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5.1 Introduction

Time–frequency analysis (TF) is a field that has experienced a number of qualitative
and quantitative changes during the last two decades. Whereas most of classical
signal processing studies of the 1970s were aimed at stationary signals and processes,
many efforts were devoted to less idealized situations during the 1980s, and the idea
of TF progressively emerged as a new paradigm for nonstationarity. It is now well
recognized that many signal processing problems can be advantageously phrased in
a TF language, and the issue may no longer be designing brand new methods from
scratch, but instead in adequately using some of the many tools that we have at our
disposal, or in improving them for specific tasks. In some sense, the purpose of this
chapter has to be understood from this second generation perspective, because what
is discussed here essentially builds on the methods that have already been extensively
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studied and used. New advances nevertheless are to be provided, thanks to fresh
interpretations that have been made possible by recent developments in TF analysis.

This chapter is devoted to reassignment, a technique that was first introduced in the
1970s in a somehow restricted framework, with a scope that has been substantially
enlarged, thanks to the new developments that modern TF analysis has experienced.
If the concerns are what reassignment, is and what it is good for, the explanation is at
least twofold. First, reassignment can be viewed as a postprocessing technique aimed
at improving readability of TF distributions (exploratory signal analysis). Second,
reassignment can be used as a way of coding useful TF information, so as to be
part of decision schemes (signal processing). We concentrate mainly on the first
aspect, referring the interested reader to more comprehensive treatments concerning
the second one [11].

More precisely, the chapter is organized as follows. Section 5.2 first motivates the
usefulness of reassignment by stressing how it permits to overcome the localization
and interference trade-off that is usually observed in classical TF analysis. The reas-
signment principle then is to be detailed in the simplest case of the spectrogram, and
some examples illustrate different facets of the technique. Section 5.3 focuses on reas-
signment in action: starting from the spectrogram case, efficient algorithmic issues
are discussed, as well as extensions to more general situations, including time-scale
distributions such as the scalogram (squared wavelet transform). Finally, Section 5.4
points out a number of real-world situations where reassignment may be of effective
usefulness, both in exploratory data analysis and in signal manipulation.

The point of view adopted in this chapter is mostly practical, with as little theory
as needed (for more fundamental aspects, the interested reader is referred to [2] or
[11]). Throughout the text, and for a sake of illustration, an extensive use is made of
Matlab routines that are part of a freeware toolbox [3], downloadable from:

http://iut-saint-nazaire.univ-nantes.fr/˜auger/tftb.html

The specific procedures used are available from the universal resource locator (URL).

http://iut-saint-nazaire.univ-nantes.fr/˜auger/publis/CRC.html

and they must be explicitly considered as part of the chapter, because they allow the
readers not only to reproduce the figures used as illustrations but also to make their
own variations on their production, so as to become more familiar with the proposed
tools.

5.2 Reassigned time–frequency distributions

5.2.1 Motivation example

TF tools are extensively used for exploratory signal analysis. To address some of the
problems that conventional TF tools are faced with, let us first consider the example
of Figure 5.1, produced by running model1plot.
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FIGURE 5.1
A three-component signal embedded in noise. From a point of view of explo-
ratory data analysis, neither the waveform (top) nor its spectrum (bottom) ade-
quately reveals the actual structure of the analyzed signal — Equation (5.1).

In fact, looking at the waveform or at its spectrum does not allow for a simple inter-
pretation of the inner structure of the signal x, which consists in a linear combination
of 3 different amplitude-modulated–frequency-modulated (AM–FM) components
embedded in noise with a 20-dB Signal-to-noise ratio (SNR), generated according to:

N= 256; fmins= 0.05; fmaxs= 0.2
[x,fxs,fxl,dt] = model1(N,fmins,fmaxs,0.45,0.25,N/3,0.25,20) (5.1)

In such a situation, a much clearer insight would be gained by an explicit description
of the time-frequency structure of each of the components. The relevance of such
a mixed description is supported by Figure 5.2, obtained by running model1TF.
Indeed, the simplified model displayed in the top left subplot of Figure 5.2 makes
apparent the coexistence of two FM components (one sinusoidal and one linear,
of respective instantaneous frequencies fxs and fxl) and one logon (Gaussian wave
packet of effective duration dt). The purpose of exploratory TF analysis is therefore
to produce a picture as close to this idealized model as possible, given the observed
three-component signal, of a priori unknown structure.

Because of its many theoretical properties [16], the Wigner–Ville distribution
(WVD) could be thought of as the most appropriate tool, but it appears (top right
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FIGURE 5.2
A three-component signal embedded in noise. The idealized time–frequency
model is compared with three images produced by the Wigner–Ville distribution
(WVD), a spectrogram, and a reassigned spectrogram. Whereas the readability
of the WVD (top right) is hampered by oscillatory interference terms and the
spectrogram (bottom left) suffers from a poor resolution, the reassigned spec-
trogram (bottom right) provides the user with a time–frequency picture which
is almost identical to the idealized model (top left).

of Figure 5.2) that, whereas individual components are rather sharply described, the
overall readability is hampered by cross-components interference phenomena [23].
As is well-known, a spectrogram (bottom left of Figure 5.2) contains much less
crossterms, but this image cleaning is obtained at the expense of a smearing of the TF
signatures of the individual components. Overcoming this trade-off between localiza-
tion and interference is precisely one of the “raisons d’être” of reassignment, whose
application results in a picture (bottom right of Figure 5.2) that is almost identical to
the idealized model we started with.

