the difference
betweenf0 andfres.

As illustrated in Fig. 9, the undamped natural frequencyf0

(dotted line) should not be used as the microbubble resonance
frequencyfres (solid line) for free bubbles in blood plasma if
the bubble radius is less than 0.5µm. Also, in this size range,
both the first- and second-harmonic resonance frequencies of
the backscattered signalf1 andf2 (dash-dot and dashed lines)
deviate strongly from the undamped natural frequency. In par-
ticular, f1 − f0 andf0 − f2 are equal to0.28 MHz and0.61
MHz at a0 = 0.5 µm but become32.3 MHz and24.8 MHz
at a0 = 0.1 µm. The critical radius forf1 at which the first
resonance frequency reaches the upper limit (357 MHz) is66
nm.

IV. CONCLUSION

The transmitted frequency at which the resonant excitation
of microbubble oscillation occurs is taken to be equal to the

10 J. Acoust. Soc. Am. D. B. Khismatullin: Resonance frequency of microbubbles



Bubble radius ( m)

F
re

qu
en

cy
(M

H
z)

0 0.1 0.2 0.3 0.4 0.5
0

25

50

75

100

fres

f2

f1

f0

µ

Free microbubbles

56 nm

FIG. 9. Resonance and undamped natural frequencies of free mi-
crobubbles in blood plasma (solid and dotted) and first- and second-
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undamped natural frequency in most experimental and theo-
retical works on scattering by contrast agents. We have shown
that this assumption does not work for both free and encap-
sulated microbubbles used in contrast-enhanced ultrasound
imaging. The resonance frequency of microbubbles deviates
from the undamped natural frequency due to the increased
viscous damping coefficient. The difference between these
two frequencies rises as the bubble size decreases because
the viscous damping coefficient is inversely proportional to
the square of the bubble radius. The linear resonance of mi-
crobubble oscillation is characterized by a critical radius be-
low which it cannot be observed. The critical radius of encap-
sulated microbubbles is typically between1 and3 µm and in-
creases with increasing the shell thickness. The critical radius
of free bubbles depends significantly on the liquid viscosity
and surface tension. In blood plasma, free bubbles cease to
resonate if their radius is below56 nm.

The deviation of the resonance frequency from the un-
damped natural frequency results in the resonant backscat-
ter by nonresonating microbubbles. The resonances of the
backscattered signal (resonance peaks in the output-level ver-
sus frequency curves) are characterized by the frequencies dif-
ferent from both the microbubble resonance frequency and the

undamped natural frequency. Every harmonic of the backscat-
tered signal has its own resonance frequency. In particu-
lar, a monodisperse suspension of microbubbles cannot pro-
duce the resonant backscatter at both the trasmitted frequency
and twice the transmitted frequency. (Because a microbub-
ble suspension is polydisperse, there exist bubbles of one size
that produce the resonant backscatter at the transmitted fre-
quency and bubbles of another size that produce the resonant
backscatter at twice the transmitted frequency.) The differ-
ence between the first- and second-harmonic resonance fre-
quencies of the backscattered signalf1 andf2 reaches sev-
eral MHz in the case of encapsulated microbubbles of radius
less than3 µm. To increase the quality of contrast-enhanced
ultrasound imaging, the transducer should operate at the fre-
quencyf1 in the fundamental mode and at the frequencyf2 in
the second-harmonic mode, wheref1 andf2 are taken at the
mean radius of the ultrasound contrast agent.

Also, there exists a critical radius for the first-harmonic res-
onance of the backscattered signal, larger than the critical ra-
dius for the bubble resonance. The microbubbles of this radius
produce the resonant backscatter at the transmitted frequency
equal to the upper limit to the first-harmonic resonance fre-
quency. There is no critical radius for the second harmonic
resonance of the backscattered signal.

The resonance peak in the first harmonic of the backscat-
tered signal is not observed in many experiments with ultra-
sound contrast agents. It is worth to mention Refs. 33 [Figs.
4, 5, and 7], 34 [Figs. 4(a) and 9(b)], and 25 [Fig. 5, see
also Fig. 9]. The indirect evidence for the disappearance of
the bubble resonance (and hence of the first-harmonic reso-
nance of the backscattered signal) is presented in experiments
by Chenet al..35 As noted by Hoffet al.,25 ”the resonance fre-
quency increases and the resonance peak broadens and almost
disappears due to the viscoelastic polymeric shell”.

Our next concerns will incorporating bubble polydispersity
and pulsed driving conditions (with different pulse shapes and
lengths) into the theoretical model and performing a direct
comparison between theoretical predictions and experimental
data on the resonance frequencies of the backscattered signal
from ultrasound contrast agents.
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