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SUMMARY

The purpose of this paper is to provide a quick overview of neural networks and to explain how they can be used in control
systems. We introduce the multilayer perceptron neural network and describe how it can be used for function approximation.
The backpropagation algorithm (including its variations) is the principal procedure for training multilayer perceptrons; it is
briefly described here. Care must be taken, when training perceptron networks, to ensure that they do not overfit the training
data and then fail to generalize well in new situations. Several techniques for improving generalization are discussed. The paper
also presents three control architectures: model reference adaptive control, model predictive control, and feedback linearization
control. These controllers demonstrate the variety of ways in which multilayer perceptron neural networks can be used as basic
building blocks. We demonstrate the practical implementation of these controllers on three applications: a continuous stirred
tank reactor, a robot arm, and a magnetic levitation system.

1. INTRODUCTION
In this tutorial paper we want to give a brief introduction to neural networks and their application in control systems. The paper
is written for readers who are not familiar with neural networks but are curious about how they can be applied to practical con-
trol problems. The field of neural networks covers a very broad area. It is not possible in this paper to discuss all types of neural
networks. Instead, we will concentrate on the most common neural network architecture – the multilayer perceptron. We will
describe the basics of this architecture, discuss its capabilities and show how it has been used in several different control system
configurations. (For introductions to other types of networks, the reader is referred to References 1, 2 and 3.)

For the purposes of this paper we will look at neural networks as function approximators. As shown in Figure 1, we have some
unknown function that we wish to approximate. We want to adjust the parameters of the network so that it will produce the same
response as the unknown function, if the same input is applied to both systems.

For our applications, the unknown function may correspond to a system we are trying to control, in which case the neural net-
work will be the identified plant model. The unknown function could also represent the inverse of a system we are trying to
control, in which case the neural network can be used to implement the controller. At the end of this paper we will present sev-
eral control architectures demonstrating a variety of uses for function approximator neural networks.

Figure 1 Neural Network as Function Approximator

In the next section we will present the multilayer perceptron neural network, and will demonstrate how it can be used as a func-
tion approximator.
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2. MULTILAYER PERCEPTRON ARCHITECTURE

2.1. Neuron Model
The multilayer perceptron neural network is built up of simple components. We will begin with a single-input neuron, which
we will then extend to multiple inputs. We will next stack these neurons together to produce layers. Finally, we will cascade the
layers together to form the network.

A single-input neuron is shown in Figure 2. The scalar input is multiplied by the scalarweight to form , one of the
terms that is sent to the summer. The other input, , is multiplied by abias and then passed to the summer. The summer
output , often referred to as thenet input, goes into atransfer function , which produces the scalar neuron output .

Figure 2 Single-Input Neuron

The neuron output is calculated as

.

Note that and are bothadjustablescalar parameters of the neuron. Typically the transfer function is chosen by the designer,
and then the parameters and are adjusted by some learning rule so that the neuron input/output relationship meets some
specific goal.

The transfer function in Figure 2 may be a linear or a nonlinear function of . One of the most commonly used functions is the
log-sigmoid transfer function, which is shown in Figure 3.

Figure 3 Log-Sigmoid Transfer Function

This transfer function takes the input (which may have any value between plus and minus infinity) and squashes the output into
the range 0 to 1, according to the expression:

. (1)

The log-sigmoid transfer function is commonly used in multilayer networks that are trained using the backpropagation algo-
rithm, in part because this function is differentiable.
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Typically, a neuron has more than one input. A neuron with inputs is shown in Figure 4. The individual inputs
are each weighted by corresponding elements of theweight matrix .

Figure 4 Multiple-Input Neuron

The neuron has a bias , which is summed with the weighted inputs to form the net input:

. (2)

This expression can be written in matrix form:

, (3)

where the matrix for the single neuron case has only one row.

Now the neuron output can be written as

. (4)

Figure 5 represents the neuron in matrix form.