5.2.2 Reassignment basics

To understand how the miracle of Figure 5.2 occurs, it is worth going back to basic
definitions and properties of classical TF distributions.
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5.2.2.1 From spectrograms to Wigner–Ville

First, a spectrogram Shx (t,ω) is usually defined as:

Shx (t,ω) := |Fh
x (t,ω)|2 (5.2)

where Fh
x (t,ω) stands for the short-time Fourier transform (STFT):

Fh
x (t,ω) :=

∫ +∞

−∞
x(s)h∗(s− t)e−ıωs ds×eıtω/2 (5.3)

Those definitions are explicitly dependent on some short-time window h(t), aimed
at limiting the evaluation of the Fourier transform (FT) to some specified neighbor-
hood of the current date t. The window introduced this way may be thought of as
a measurement device, with the consequence that the produced distribution jointly
depends on the signal and on the window. In particular, STFTs and spectrograms
are faced with a TF resolution trade-off, because the shorter the duration of h(t), the
better their resolution in time, but the larger the bandwidth of the spectrumH(ω) and,
henceforth, the poorer their resolution in frequency.

Instead of fixing arbitrarily h(t), one may try to make it depend adaptively on the
analyzed signal. Thinking of the STFT as a linear filtering operation, the powerful con-
cept of matched filtering suggests the intuitive choice h(t) = x−(t) := x(−t)(i.e., to
take as window the time-reversed version of the analyzed signal). It then follows that:

F
x−
x (t,ω) =Wx (t/2,ω/2)/2 (5.4)

where:

Wx(t,ω) :=
∫ +∞

−∞
x(t+s/2)x∗(t−s/2)e−ısω ds (5.5)

is nothing but the WVD [16].
By definition, the WVD does present the advantage of depending only on the signal.

Its role is central in TF analysis and it possesses a number of theoretical properties
[12, 16] among which one can mention its ability to be perfectly localized in the case
of linear FM signals. These appealing features have, however, to be paid at some
price because, for example, a WVD cannot be positive everywhere, thus forbidding a
local density interpretation. Furthermore, in accordance with the elementary identity
(a+ b)2 = a2 + b2 +2ab, the fully quadratic nature of the WVD is known to create
spurious cross terms, characterized by oscillating contributions located midway in
between any two interacting components [23].

5.2.2.2 Localization vs. interference

Because interference terms of the WVD are by nature oscillatory, one can think of
reducing them by applying some low-pass smoothing, but such a smoothing operation
has also the negative effect of spreading out localized signal terms. This trade-off
between joint localization and the importance of interference terms is clearly apparent
when comparing (as in Figure 5.2) the WVD and a spectrogram, properly interpreted
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as a smoothed WVD. Indeed, instead of using its usual definition, as in Equation
(5.2), a spectrogram can be equivalently expressed as [16]:

Shx (t,ω) =
∫ ∫ +∞

−∞
Wx(s,ξ)Wh(s− t,ξ−ω)

dsdξ

2π
(5.6)

thus making explicit the fact that it results from the smoothing of the signal WVD by
the window WVD.

5.2.2.3 Reassignment principle

An important consequence of the smoothing formula in Equation (5.6) is that the value
that a spectrogram takes at a given point (t,ω) of the plane cannot be considered as
pointwise, but instead results from the summation of a continuum of WVD contri-
butions within some TF domain defined as the essential TF support of the short-time
window. In other words, a whole distribution of values is summarized by a single
number, and this number is assigned to the geometric center of the domain over which
the distribution is considered.

By reasoning with a mechanical analogy, the situation is as if the total mass of an
object were assigned to its geometric center, an arbitrary point that — except in the
very specific case of an homogeneous distribution over the domain — has no reason
to suit the actual distribution.

A much more meaningful choice is to assign the total mass to the center of gravity
of the distribution within the domain, and this is precisely what reassignment does:
at each TF point (t,ω) where a spectrogram value is computed, one also computes
the two quantities:

t̂x(t,ω) :=
1

Shx (t,ω)

∫ ∫ +∞

−∞
sWx(s,ξ)Wh(s− t,ξ−ω)

dsdξ

2π
(5.7)

ω̂x(t,ω) :=
1

Shx (t,ω)

∫ ∫ +∞

−∞
ξWx(s,ξ)Wh(s− t,ξ−ω)

dsdξ

2π
(5.8)

which define the local centroids of the WVD distribution Wx, as seen through the
TF window Wh centered in (t,ω). The spectrogram value is then moved from the
point (t,ω) where it has been computed to this centroid (t̂x(t,ω), ω̂x(t,ω)), leading
to define the reassigned spectrogram as:

Šhx (t,ω) :=
∫ ∫ +∞

−∞
Shx (s,ξ)δ

(
t− t̂x(s,ξ),ω− ω̂x(s,ξ)

) dsdξ
2π

(5.9)

Conceptually, reassignment can be considered a two-step process: (1) a smoothing,
whose main purpose is to rub out oscillatory interferences, but whose drawback
is to smear localized components; (2) a squeezing, whose effect is to refocus the
contributions that survived the smoothing.
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5.2.2.4 Some historical comments

As has been sketched earlier, the presentation of the reassignment principle is a modern
way [2] of revisiting a much older idea [25, 27].

