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Figure 1. Slickline Depth Measurement System (AMS).

Figure 2. Field Implementation of Slickline with the
Advanced Measurement System (AMS) [7].
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ABSTRACT

Slickline-deployed instruments are commonly used to perform
measurement and service operations in oilwells. In order to
accurately determine the downhole position of a suspended
instrument, a device known as an electro-mechanical casing
collar locator (EMCL) is sometimes used. The device is first
lowered into a well, and then, slowly withdrawn. When a
casing collar is encountered, the EMCL device causes changes
in the line tension. These changes in line tension, which are
measured at the surface, are correlated to collar locations, and
hence, instrument depth. Like many other applications, noise
from different sources during slickline jobs may add
contaminating noise or cause destructive interference in the
monitored of tension signals. In this paper, a method of using
an adaptive neural network to filter the tension signal to remove
unwanted noise is described. A theoretical discussion and the
review of results of experimental testing are presented

1. INTRODUCTION

In a slickline depth measurement system, a tool is pulled at a
constant velocity up the production tubing string. When the tool
passes a joint in the tubing, a device is engaged to hold the tool
momentarily at the position of the joint. This action causes a
pulse in the tension of the wire, which is monitored at the
surface. These pulses in tension can be used to determine the
depth of each joint. In certain wells, the tension signal is
corrupted by noise, and the tension pulses are not easily
recognized.

Figure 1 represents the current slickline depth measurement
system. A load cell is used to measure tension in the slickline
cable. The slickline is wrapped around a measuring wheel that
has an electrical counter to keep track of the motion of the
wheel [1, 2, 3, 4, 6, 7, 8, 9]. The Advanced Measurement
System (AMS) uses the signals from the load cell and the
measuring wheel as well as ambient and downhole temperature-
measurement adjustments to determine the length of slickline in
the wellbore (as shown in Figure 2.) This is correlated with the
tension pulses to determine the position of the tubing joints.
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The research discussed here focuses on the characterization of
the load cell noise and on the development of procedures for
reducing the levels of the noise. Eventually, we will provide a
front-end slickline filter device, which can be used in
conjunction with AMS, or implemented into AMS, as an
additional building component to enhance slickline data.

This paper is organized as follows. In Section 2, we will discuss
the proposed noise cancellation system and the adaptive filtering
algorithm. In Section 3, we show the experiment results using
filed data and simulation data. The summary of this work will
be presented in section 4.

2. ADAPTIVE NOISE CANCELLATION
SOFTWARE

2.1 Noise Cancellation System

Here, we assume that the contaminating noise is generated from
a noise source that we can measure. A sample of the noise
source is fed to a filter, whose elements are adjusted so as to
minimize the error. The desired output of the filter is the
contaminated signal. The filter will do its best to reproduce this
contaminated signal, but it only has access to the original noise
source. Thus, it can only eliminate the part of the contaminated
signal that is correlated with the noise source, leaving the noise-
free signal [10, 5].

For the slickline depth measurement system, the noise that
resides on the tension signal could be caused by extraneous
noise sources (such as surface machinery) or by improper tool
installation and degraded downhole conditions, resulting in
vibration that can be sensed by surface supporting frame where
the tension sensor is located. We placed accelerometers and
other sensors near potential noise sources and used these signals
as inputs to a noise cancellation filter.

2.2 Adaptive Filter Equations

A layered neural network represents the filter, where the output
is:
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where NN represents a neural network transfer function like the
one shown in Figure 4 with two layers (k = 2) and n delays.

Figure 4. Adaptive Filter for Noise Cancellation.

The following relation updates the weights for the two-layer
neural network example:
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where 1f represents the nonlinear transfer function for the first
layer, α is the learning rate (initial value set to 0.02), e(k) is the
error between the desired load sensor value (target) and the
neural network output for the time k. The default number of
input delays is set to 10.

The operator could change the learning rate up to 0.2 and the
number of input delays between 0 and 20. Each time one of the
previous values is changed, a new neural network is created,
and the training process is repeated again. After training, the
user could select four possible views: the original signal coming
from the load sensor, the filter input coming from the
accelerometer, the filter output coming from the neural network,
or the difference that is the error signal between the neural
network and load sensor.

The last signal must be the load-sensor noise-free signal that is
to be entered into the AMS unit.
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Figure 3. Noise Cancellation System
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3. EXPERIMENTAL RESULTS

3.1 Off-line tests

To test the adaptive noise cancellation, algorithm data were
collected at the Carrollton testing well and at different wells in
Wyoming during October and November 2001. In addition to the
load sensor data and counter pulses, five different data strings
were collected from accelerometers placed close to the load
sensor and close to the cable drum. The initial data were
collected at 5 kHz. For the demonstration included on this
report, the data were down-sampled to 50 Hz.

Figure 5 shows an example of data collected in Carrollton for
the slickline ruining at 90 ft/min. The data in blue were
collected with the collar locator in the “off” position, and the
data in red were collected with the collar locator in the “on”
position. We can notice the noise level present in both curves
and the change in tension during collar detection. The tests
performed here were for a filter with 10 tabs, a sampling rate of
50 Hz and gain α = 0.02.

Figure 6 shows the plots for both experiments after the adaptive
filter is applied. This figure shows that the two collar-location
conditions are noticeable as well as the change in tension due to
the change in the casing dimensions.

Figure 7 shows the neural network output where we
found a correlation between the noise present at the
system that was removed for each of the data streams
collected from the load sensor.

Figure 5. Direct cable load data with collar locator off
(blue) and on (red) at 90 ft./min.
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Figure 7. Neural Network output with collar locator off
(blue) and on (red) at 90 ft./min.
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Figure 6. Filtered cable load data with collar locator off
(blue) and on (red) at 90 ft/min.
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On-line tests.

Figure 8 shows the original collar locator and filtered signals
when a noise of 0.03 volts peak-to-peak is affecting the
measurements. For the online experiments, a 40 tabs filter was
used at a sampling rate of 60 Hz and gain α=0.1. The graphic
shows that the clear collar locator signal is recovered. Figure 9
shows similar graphs when the noise is increased to 0.1 volts
peak-to-peak. We could see that the recovered signal is still
noisy, but the collar signals pulses could be easily identified.

Figure 8. Original collar locator signal (top) and Neural Network
output (bottom) at 60 ft/min and noise 0.03 v.
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Figure 9. Original collar locator signal (top) and Neural
Network output (bottom) at 60 ft./min and noise 0.1 v.

SUMMARY

In this paper, we have demonstrated a noise cancellation
algorithm for a downhole slickline tool used in oilfield. The
algorithm correlates a reference noise input at the job site with
the primary slickline data input. The noise can be “subtracted”
from the received signal, allowing us to guarantee greater
immunity to environmental interference. A simple neural
network adaptive filter was used in this application for the sake
of fast on-line training and a synchronization requirement with
other signals.
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