Figure 5 Neuron with Inputs, Matrix Notation

2.2. Network Architectures
Commonly one neuron, even with many inputs, is not sufficient. We might need five or ten, operating in parallel, in what is
called alayer. A single-layer network of neurons is shown in Figure 6. Note that each of the inputs is connected to each
of the neurons and that the weight matrix now has rows. The layer includes the weight matrix , the summers, the bias
vector , the transfer function boxes and the output vector . Some authors refer to the inputs as another layer, but we will not
do that here. It is common for the number of inputs to a layer to be different from the number of neurons (i.e., )
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Figure 6 Layer ofSNeurons

TheS-neuron,R-input, one-layer network also can be drawn in matrix notation, as shown in Figure 7.

Figure 7 Layer of Neurons, Matrix Notation

2.2.1 Multiple Layers of Neurons
Now consider a network with several layers. Each layer has its own weight matrix , its own bias vector , a net input vector

and an output vector . We need to introduce some additional notation to distinguish between these layers. We will use su-
perscripts to identify the layers. Thus, the weight matrix for the first layer is written as , and the weight matrix for the second
layer is written as . This notation is used in the three-layer network shown in Figure 8. As shown, there are inputs,
neurons in the first layer, neurons in the second layer, etc. As noted, different layers can have different numbers of neurons.

The outputs of layers one and two are the inputs for layers two and three. Thus layer 2 can be viewed as a one-layer network
with = inputs, neurons, and an weight matrix . The input to layer 2 is , and the output is . A
layer whose output is the network output is called anoutput layer. The other layers are calledhidden layers. The network shown
in Figure 8 has an output layer (layer 3) and two hidden layers (layers 1 and 2).
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Figure 8 Three-Layer Network

3. APPROXIMATION CAPABILITIES OF MULTILAYER NETWORKS
Two-layer networks, with sigmoid transfer functions in the hidden layer and linear transfer functions in the output layer, are
universal approximators.4 A simple example can demonstrate the power of this network for approximation.

Consider the two-layer, 1-2-1 network shown in Figure 9. For this example the transfer function for the first layer is log-sigmoid
and the transfer function for the second layer is linear. In other words,

and . (5)

Figure 9 Example Function Approximation Network

Suppose that the nominal values of the weights and biases for this network are

, , , ,

, , .

The network response for these parameters is shown in Figure 10, which plots the network output as the input is varied
over the range . Notice that the response consists of two steps, one for each of the log-sigmoid neurons in the first layer.
By adjusting the network parameters we can change the shape and location of each step, as we will see in the following discus-
sion.
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, (6)

. (7)

The steepness of each step can be adjusted by changing the network weights.

Figure 10 Nominal Response of Network of Figure 9

Figure 11 illustrates the effects of parameter changes on the network response. The nominal response is repeated from Figure
10. The other curves correspond to the network response when one parameter at a time is varied over the following ranges:

, , , . (8)

Figure 11 (a) shows how the network biases in the first (hidden) layer can be used to locate the position of the steps. Figure 11
(b) and Figure 11 (c) illustrate how the weights determine the slope of the steps. The bias in the second (output) layer shifts the
entire network response up or down, as can be seen in Figure 11 (d).

Figure 11 Effect of Parameter Changes on Network Response

From this example we can see how flexible the multilayer network is. It would appear that we could use such networks to ap-
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layer networks, with sigmoid transfer functions in the hidden layer and linear transfer functions in the output layer, can approx-
imate virtually any function of interest to any degree of accuracy, provided sufficiently many hidden units are available. It is
beyond the scope of this paper to provide detailed discussions of approximation theory, but there are many papers in the liter-
ature that can provide a deeper discussion of this field. In Reference 4, Hornik, Stinchcombe and White present a proof that
multilayer perceptron networks are universal approximators. Pinkus gives a more recent review of the approximation capabil-
ities of neural networks in Reference 5. Niyogi and Girosi, in Reference 6, develop bounds on function approximation error
when the network is trained on noisy data.