The argument used by Kodera, De Villedary and Gendrin in their seminal papers
[25, 27] was not related to TF smoothing, but to phase. In fact, the centroids as in
Equations (5.7) and (5.8), used in reassignment happen to be related to the phase
of the STFT, an information that is discarded when considering a spectrogram as
a squared STFT. More precisely, denoting by ϕ(t,ω) the phase of the STFT, as in
Equation (5.3), and using the simplified notation ∂uϕ = ∂ϕ/∂u, local centroids, as
in Equations (5.7) and (5.8) can be shown [25, 27] to be equivalently given by:

t̂x(t,ω) =
t

2
−∂ωϕ(t,ω) (5.10)

ω̂x(t,ω) =
ω

2
+∂tϕ(t,ω) (5.11)

These quantities can be interpreted as the local instantaneous frequency (IF) and
group delay (GD) of the analyzed signal, as filtered within the TF domain defined
by the TF window Wh centered in (t,ω). From this interpretation, the rationale for
reassignment (initially referred to as a “modified moving window method” [25, 27])
was to favor energy concentrations in the vicinity of local IFs and GDs.

Although introduced in the mid-1970s and applied with success in geophysics, the
reassignment technique retained almost no attention of the TF community the next 20
years. Apart from the fact that the methodology has been little publicized per se, the
reason is certainly that it had been introduced much before the problems it addressed
were extensively studied (during the mid-1980s), and that its applicability remained
computationally limited for a while.

Not until the mid-1990s did the idea of reassignment surface again [2]. Algorithmic
improvements were proposed and, thanks to the many developments that occurred
the field, the scope of the technique was considerably enlarged, far beyond only
the spectrogram case. In parallel, other related techniques were developed indepen-
dently(e.g., the “ridge and skeleton” method [5, 13, 19, 20], the “instantaneous fre-
quency density”[17], the “differential spectral analysis”[18] or the “synchrosqueez-
ing” technique [29]).

5.2.3 Toy examples

5.2.3.1 Linear chirps

It is well-known [16] that an idealized linear FM signal has a WVD that is perfectly
localized in the TF plane, namely:

x(t) = exp{ı(ω0t+βt2/2)}⇒Wx(t,ω) = δ(ω− (ω0 +βt)) (5.12)

for any modulation rate β.
Therefore, it may be concluded that reassigned spectrograms automatically inherit

of this perfect localization, because the centroid of a line distribution necessarily
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belongs to its (localized) support. It is worth noting that, geometrically, TF lines
include pure tones (β = 0) and impulses (β =∞) as limiting cases. In all cases,
any reassigned spectrogram (i.e., whatever the window h(t) it is computed with) is
theoretically guaranteed to be perfectly localized.

If we turn to the more realistic situation of a linear chirp, defined as:

x(t) = exp{−πγt2}× exp{ı(ω0t+βt2/2)} (5.13)

explicit calculations can be conducted, but they are not reproduced in this chapter(the
interested reader is referred to [27] or [11]). We instead investigate through examples
how a reassigned spectrogram jointly depends on the analyzed chirp and on the short-
time window. The proposed numerical experiment consists in generating a Nx-points
chirp x, sweeping from fmin to fmax, embedded in a Ny-points signal y:

x = gchirp(Nx,fmin,fmax); Lx= length(x);
y = zeros(Ny,1); y(Ny/2−Lx/2 : Ny/2+Lx/2−1) = x;

By running:
sprspplot(y,dt,Nb,Nh,c);

this signal y is then analyzed by a spectrogram (with a Gaussian window of length
Nh) and its reassigned version, with both TF distributions computed every dt time
samples on a frequency grid of Nb bins, and displayed either in color (c = 1) or in
black and white (c = 0). A typical example corresponding to the set of parameters:

Nx= 16; fmin= 0; fmax= 0.5; Ny= 256; % signal

Nh= 255; dt= 1; Nb= 128; c= 0;% TFD and display

FIGURE 5.3
Reassigning a short chirp. In the case of a very short transient signal (the effective
support of the chirp x considered here is Nx = 16 points, for an observation y
of total length Ny = 256 points) analyzed with a substantially larger window h
(Nh = 255 points), the TF localization is dramatically increased by reassignment.
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FIGURE 5.4
Chirp rate vs. analysis window. When analyzing a chirp signal of fixed chirp
rate, the result given by conventional spectrograms (top row) heavily depends on
the length of the short-time window. This interdependence between signal and
window characteristics is dramatically reduced when replacing spectrograms
by their reassigned counterparts (bottom row), leading to sharply localized dis-
tributions approaching the idealized model sketched in the left subplot of the
middle row. For a sake of comparison, the WVD is displayed in the right subplot
of the middle row.

is given in Figure 5.3. It clearly evidences the drastic squeezing effect of reassign-
ment in a situation of a very transient chirp (Nx = 16) that cannot be considered as
quasimonochromatic with respect to the length (Nh = 255) of the analyzing window.
Variations on this example are left to the reader.

