Spektralanalyse physiologischer Signale

Dr. rer. nat. Axel Hutt

Vorlesung 12

effizientere Methode: Bayes'sche Klassifikation

• finde die wahrscheinlichste Klassifizierung mit K Clustern

$$p(x|c_k,\mu_k,\Sigma_k)$$

W. für Datum x, wenn x zum Cluster k mit gehört mit Wahscheinlichkeit c_k . Cluster k hat den Mittelwert μ und die Kovarianz Σ

 $\theta_k = \{\mu_k, \Sigma_k\}$ steht für die Clustereigenschaften von Cluster k

$$p(x|\theta_{1:K}) = \sum_{k=1}^{K} p(x|c_k, \theta_k) p(c_k) \qquad \sum_{k=1}^{K} p(c_k) =$$

W. für Datum x für einen Satz von bestimmten K Clustern

... Bayes'sche Klassifikation

$$p(c_k|x, \theta_{1:K})p(x|\theta_{1:K}) = p(x|c_k, \theta_{1:K})p(c_k)$$

gilt allgemein

W. für c_k falls x in Cluster k liegt; gesuchte Größe

$$p(c_k | x, \theta_{1:K}) = \frac{p(x | c_k, \theta_{1:K}) p(c_k)}{p(x | \theta_{1:K})}$$
Bayes' Regel

... Bayes'sche Klassifikation

$$p(x_{1:N}|\theta_{1:K}) = \prod_{n=1}^{N} p(x_n|c_k, \theta_{1:K})$$

W. für den ganzen Datensatz für einen Satz von Clusterparameter

Maximieren von $p(x_{1:N}|\theta_{1:K})$ ergibt optimalen Satz

von Clusterparametern und somit mit Bayes' Regel optimale Clusterwahrscheinlichkeiten

Um Clustergrenzen mittels $p(c_k|x, \theta_{1:K})$ zu bestimmen, benötigt man noch die Konfidenz für die Resultate, also eine künstliche Schwelle.

Anwendung auf reale spike-Daten

von gerade eben

statistisches Ergebnis

Anzahl von Datenpunkten, die mit Wahrscheinlichkeit $p(c_k|x)$ zum Cluster k gehören statistisches Ergebnis

Die Datenpunkte hier gehören mit fast-Sicherheit zum jeweiligen Cluster 3 oder 4.

Beispiel:

Konfidenz 95%

Wechselwirkung zwischen Neuronen?

Axonale und elektromagnetische WW führen zur Synchronisation

(Nunez and Srinivasan, Electric Fields of the Brain: The Neurophysics of EEG (2006))

nun zu den Lokalen Feldpotentialen....

Kann man synaptische Stromquellen trennen?

ja, mittels current-source density estimation

Elektrodynamik des neuronalen Gewebes:

$$abla \cdot \mathbf{j} + \frac{\partial
ho}{\partial t} = 0$$
 $\mathbf{j} = \sigma \mathbf{E}$
 $\mathbf{E} = -\nabla V$
 \mathbf{j}
Ladungserhaltung
 \mathbf{L}
Ohmscher Leiter

für homogenes Gewebes:

$$\nabla \mathbf{j} = \sigma \nabla \mathbf{E} = -\sigma \Delta V$$

Gradient des Stromflusses ~ current source density (CSD)

CSD:
$$I_m(\mathbf{x},t) = -\sigma \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) V(\mathbf{x},t)$$

Г

Typische Messung: laterale Elektroden entlang der vertikalen Achse

<u>Beispiel:</u>

$$\left(\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \phi^2} + \frac{\partial^2}{\partial z^2}\right)V(r,\phi,z,t) = -\frac{I_m(r,\phi,z,t)}{\sigma}$$

$I_{m} = \pm 1 \quad 0 < z < 0.75L \qquad 0 < r < b$ $= -3 \quad 0.75L < z < L \quad 0 < r < b$

(aus Nicholson and Freeman, J. Neurophysiol. (1975))

Man kann also den Ort der synaptischen Stromquellen schätzen, doch räumliche Auflösung ist schlecht.

Man kann die Anzahl der spikenden Neuronen schätzen, doch keine räumliche Lokalisierung möglich.

jetzt kann man also berechnen:

• Synchronisation zwischen einzelnen Neuronen

 Synchronisation zwischen einzelnen spike trains und den LFPs man kann nur die Summe aller synaptischen Ströme betrachten (LFP)

spike-triggered average (STA)

Frage:

wie hängen *einzelne spikes* mit dem Stromfeld im Gewebe (*LFP*) zusammen ?

bestimmen die spikes das LFP, oder vice versa?