4. TRAINING MULTILAYER NETWORKS
Now that we know multilayer networks are universal approximators, the next step is to determine a procedure for selecting the
network parameters (weights and biases) that will best approximate a given function. The procedure for selecting the parameters
for a given problem is calledtraining the network. In this section we will outline a training procedure calledbackpropagation7,8,
which is based on gradient descent. (More efficient algorithms than gradient descent are often used in neural network training.1)

As we discussed earlier, for multilayer networks the output of one layer becomes the input to the following layer (see Figure
8). The equations that describe this operation are

for , (9)

where is the number of layers in the network. The neurons in the first layer receive external inputs:

, (10)

which provides the starting point for Eq. (9). The outputs of the neurons in the last layer are considered the network outputs:

. (11)

4.1. Performance Index
The backpropagation algorithm for multilayer networks is a gradient descent optimization procedure in which we minimize a
mean square error performance index. The algorithm is provided with a set of examples of proper network behavior:

, (12)

where is an input to the network, and is the corresponding target output. As each input is applied to the network, the
network output is compared to the target. The algorithm should adjust the network parameters in order to minimize the sum
squared error:

. (13)

where is a vector containing all network weights and biases. If the network has multiple outputs this generalizes to

. (14)

Using a stochastic approximation, we will replace the sum squared error by the error on the latest target:

, (15)

where the expectation of the squared error has been replaced by the squared error at iteration .

The steepest descent algorithm for the approximate mean square error is
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, (16)

, (17)

where is the learning rate.

4.2. Chain Rule
For a single-layer linear network, these partial derivatives in Eq. (16) and Eq. (17) are conveniently computed, since the error
can be written as an explicit linear function of the network weights. For the multilayer network, the error is not an explicit func-
tion of the weights in the hidden layers, therefore these derivatives are not computed so easily.

Because the error is an indirect function of the weights in the hidden layers, we will use the chain rule of calculus to calculate
the derivatives in Eq. (16) and Eq. (17):

, (18)

. (19)

The second term in each of these equations can be easily computed, since the net input to layer is an explicit function of the
weights and bias in that layer:

. (20)

Therefore
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, (25)

. (26)

In matrix form this becomes:

, (27)

, (28)

where the individual elements of are given by Eq. (22).

4.3. Backpropagating the Sensitivities
It now remains for us to compute the sensitivities , which requires another application of the chain rule. It is this process that
gives us the termbackpropagation, because it describes a recurrence relationship in which the sensitivity at layer is comput-
ed from the sensitivity at layer :

, (29)

, (30)

where

. (31)

(See Reference 1, Chapter 11 for a derivation of this result.)

4.4. Variations of Backpropagation
In some ways it is unfortunate that the algorithm we usually refer to as backpropagation, given by Eq. (27) and Eq. (28), is in
fact simply a steepest descent algorithm. There are many other optimization algorithms that can use the backpropagation pro-
cedure, in which derivatives are processed from the last layer of the network to the first (as given in Eq. (30)). For example,
conjugate gradient and quasi-Newton algorithms9,10,11are generally more efficient than steepest descent algorithms, and yet
they can use the same backpropagation procedure to compute the necessary derivatives. The Levenberg-Marquardt algorithm
is very efficient for training small to medium-size networks, and it uses a backpropagation procedure that is very similar to the
one given by Eq. (30).12

4.5. Generalization (Interpolation & Extrapolation)
We now know that multilayer networks are universal approximators, but we have not discussed how to select the number of
neurons and the number of layers necessary to achieve an accurate approximation in a given problem. We have also not dis-
cussed how the training data set should be selected. The trick is to use enough neurons to capture the complexity of the under-
lying function without having the network overfit the training data, in which case it will notgeneralizeto new situations. We
also need to have sufficient training data to adequately represent the underlying function.

To illustrate the problems we can have in network training, consider the following general example. Assume that the training
data is generated by the following equation:
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, (32)

where is the system input, is the underlying function we wish to approximate, is measurement noise, and is the
system output (network target). Figure 12 shows an example of the underlying function (thick line), training data target
values (circles), and total trained network response (thin line). The two graphs of Figure 12 represent different training strat-
egies.