A more comprehensive comparison is given in Figure 5.4, obtained by running:

varwindow(Nx,Nh1,Nh2,Nh3,Nb,c);

with the specific values:

Nx = 128 ; % signal
Nh1 = 21 ; Nh2 = 63; Nh3 = 127; % windows
Nb = 128 ; c = 0; % TFD and display

Whereas, in such a case, conventional spectrograms happen to be poorly localized
and to depend heavily on the length of the chosen short-time window, their reassigned
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counterparts prove to always provide fairly similar, correctly localized results (the
skeletonized model and the WVD are also given for comparison).

5.2.3.2 Nonlinear FM signals

It has been argued in Section 5.2.3.1 that the reassignment process ends up with a
perfect localization in the case of linear FM signals. Conceptually, a similar benefit is
expected to be obtained as long as the analyzed signal locally behaves as a linear FM,
locality referring to the TF support of the smoothing window. This interdependence
between the window length and the local modulation rate can be dynamically observed
by running:

quasilin(Nx,Nh,Nb,Nhp,c);

where Nx stands for the length of a Nhp half-periods sinusoidal FM signal, and
Nh stands for the length of the short-time window used in computing its reassigned
spectrogram over Nb frequency bins.

Setting for instance the parameter values to:

Nx = 256; Nhp = 21; % signal
Nh = 19; % window
Nb = 128; c = 0; % TFD and display

leads, at time t = ceil(15∗Nx/21), to the snapshot given in Figure 5.5. What is
evidenced by this image is that (slight) departures from localization are observed
only in those regions where the local IF trajectory of the model cannot be considered
as quasilinear within the TF smoothing window centered at the point of interest.

5.2.3.3 Localization vs. resolution

Whereas reassigning a spectrogram has been shown to end up with a sharply localized
distribution, care has to be taken in interpreting this behavior in terms of resolution
(i.e., in the ability of separating closely spaced components). In fact, when more than
one component is seen within the TF smoothing window, a beating effect occurs and
results in interference fringes, thus preventing the consideration of reassignment as
some superresolution process. This can be illustrated by running:

resol(Nx,Nh,Nb,c);

in which a series of crossing linear FM signals of length Nx and of various chirp rates
is analyzed over Nb frequency bins, with the same short-time window of length Nh.
Choosing for instance:

Nx = 128; % signal
Nh = 31; % window
Nb = 128; c = 0; % TFD and display

leads to the result displayed in Figure 5.6. Interference effects (emphasized by using
a logarithmic scale for the amplitude) are clearly apparent in those regions where the
two chirps are simultaneously present within the TF smoothing window.
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FIGURE 5.5
Local quasilinearity and localization. Due to the local action of reassignment,
the perfect localization property that holds for linear FM signals carries over to
locally quasilinear situations. In this example of a sinusoidal FM signal, local-
ization is (slightly) degraded at those points where the instantaneous frequency
trajectory cannot be consider as quasilinear within the TF smoothing window
(represented by the ellipse).

A similar effect can be dynamically observed by visualizing the animation model1
TFmovie.gif, in which a signal of the model1 type is considered, with a logon whose
center follows a TF trajectory crossing (back and forth) the linear FM component.

5.3 Reassignment in action

In Section 5.2.3, we show that reassignment yields significantly improved TF rep-
resentations. The present section, devoted to computer algorithms, shows that the
computational cost paid for this improvement is not as heavy, and does not prevent
the use of this method in practical cases.
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FIGURE 5.6
Localization and resolution. When more than one component is seen within the
TF smoothing window (represented by the ellipse), a beating effect occurs and
results in interference fringes. This behavior is illustrated here by two crossing
linear FM signals of various chirp rates.

5.3.1 Algorithms for spectrograms

5.3.1.1 Reassignment operators deduced from phase differences

As mentioned in Section 5.2.2.4, the reassignment operators t̂x(t,ω) and ω̂x(t,ω)
have been initially deduced from the phase of the STFT. These expressions have been
used in the first implementations of the reassignment principle [26]. For a signal
sampled with a sampling period Ts and a frequency axis obtained with a fast Fourier
transform (FFT) of length N , the partial derivatives of the phase were replaced by
first-order differences:

∂tϕ[n,m] ≈ ϕ[n+1,m]−ϕ[n−1,m]
2Ts

(5.14)

≈ 1
2Ts

arg
(
Fh
x [n+1,m]Fh

x [n−1,m]∗
)

(5.15)

∂ωϕ[n,m] ≈ ϕ[n,m+1]−ϕ[n,m−1]
(4π/NTs)

(5.16)

≈ N Ts
4π

arg
(
Fh
x [n,m+1]Fh

x [n,m−1]∗
)

(5.17)

where Fh
x [n,m] and ϕ[n,m] are, respectively, the STFT value and its phase at time

t = nTs and angular frequency ω = 2πm
NTs

. However, this approach suffers from
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the phase unwrapping problem [33], and yields only approximated values of the
reassignment operators.