Beispiel aus

P. Fries et al., Oscillatory Neuronal Synchronization by Selective Visual Attention, Science 291(5508):1560-3 (2001)

spikes sind

phasen-synchronisiert

mit LFP

spike trains sind

schwach synchronisiert

• Wie hängt die Synchronisation mit der Frequenz zusammen ?

Idee: PSD von STA

doch: starke Frequenzen haben groβen Beitrag zu STA

Lösung: Normierung mit mittlerem PSD der trials spike-field coherence (SFC):

$$SFC = \frac{S[\langle \{T_n\}\rangle]}{\langle \{S[T_n]\}\rangle}$$

T_n : spike-triggered LFP single trial n

S[x]: PSD von Datensatz x

 $\langle \cdot \rangle$: Mittelwert

Beispiel: simulierte spikes und LFP

10Hz

Summe

aus P. Fries et al., Science 291(5508):1560-3 (2001)

<u>Beispiel:</u> simulierte spikes und LFP

10Hz

Summe

spikes sind phasen-synchronisiert mit 50Hz Oszillation, nicht mit 10 Hz Oszillation

aus P. Fries et al., Science 291(5508):1560-3 (2001)

Beispiel:

Artikel von K. K. Sellers et al., J. Neurophysiol. (2014)

Lateral-Elektroden im PFC

Zeitserie einer Elektrode

Awake

Instantane Feuerrate an einer Elektrode

Instantane Feuerrate an einer Elektrode

Verzögerung der spikes zum Stimulus

Statistik über alle trials und Elektroden

Zeit-Frequenz Darstellung der Zeitserie einer Elektrode

Spike-Field Coherence

c) Neuronenpopulationen

Elektroenzephalogram (EEG)

(Dank an Prof. Christoph Herrmann, University of Oldenburg)

Beispiel: Hypnose

Fragen:

gibt es phasensynchronisierte Teile des Gehirns?

erkennt man diese im EEG?

welche Elektroden sind synchronisiert?

Idee:

berechne räumliche und zeitliche Synchronisation des EEG

benachbarte Elektroden sind synchronisiert durch

Volumenleitfähigkeit

Man kann zeigen, dass

CSD der Stromdichte-Gradient

unterhalb des Schädelknochens ist

CSD:
$$I_m(\mathbf{x},t) = -\sigma \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) V(\mathbf{x},t)$$

Beispiel: Anästhesie (Cimenser et al. (2010))

current source density of EEG

IV. Synchronisation

- 1. Historie und Definition
- 2. Statistische Analyse von verschiedenen Datentypen

3. Amplituden- und **Phasensynchronisation**

4. Vollständige und partielle Synchronisation

künstlicher Datensatz

- zwei gekoppelte nichtlineare Oszillatoren (Kuramoto Modell mit K=3.0)
- Frequenz der Oszillatoren: 1.2Hz and 0.8Hz
- Kopplung setzt ein bei t=8s und setzt aus bei t=15s

Kuramoto Phasenmodell:

$$\dot{\phi}_1(t) = 2\pi f_1 + \frac{K}{2}\sin(\phi_1 - \phi_2)$$
$$\dot{\phi}_2(t) = 2\pi f_2 - \frac{K}{2}\sin(\phi_1 - \phi_2)$$

$$s_1(t) = \sin \phi_1(t)$$
 $s_2(t) = \sin \phi_2(t)$

Zeit-Frequenz Darstellung

Frequenz-Synchronisation während der Phasenkopplung

Phasendifferenz

schwierige Interpretation

statistische Schätzung notwendig

Neue Simulation

40 Versuche mit verschiedenen Anfangswerten

lineares Maβ der Korrelation: coherence

lineares Maβ der Korrelation: coherence

spectral coherence für stationäre Signale

$$G_{xy}(f) = \frac{|S_{xy}(f)|^2}{S_{xx}(f)S_{yy}(f)}$$

wavelet coherence für nicht-stationäre Signale

$$G_{xy}(t,f) = \frac{\hat{S}[|W_{xy}(t,f)|^2]}{\hat{S}[|W_{xx}(t,f)|]\hat{S}[|W_{yy}(t,f)|]}$$

 \hat{S} : Mittel über Versuche