Figure 12 Example of (a) Overfitting and (b) Good Fit

In the example shown in Figure 12 (a), a large network was trained to minimize squared error (Eq. (13)) over the 15 points in
the training set. We can see that the network response exactly matches the target values for each training point. However, the
total network response has failed to capture the underlying function. There are two major problems. First, the network has over-
fit on the training data. The network response is too complex, because the network has more than enough independent param-
eters (61), and they have not been constrained in any way. The second problem is that there is no training data for values of
greater than 0. Neural networks (and other nonlinear black box techniques) cannot be expected toextrapolateaccurately. If the
network receives an input that is outside of the range covered in the training data, then the network response will always be
suspect.

While there is little we can do to improve the network performance outside the range of the training data, we can improve its
ability to interpolatebetween data points. Improved generalization can be obtained through a variety of techniques. In one meth-
od, called early stopping13, we place a portion of the training data into a validation data set. The performance of the network on
the validation set is monitored during training. During the early stages of training the validation error will come down. When
overfitting begins, the validation error will begin to increase, and at this point the training is stopped.

Another technique to improve network generalization is called regularization. With this method the performance index is mod-
ified to include a term which penalizes network complexity. The most common penalty term is the sum of squares of the net-
work weights:

(33)

This performance index forces the weights to be small, which produces a smoother network response. The trick with this method
is to choose the correct regularization parameter . If the value is too large, then the network response will be too smooth and
will not accurately approximate the underlying function. If the value is too small, then the network will overfit. There are a
number of methods for selecting the optimal . One of the most successful is Bayesian regularization.14,15Figure 12 (b) shows
the network response when the network is trained with Bayesian regularization. Notice that the network response no longer ex-
actly matches the training data points, but the overall network response more closely matches the underlying function over the
range of the training data.

A complete discussion of generalization and overfitting is beyond the scope of this paper. The interested reader is referred to
References 1, 3, 6, 14 and 15.
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In the next section we will describe how multilayer networks can be used in neurocontrol applications.

5. CONTROL SYSTEM APPLICATIONS
Multilayer neural networks have been applied successfully in the identification and control of dynamic systems.16,17Rather
than attempt to survey the many ways in which multilayer networks have been used in control systems, we will concentrate on
three typical neural network controllers: model predictive control21, NARMA-L2 control18, and model reference control19.
These controllers are representative of the variety of common ways in which multilayer networks are used in control systems.
As with most neural controllers, they are based on standard linear control architectures.

There are typically two steps involved when using neural networks for control: system identification and control design. In the
system identification stage, we develop a neural network model of the plant that we want to control. In the control design stage,
we use the neural network plant model to design (or train) the controller. In each of the three control architectures described in
this paper, the system identification stage is identical. The control design stage, however, is different for each architecture. The
next three subsections of this paper discuss model predictive control, NARMA-L2 control and model reference control and will
describe how they can be applied in practice. Finally, we give a summary of the characteristics of the three controllers.

5.1. NN Predictive Control
There are a number of variations of the neural network predictive controller that are based on linear model predictive
controllers20. The neural network predictive controller that is discussed in this paper (based in part on Reference 21) uses a neu-
ral network model of a nonlinear plant to predict future plant performance. The controller then calculates the control input that
will optimize plant performance over a specified future time horizon. The first step in model predictive control is to determine
the neural network plant model (system identification). Next, the plant model is used by the controller to predict future perfor-
mance.

The next section describes the system identification process. This is followed by a description of the optimization process and
an application of predictive control to a magnetic levitation system.

5.1.1 System Identification
The first stage of model predictive control (as well as the other two control architectures discussed in this paper) is to train a
neural network to represent the forward dynamics of the plant. The prediction error between the plant output and the neural
network output is used as the neural network training signal. The process is represented by Figure 13.