5.3.1.2 More reliable algorithm

Expressions in Equations (5.15) and (5.17) suggest relating the partial derivatives of
the phase to the partial derivatives of the STFT. DefiningGh

x(t,ω) =Fh
x (t,ω)e

−iωt/2

=
∣∣Fh

x (t,ω)
∣∣ ei(ϕ−ωt/2) leads to:

∂tG
h
x(t,ω) = −

∫ +∞

−∞
x(s)

dh∗

dt
(s− t)e−ıωs ds=−Gdh

x (t,ω) (5.18)

= ∂t
∣∣Fh

x (t,ω)
∣∣ ei(ϕ−ωt/2) + i(∂tϕ−ω/2)Gh

x(t,ω) (5.19)

=⇒ ω̂x(t,ω) = ω−Im
{
Gdh
x (t,ω)

Gh
x(t,ω)

}
(5.20)

where Im{Z} stands for the imaginary part of the complex number Z, and dh is the
derivative of the analysis window dh(t) = dh

dt (t). The partial derivative of the phase
with respect to the angular frequency leads to a similar expression for t̂x(t,ω):

∂ωG
h
x(t,ω) = −i(Gth

x (t,ω)+ tGh
x(t,ω)

)
(5.21)

= ∂ω
∣∣Fh

x (t,ω)
∣∣ ei(ϕ−ωt/2) + i(∂ωϕ− t/2)Gh

x(t,ω) (5.22)

=⇒ t̂x(t,ω) = t+Re
{
Gth
x (t,ω)

Gh
x(t,ω)

}
(5.23)

with th(t) = th(t).
Approximated phase differentiations can then be avoided by computing two add-

itional STFTs. These STFTs use the same signal values as Fh
x (t,ω), and only differ

by their analysis windows. As a consequence, these new expressions do not imply
a drastic increase of computational complexity, and can be computed in parallel.
It should also be noted that if h(t) = e−αt2 , a choice that corresponds to the so-
called Gabor spectrogram, then dh

dt (t) =−2αth(t) and Gdh
x (t,ω) =−2αGth

x (t,ω).
Only one supplementary STFT is required, which makes the reassignment process
still faster. This particular case is implemented in the function tfrrgab of the TF
toolbox [3].

For sampled signals and discrete Fourier transforms(DFTs) of length N , discrete
time and discrete frequency versions of the reassignment operators are defined as:

n̂x[n,m] :=
1
Ts

t̂x

(
nTs,

2πm
NTs

)
= n+Re

{
G
T−1
s th

x [n,m]
Gh
x[n,m]

}
(5.24)

m̂x[n,m] :=
NTs
2π

ω̂x

(
nTs,

2πm
NTs

)
=m− N

2π
Im
{
GTs dh
x [n,m]
Gh
x[n,m]

}
(5.25)

with Ts dh[n] = Ts
dh
dt (nTs) and T−1

s th[n] = nh(nTs).
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The computation of the reassigned spectrogram of a signal x at the time instants
given in a row vector t, as done in the function tfrrsp of the TF toolbox [3], can then
be achieved in two steps.

5.3.1.2.1 Step one. The first step computesGh
x[n,m]Gh
x[n,m]Gh
x[n,m] (tfr),GT−1

s th
x [n,m]G
T−1
s th

x [n,m]G
T−1
s th

x [n,m] (tf2)
andGTs dh

x [n,m]GTs dh
x [n,m]GTs dh
x [n,m] (tf3):

[xrow,xcol] = size(x); [trow,tcol] = size(t);
[hrow,hcol]=size(h); Lh=(hrow-1)/2;

% create and initialize three arrays to zero
% these arrays have as many rows as frequency bins,
% and as many columns as time intants
tfr=zeros(N,tcol); tf2=zeros(N,tcol); tf3=zeros(N,tcol);

% compute th and dh
Th=h.*[-Lh:Lh]’; Dh=dwindow(h);

% compute the three STFTs
for icol=1:tcol,
ti= t(icol);
tau=-min([round(N/2)-1,Lh,ti-1]): ...