Figure 13 Plant Identification

One standard model that has been used for nonlinear identification is the Nonlinear Autoregressive-Moving Average
(NARMA)18 model:

(34)

where is the system input, is the system output and is the system delay (we will use a delay of 1 for the predictive
controller). For the identification phase, we train a neural network to approximate the nonlinear function . The structure of
the neural network plant model is given in Figure 14, where the blocks labeled TDL are tapped delay lines that store previous
values of the input signal. The equation for the plant model is given by
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, (35)

where is the function implemented by the neural network, and is the vector containing all network weights and biases.

Figure 14 Neural Network Plant Model

We have modified our previous notation here, to allow more than one input into the network. is a weight matrix from
input numberj to layer numberi. is a weight matrix from layer numberj to layer numberi.

Although there are delays in this network, they occur only at the network input, and the network contains no feedback loops.
For these reasons, the neural network plant model can be trained using the backpropagation methods for feedforward networks
described in the first part of this paper. (This is true for the system identification step of each of the controllers discussed in this
paper.) It is important that the training data cover the entire range of plant operation, because we know from previous discus-
sions that nonlinear neural networks do not extrapolate accurately. The input to this network is an -dimensional vector
of previous plant outputs and inputs. It is this space that must be covered adequately by the training data. The system identifi-
cation process will be demonstrated in Section 5.1.3.

5.1.2 Predictive Control
The model predictive control method is based on the receding horizon technique.21 The neural network model predicts the plant
response over a specified time horizon. The predictions are used by a numerical optimization program to determine the control
signal that minimizes the following performance criterion over the specified horizon.

(36)

where , and define the horizons over which the tracking error and the control increments are evaluated. The
variable is the tentative control signal, is the desired response and is the network model response. The value determines
the contribution that the sum of the squares of the control increments has on the performance index.

The following block diagram illustrates the model predictive control process. The controller consists of the neural network plant
model and the optimization block. The optimization block determines the values of that minimize , and then the optimal

is input to the plant. For the purposes of this paper, the BFGS quasi-Newton algorithm, with a backtracking line search22,
was used for the optimization block.
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Figure 15 Neural Network Predictive Control

5.1.3 Application - Magnetic Levitation System
Now we will demonstrate the predictive controller by applying it to a simple test problem. In this test problem, the objective is
to control the position of a magnet suspended above an electromagnet, where the magnet is constrained so that it can only move
in the vertical direction, as shown in Figure 16.

Figure 16 Magnetic Levitation System

The equation of motion of the magnet is:

(37)

where is the distance of the magnet above the electromagnet, is the current flowing in the electromagnet, is the
mass of the magnet, and is the gravitational constant. The parameter is a viscous friction coefficient that is determined by
the material in which the magnet moves, and is a field strength constant that is determined by the number of turns of wire on
the electromagnet and the strength of the magnet. For our simulations, the current is allowed to range from 0 to 4 amps, and the
sampling interval for the controller is 0.01 seconds. The parameter values are set to , , and .

The first step in the control design process is the development of the plant model. The performances of neural network control-
lers are highly dependent on the accuracy of the plant identification. In this section we will begin with a discussion of some of
the procedures that can be used to facilitate accurate plant identification.

As with linear system identification, we need to insure that the plant input is sufficiently exciting23. For nonlinear black box
identification, we also need to be sure that the system inputs and outputs cover the operating range for which the controller will
be applied. For our applications, we typically collect training data while applying random inputs which consist of a series of
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pulses of random amplitude and duration. The duration and amplitude of the pulses must be chosen carefully to produce accurate
identification.

If the identification is poor, then the resulting control system may fail. Controller performance tends to fail in either steady state
operation, or transient operation, or both. When steady state performance is poor, it is useful to increase the duration of the input
pulses. Unfortunately, within a training data set, if we have too much data in steady state conditions, the training data may not
be representative of typical plant behavior. This is due to the fact that the input and output signals do not adequately cover the
region that is going to be controlled. This will result in poor transient performance. We need to choose the training data so that
we produce adequate transient and steady state performance. The following example will illustrate the performances of the pre-
dictive controllers when we use different ranges for the pulse widths of the input signal to generate the training data.

We found that it took about 4.5 seconds for the magnetic levitation system to reach steady state in open-loop conditions. There-
fore, we first specified a pulse width range of . The neural network plant model used three delayed values of current
( ) and three delayed values of magnet position ( ) as input to the network, and 10 neurons were used in the hidden
layer. After training the network with the data set shown in Figure 17, the resulting neural network predictive control system
was unstable. (The network was trained with Bayesian regularization15 to prevent overfitting.)

Figure 17 Training data with a long pulse width.

Based on the poor response of the initial controller, we determined that the training data did not provide significant coverage.
Therefore, we changed the range of the input pulse widths to , as shown in Figure 18. From this figure, we can see
that the training data is more dense and provides wider coverage of the plant model input space than the first data set. After
training the network using this data set, the resulting predictive control system was stable, although it resulted in large steady-
state errors.

Figure 18 Training data with a short pulse width.

In the third test, we combined short pulse width and long pulse width (steady state) data. The long pulses were concentrated
only on some ranges of plant outputs. For example, we chose to have steady-state data over the ranges where the tracking errors
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from the previous case were large. The input and output signals are shown in Figure 19. The resulting controller performed well
in both transient and steady state conditions.

Figure 19 Training data with mixed pulse width.

The left graph in Figure 20 shows the reference signal and the position of the magnet for the final predictive controller (using
the neural network trained with the data shown in Figure 19 and controller parameters set to , , ).
Steady state errors were small, and the transient performance was adequate in all tested regions. We found that stability was
strongly influenced by the selection of . As we decrease , the control signal tends to change more abruptly, generating a
noisy plant output. As with linear predictive control, when we increase too much, the control action is excessively smooth
and the response is slow. The control action for this example is shown in the right graph of Figure 20.

Figure 20 MagLev response and control action using the Predictive Controller

5.2. NARMA-L2 Control
The neurocontroller described in this section is referred to by two different names: feedback linearization control and NARMA-
L2 control. It is referred to as feedback linearization when the plant model has a particular form (companion form).24 It is re-
ferred to as NARMA-L2 control when the plant model can be approximated by the same form. The central idea of this type of
control is to transform nonlinear system dynamics into linear dynamics by canceling the nonlinearities. This section begins by
presenting the companion form system model and demonstrating how a neural network can be used to identify this model. Then
it describes how the identified neural network model can be used to develop a controller.

5.2.1 Identification of the NARMA-L2 Model
As with model predictive control, the first step in using NARMA-L2 control is to identify the system to be controlled. The
NARMA-L2 model18 is an approximation of the NARMA model of Eq. (34). The NARMA-L2 approximate model is given by:

(38)
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This model is in companion form, where the next controller input is not contained inside the nonlinearity. Figure 21 shows
the structure of a neural network NARMA-L2 representation for . Notice that we have separate subnetworks to represent
the functions and .

Figure 21 NARMA-L2 Plant Model

5.2.2 NARMA-L2 Controller
The advantage of the NARMA-L2 form is that you can solve for the control input that causes the system output to follow a
reference signal: . The resulting controller would have the form

(39)

which is realizable for . Figure 22 is a block diagram of the NARMA-L2 controller.

u k( )
d 1=

g( ) f( )

u(t)
a1(t)

1AAb1

AA
AAIW1,1

Neural Network Approximation of g ( )

Neural Network Approximation of f ( )

a2 (t)

1

AA
AALW2,1

AAb2

T
D
L

a3 (t)

1
AA
AAIW3,2

AA
AA

b3

y(t+1)

T
D
L

AA
AALW4,3

AA
AA

b41

a4 (t)y(t)

AA
AAIW1,2

T
D
L

AA
AAIW3,1

T
D
L

AA
AA
AA

AA
AA
AA

AA
AA
AA

AA
AA
AA

y k d+( ) yr k d+( )=

u k( )
yr k d+( ) f y k( ) y k 1–( ) … y k n– 1+( ) u k 1–( ) … u k m– 1+( ), , , , , ,[ ]–

g y k( ) y k 1–( ) … y k n– 1+( ) u k 1–( ) … u k m– 1+( ), , , , , ,[ ]------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=

d 1≥



17

Figure 22 NARMA-L2 Controller

This controller can be implemented with the previously identified NARMA-L2 plant model, as shown in Figure 23.