+min([round(N/2)-1,Lh,xrow-ti]);
indices= rem(N+tau,N)+1;

% normalization to preserve energy
norm_h=norm(h(Lh+1+tau));
tfr(indices,icol)=x(ti+tau).*conj( h(Lh+1+tau))/norm_h;
tf2(indices,icol)=x(ti+tau).*conj(Th(Lh+1+tau))/norm_h;
tf3(indices,icol)=x(ti+tau).*conj(Dh(Lh+1+tau))/norm_h;
end ;

% final call to the FFT function
tfr=fft(tfr); tf2=fft(tf2); tf3=fft(tf3);

avoidw=find(tfr˜=0); tf2(avoidw)=round(real(tf2(avoidw).
/tfr(avoidw)/Dt));
tf3(avoidw)=round(imag(N*tf3(avoidw).
/tfr(avoidw)/(2.0*pi)));
tfr=abs(tfr).ˆ2;

The expression of indices allows the values of the time lag τ = . . . ,−2, −1,0,1,
2, . . . to be located at the indices . . . ,N − 1,N,1,2,3, . . . as required by the FFT
function. In addition, when Fh

x [n,m] is zero valued, Shx [n,m] is of course also zero
valued. Reassignment operators can neither be computed nor be used when Shx [n,m]
is zero. This explains the use of the variable avoidw.
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5.3.1.2.2 Step two. The second step iteratively creates the reassigned
spectrogram by adding Shx [n,m]Shx [n,m]Shx [n,m], the value of the spectrogram at the point(
nTs,

2πm
NTs

)(
nTs,

2πm
NTs

)(
nTs,

2πm
NTs

)
to the value of Šhx [n̂, m̂]Šhx [n̂, m̂]Šhx [n̂, m̂]:

rtfr= zeros(N,tcol); Ex=mean(abs(x(min(t):max(t))).ˆ2);
Threshold=1.0e-6*Ex;
for icol=1:tcol, % for all time samples
for jcol=1:N, % for all frequency bins
if abs(tfr(jcol,icol))>Threshold,
icolhat= icol + tf2(jcol,icol);
icolhat=min(max(icolhat,1),tcol);
% not smaller than 1, not greater than tcol

jcolhat= jcol - tf3(jcol,icol);
jcolhat=rem(rem(jcolhat-1,N)+N,N)+1;
% must be inside [1,N]

rtfr(jcolhat,icolhat)= rtfr(jcolhat,icolhat)...
+ tfr(jcol,icol) ;

end;
end;
end;

It should be emphasized that unlike the first step, which greatly benefits from the
vectorization capabilities of MATLAB, this second step is a slower process under the
MATLAB environment, because of the two embedded loops. Faster implementations
written in the American National Standards Institute (ANSI) C language are also
available at:

www-sigproc.eng.cam.ac.uk/ md283/toolbox/Ctftbeng.html

5.3.1.3 Computing window derivative

The first step of this algorithm requires, however, an evaluation of the derivative
of the analysis window function h(t). An exact expression of this derivative could
be obtained from the analytical expression of h(t). This solution is too restrictive,
because it does not allow someone to use self-made windows, whose derivatives may
be difficult to get analytically. This is the reason why instead of the exact expression
we use an accurate approximation, obtained by a centered first-order derivative. For
this, h(t) is modeled on its finite length support [−T/2,T/2] as:

h(t) =
{
α+β t+h0(t) for |t| ≤ T/2
0 for |t|> T/2 (5.26)

where α= (h(T/2)+h(−T/2))/2 and β = (h(T/2)−h(−T/2))/T are, the offset
and the slope of a linear trend, respectively and h0(t) is continuous and zero valued at
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FIGURE 5.7
Window derivative approximation. For a Blackman window of 25 points, the
difference between the exact and the approximated derivative is very weak.

the window edges −T/2 and T/2. Under these conditions, dh0
dt (t) can be accurately

approximated by a first-order difference, and dh
dt (t) can be deduced according to:

dh

dt
(t) =

{
αδ(t+T/2)−αδ(t−T/2)+β+ dh0

dt (t) for |t| ≤ T/2
0 for |t|> T/2

(5.27)

To evaluate the quality of this approximation, the function about dh compares the
exact derivative of a Blackman window [21] with its approximation derived from
Equation (5.27). For Nh=25, the results are presented in Figure 5.7, showing a
maximum error of 3 × 10−3, leading to a relative error of less than 2%. This error
still decreases when the window length increases.

The framework presented here is the background of the function dwindow, which
essentially reduces to:

function Dh=dwindow(h);

% h is a row vector
[hrow,hcol]=size(h); Lh=(hrow-1)/2;
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% compute the discontinuities on the border
step_height=(h(1)+h(hrow))/2;
ramp=(h(hrow)-h(1))/(hrow-1);

% add zeros at both sides
h2=[0;h-step_height-ramp*(-Lh:Lh).’;0];

Dh=(h2(3:hrow+2)-h2(1:hrow))/2 + ramp; % first order
difference
Dh(1) =Dh(1) +step_height; % add discontinuities
Dh(hrow)=Dh(hrow)-step_height;

This function allows the analysis window to be given by a vector of numerical
values, instead of chosen among a set of predefined possibilities (Hamming, Hann,
Kaiser-Bessel, . . . [21]). Thanks to these functions tfrrsp and dwindow, the reas-
signed spectrogram of a signal can be easily obtained by a few instructions, such as
in the ones included in the function sprspplot(x,dt,Nb,Nh,c) presented in Section
5.2.3.1:

h = window(Nh,’Gauss’); % Gaussian window
Nx = max(size(x)); t = 1:dt:Nx; % select time samples
[sp,rsp]=tfrrsp(x,t,2*Nb,h,1); % compute the reassigned

%spectro

The sensitivity of the reassigned spectrogram to the choice of the window shape
or length can therefore be easily studied by simply changing the parameters of the
function window.

5.3.2 Reassigning other time–frequency distributions

5.3.2.1 Reassigned smoothed pseudo-Wigner–Ville distributions

As mentioned in Section 5.2.2.1, spectrograms suffer from a difficult trade-off between
time and frequency resolutions, which make them irrelevant for several real case
applications. Hopefully, other TF representations exist, which can also be reassigned.
For instance, the smoothed pseudo-Wigner–Ville distribution (SPWV) [16] is a very
flexible tool, which allows an independent adjustment of the time and frequency
smoothings:

SPWVg,h
x (t,ω) :=

∫ ∫ +∞

−∞
g(s− t)H(ξ−ω)Wx(s,ξ)

dsdξ

2π
(5.28)

where g and h are two even smoothing windows with h(0) =G(0) = 1. In that case,
expressions in Equations (5.7) and (5.8) become:

t̂x(t,ω) = t+
SPWVg,th

x (t,ω)
SPWVg,h

x (t,ω)
(5.29)
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FIGURE 5.8
SPWV reassignment. This figure is similar to Figure 5.2, but the spectrogram
and its reassigned version have been replaced by the SPWV and its reassigned
version, computed for exactly the same signal realization. The improvement
brought by this kind of representation is clearly evidenced.

ω̂x(t,ω) = ω− i
SPWVdg,h

x (t,ω)
SPWVg,h

x (t,ω)
(5.30)

These new expressions show that reassigning the SPWV distribution only requires
two additional SPWV with particular smoothing windows. The resulting algorithm,
presented in the Figure 2 of Reference [2] and implemented in the function tfrrspwv
of the TF toolbox [3], has the same organization in two steps than the algorithm of
the reassigned spectrogram:

• The first one computes the three SPWVs.

• The second one iteratively creates the reassigned smoothed pseudo-Wigner–
Ville distribution P̌ g,h

x (t,ω) by adding P g,h
x [n,m] to P̌ g,h

x [n̂, m̂].

The relevance of this representation is supported by Figure 5.8, obtained by running
model1TF2; this new figure shows two new representations of exactly the same sig-
nal as the one used in Figure 5.2. The SPWV (bottom left) yields a better localization
of the signal components than the spectrogram, and therefore its reassigned version
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(bottom right) is still closer to the idealized model and less sensitive to noise than
the reassigned spectrogram. In this script, the SPWV and its reassigned version are
simply obtained by the instructions:

g = window( 21,’Kaiser’); h = window(121,’Kaiser’);
[spwv,rspwv] = tfrrspwv(x,t,N,g,h,1);

Improvements can easily be looked for by simply changing the definitions of g and h.

5.3.2.2 Reassigned scalograms

The reassignment principle can also be applied to time-scale representations of the
affine class [32]. A widely used member of this class is the scalogram, which is the
squared modulus of the continuous wavelet transform:

SCh
x(t,a) :=

∣∣∣CWh
x(t,a)

∣∣∣2 (5.31)

with CWh
x(t,a) :=

1√|a|

∫ +∞

−∞
x(u)h∗

(
u− t

a

)
du (5.32)

where h(t) (called the mother wavelet) is the impulse response of a bandpass filter
of central frequency ω0, and a is a scale parameter, related to a frequency variable by
the relationship a= ω0/ω.

As the expression in Equation (5.6), the scalogram results from an affine smoothing
of the WVD:

SCh
x(t,a) =

∫ ∫ +∞

−∞
Wx(s,ξ)Wh(

s− t

a
,aξ)

dsdξ

2π
(5.33)

As evidenced by this expression, SCh
x(t,a) can be interpreted as the summation

of a whole set of energy measures Wx(s,ξ) contained within a TF domain delimited
by Wh( s−t

a ,aξ). Instead of assigning this number to the geometric center of this
domain, which does not depend on the analyzed signal, it seems more relevant to
assign it to the center of gravity, defined by:

t̂x(t,a) =
1

SCh
x(t,a)

∫ ∫ +∞

−∞
sWx(s,ξ)Wh(

s− t

a
,aξ)

dsdξ

2π
(5.34)

ω̂x(t,a) :=
ω0

âx(t,a)
=

1
SCh

x(t,a)

∫ ∫ +∞

−∞
ξWx(s,ξ)Wh(

s− t

a
,aξ)

dsdξ

2π
(5.35)

The resulting reassigned scalogram, defined as:

ŠC
h

x(t
′,a′) :=

∫ ∫ +∞

−∞
SCh

x(t,a)δ
(
t− t̂x(t,a),a′− âx(t,a)

) a′2 dtda
a2 (5.36)

benefits both from the smoothing performed by the mother wavelet, and from the
reassignment, which refocuses the scalogram on the squeezed signal description given
by the WVD.
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From a computational point of view, the local centroids can efficiently be computed
by means of two additional wavelet transforms, using two particular mother wavelets:

t̂x(t,a) = t+Re
{
aCWth

x (t,a)
CWh

x(t,a)