Figure 23 Implementation of NARMA-L2 Controller
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To demonstrate the NARMA-L2 controller, we use a catalytic Continuous Stirred Tank Reactor (CSTR)25. The dynamic model
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(40)

(41)

where is the liquid level, is the product concentration at the output of the process, is the flow rate of the con-
centrated feed , and is the flow rate of the diluted feed . The input concentrations are set to
and . The constants associated with the rate of consumption are and . The objective of the
controller is to maintain the product concentration by adjusting the flow . To simplify the demonstration, we set

. The allowable range for was assigned to be [0,4]. The level of the tank is not controlled for
this experiment.

For the system identification phase, we used the same form of input signal as was used for the MagLev system. The pulse widths
were allowed to range from 5 to 20 seconds, and the amplitude was varied from 0 to 4cm3/s. The neural network plant model
used three delayed values of ( ) and three delayed values of ( ) as input to the network, and 3 neurons
were used in the hidden layers. The sampling interval was set to 0.01 seconds.

The left graph of Figure 24 shows the reference signal and the system response for the NARMA-L2 controller. The output tracks
the reference accurately, without significant overshoot. However, the NARMA-L2 controller generally produces more oscilla-
tory control signals than the other controllers discussed here. This is illustrated in the control action plot shown in the right graph
of Figure 24. This chattering can be reduced by filtering (as in sliding mode control), but it is typical of NARMA-L2 controllers.

Figure 24 CSTR response and control action using the NARMA-L2 Controller

5.3. Model Reference Control
The third neural control architecture we will discuss in this paper is model reference control.19This architecture uses two neural
networks: a controller network and a plant model network, as shown in Figure 25. The plant model is identified first, and then
the controller is trained so that the plant output follows the reference model output

.

Figure 25 Model Reference Control Architecture
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The online computation of the model reference controller, as with NARMA-L2, is minimal. However, unlike NARMA-L2, the
model reference architecture requires that a separate neural network controller be trained, in addition to the neural network plant
model. The controller training is computationally expensive, since it requires the use of dynamic backpropagation.26,19On the
positive side, model reference control applies to a larger class of plant than does NARMA-L2 control, which requires that the
plant be approximated by a companion form model.

Figure 26 shows the details of the neural network plant model and the neural network controller. There are three sets of con-
troller inputs: delayed reference inputs, delayed controller outputs (plant inputs), and delayed plant outputs. For each of these
inputs, we select the number of delayed values to use. Typically, the number of delays increases with the order of the plant.
There are two sets of inputs to the neural network plant model: delayed controller outputs and delayed plant outputs.

The plant identification process for model reference control is the same as that for the model predictive control, and uses the
same NARMA model given by Eq. (34). The training of the neural network controller, however, is more complex.

Figure 26 Detailed Model Reference Control Structure
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It is clear from Figure 26 that the model reference control structure is a recurrent (feedback) network. This type of network is
more difficult to train than the feedforward networks that were discussed in the first half of this paper and that are used for plant
identification. Suppose that we use the same gradient descent algorithm, Eq. (16), that is used in the standard backpropagation
algorithm. The problem with recurrent networks is that when we try to find the equivalent of Eq. (23) (gradient calculation) we
note that the weights and biases have two different effects on the network output. The first is the direct effect, which is accounted
for by Eq. (23). The second is an indirect effect, since some of the inputs to the network, such as , are also functions of
the weights and biases. To account for this indirect effect we must use dynamic backpropagation to compute the gradients for
recurrent networks. We do not have space in this paper to describe the various forms of dynamic backpropagation. The reader
is referred to References 27 and 28 for a development of these algorithms for networks such as Figure 26.