}
(5.37)

ω̂x(t,a) =
ω0

âx(t,a)
= −Im

{
CWdh

x (t,a)
CWh

x(t,a)

}
(5.38)

Several mother wavelet functions can be used. One of them is the Morlet wavelet:

h(t) =
1√
T
e
− t2

2T2 eiω0t (5.39)

In that case, dh(t) = th(t)
T2 + iω0h(t) and CWdh

x (t,a) = − 1
T2CW

th
x (t,a)− iω0

CWh
x(t,a). As for the Gabor spectrogram, only CWh

x(t,a) and aCWth
x (t,a) need

to be computed, because the expression in Equation (5.35) becomes:

ω̂x(t,a) =
ω0

âx(t,a)
=
ω0

a
+

1
a2T 2 Im

{
aCW th

x (t,a)
CWh

x(t,a)

}
(5.40)

Computer algorithms (as the one used in the function tfrrmsc) can therefore be
deduced from the discrete-time versions of the following expressions:

CWh
x(t,a) =

√
|ω|
ω0T

∫ +∞

−∞
x(t+ τ)e

− ω2 τ2

2ω2
0T

2
e−iωτ dτ (5.41)

aCWth
x (t,a) =

√
|ω|
ω0T

∫ +∞

−∞
x(t+ τ)τ e

− ω2 τ2

2ω2
0T

2
e−iωτ dτ (5.42)

with a = ω0/ω. Because the Gaussian analyzing window used in these expressions
depends on the frequency (or scale) parameter, FFT algorithms can no longer be
used, resulting in much slower algorithms. It should be emphasized that ω0 and
T only appear through their product ω0T , which is the only degree of freedom of
this representation. Increasing this parameter improves the frequency resolution and
reduces the time resolution.

The representations obtained with the Morlet scalogram and its reassigned version
for the signal taken as example through this chapter are presented on Figure 5.9.
Because the sinusoidal FM requires a small time resolution at low frequencies, the
linear FM component at higher frequencies has a very broad frequency localization.
This illustrates the fact that a proper choice of a TF representation can only be deduced
from a study of the signal structure. The reassigned version, however, remains very
close to the signal model.
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FIGURE 5.9
Scalogram reassignment. This figure is similar to Figure 5.2, but the spectrogram
and its reassigned version have been replaced by the Morlet scalogram and its
reassigned version, computed for exactly the same signal realization. The use of
this kind of representation for the analyzed signal does not seem to be relevant.

5.4 Real case studies

The principles and the algorithms presented in Sections 5.2 and 5.3 can be used
efficiently in real case situations. This section briefly presents two applications chosen
among many possible ones.

The first one deals with nondestructive testing of metallic cables for suspension
bridges. For this, a short wave is emitted by a magnetostrictive transducer, and
propagated through a cable under test. The reflections on the normal and defective
edges are then received by a sensor [1]. The resulting signal is shown on top of
Figure 5.10, whereas reassigned spectrograms in the bottom part give a close look
to the fifth and ninth reflected waves, showing precisely the dispersion of the wave
through the metallic cable.

The second application deals with sensorless control of direct current (DC) motors.
The electrical contacts and disconnections made by the brushes on the commutator
create low-amplitude components in the stator current signal, with frequencies related
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FIGURE 5.10
Mechanical waves propagating through a metallic cable. This figure shows the
signal received by a sensor (top), and the TF analysis of the fifth (left) and ninth
(right) reflections, from which an accurate study of the wave dispersion along
the metallic cable can be done.

to the rotor speed [4]. The IFs of these components can be used to estimate the motor
speed and to avoid the use of a mechanical sensor in a speed control loop. To illustrate
the feasibility of this approach, Figure 5.11 shows the reassigned spectrogram of the
stator current during a motor stopping. This representation clearly shows three signal
components with almost linearly varying frequency. The higher the frequency is, the
higher the chirping rate and therefore the better the estimation of the deceleration,
but also the weaker the signal components.

Finally, a very interesting application in musical signal synthesis can also be
found at:

http://www.cerlsoundgroup.org/Loris

5.5 Conclusions

Reassignment is a process having the goal of building readable TF representations, by
first rubbing out oscillatory interferences, and then squeezing the remaining energy
contributions to refocus them on the signal components. Reassignment is a very
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FIGURE 5.11
Rotor speed estimation from the stator current. This figure shows theTF analysis
(reassigned spectrogram) of the current signal of a DC motor, evidencing AC
components whose instantaneous frequencies are related to the rotor speed.

general principle with efficiency that has been rigorously proved, and that applies to a
wide class of TF distributions, yielding an easy-to-read TF analysis, especially at high
SNR. Efficient algorithms are available, thus allowing its practical use in effective
signal analysis applications.

Beyond TF analysis, useful information on the signal structure can also be extracted
from the reassignment operators, and used in a signal processing application. On
the one hand, it can be applied to chirp detection, because we have shown [10] that
reassignment can be used as the key element of an optimal detector. On the other hand,
it can be used as the background of a TF partitioning algorithm for multicomponent
signals [8, 11].
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