In addition to the difficulty in computing the gradients for recurrent networks, the error surfaces for these networks pose special
difficulties for gradient-based optimization algorithms. Gradient-based training procedures that are well suited to training re-
current networks are discussed in Reference 29.

The data used to train the model reference controller is generated while applying a random reference signal which consists of a
series of pulses of random amplitude and duration. This data can be generated without running the plant, but using the neural
network model output in place of the plant output.

5.3.1 Application - Robot Arm
We will demonstrate the model reference controller on the simple, single-link robot arm shown in Figure 27.

Figure 27 Single-link robot arm

The equation of motion for the arm is

(42)

where is the angle of the arm, and is the torque supplied by the DC motor. The system was sampled at intervals of 0.05
seconds. To identify the system, we used input pulses with intervals between 0.1 and 2 seconds, and amplitudes between -15
and +15 N-m. The neural network plant model used two delayed values of torque ( ) and two delayed values of arm
position ( ) as input to the network, and 10 neurons were used in the hidden layer (a 5-10-1 network).

The objective of the control system is to have the arm track the reference model

, (43)

where is the output of the reference model, and is the input reference signal. For the controller network, we used a 5-13-
1 architecture. The inputs to the controller consisted of two delayed reference inputs, two delayed plant outputs, and one delayed
controller output. The controller was trained using a BFGS quasi-Newton algorithm, with dynamic backpropagation used to
calculate the gradients.

The left graph of Figure 28 shows the reference signal and the arm position using the trained model reference controller. The
system is able to follow the reference, and the control actions (shown in the right graph) are smooth. At certain set points there
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is some steady state error. This error could be reduced by adding more training data at those steady state conditions where the
error is largest. The problem can occur in the plant model, or in the controller network.

Figure 28 Robot arm response and control action for the Model Reference Controller

5.4. Summary
We can summarize the characteristics of the three controllers as follows.

• Model Predictive Control
Uses a neural network plant model to predict future plant behavior. An optimization algorithm determines the control input that
optimizes plant performance over a finite time horizon. The plant training requires only a batch algorithm for feedforward net-
works and is reasonably fast. The controller requires an online optimization algorithm, which requires more computation than
the other two controllers.

• NARMA-L2 Control
This controller is a variation of the feedback linearization controller. An approximate companion form plant model is used. The
next control input is computed to force the plant output to follow a reference signal. The neural network plant model is trained
with static backpropagation. The controller is a rearrangement of the plant model, and requires minimal online computation.

• Model Reference Control
A neural network plant model is first developed. The plant model is then used to train a neural network controller to force the
plant output to follow the output of a reference model. This control architecture requires the use of dynamic backpropagation
for training the controller. This generally takes more time than training static networks with the standard backpropagation al-
gorithm. However, this approach applies to a more general class of plant than does the NARMA-L2 control architecture. The
controller requires minimal online computation.

The simulations described in this section can be reproduced with files that can be downloaded from the following website:
http://elec-engr.okstate.edu/mhagan. They are Simulink blocks that require MATLAB and the Neural Network Toolbox for
MATLAB.

6. CONCLUSION
This paper has given a brief introduction to the use of neural networks in control systems. In the limited space it was not possible
to discuss all possible ways in which neural networks have been applied to control system problems. We have selected one type
of network, the multilayer perceptron. We have demonstrated the capabilities of this network for function approximation, and
have described how it can be trained to approximate specific functions. We then presented three different control architectures
that use neural network function approximators as basic building blocks. The control architectures were demonstrated on three
simple physical systems.

There have been many different approaches to using neural networks in control systems, and we have not attempted to provide
a complete survey of all approaches in this paper. For those readers interested in finding out more about the application of neural
networks to control problems, we recommend the survey papers 17 and 30 - 35. There are also many books that describe the
use of neural networks in control systems. None of these texts attempts to cover all neural controllers, but rather each text con-
centrates on a few selected types. Some neural control texts are References 36 - 46.
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