Historia de la Química

HISTORIA DE LA QUÍMICA



Los primeros procesos químicos conocidos fueron realizados por los artesanos de Mesopotamia, Egipto y China. Al principio, los forjadores de esas tierras trabajaban con metales nativos como el oro y el cobre, que a veces se encontraban en la naturaleza en estado puro, pero rápidamente aprendieron a fundir menas (principalmente los óxidos metálicos y los sulfuros) calentándolas con madera o carbón de leña para obtener los metales. El uso progresivo del cobre, bronce y hierro dio origen a los nombres que los arqueólogos han aplicado a las distintas eras. En esas culturas se inició también una tecnología química primitiva, conforme los tintoreros descubrían métodos para fijar los tintes en los distintos tipos de tejidos y los alfareros aprendían a preparar barnices y más tarde a fabricar vidrio.

La mayoría de esos artesanos trabajaban en los monasterios y palacios haciendo artículos de lujo. En los monasterios especialmente, los monjes tenían tiempo para especular sobre el origen de los cambios que veían en el mundo que los rodeaba. Sus teorías se basaban frecuentemente en la magia, pero también elaboraron ideas astronómicas, matemáticas y cosmológicas, que utilizaban en sus intentos de explicar algunos de los cambios que hoy se consideran químicos.

Desde los tiempos de Tales de Mileto, unos 600 años a.C., los filósofos griegos empezaron a hacer especulaciones lógicas sobre el mundo físico, en lugar de confiar en los mitos para explicar los fenómenos. El mismo Tales pensaba que toda la materia procedía del agua, que podía solidificarse en tierra o evaporarse en aire. Sus sucesores ampliaron esta teoría en la idea de que el mundo estaba compuesto por cuatro elementos: tierra, agua, aire y fuego. Según Demócrito, esos elementos estaban compuestos por átomos, partículas diminutas que se movían en el vacío. Otros, especialmente Aristóteles, creían que los elementos formaban un medio continuo de materia y, por tanto, el vacío no podía existir. La idea atómica perdió terreno rápidamente, pero nunca fue completamente olvidada. Cuando fue revisada durante el renacimiento, formó la base de la teoría atómica moderna. Aristóteles fue el más influyente de los filósofos griegos, y sus ideas dominaron la filosofía natural durante casi dos milenios después de su muerte, en el 323 a.C. Creía que la materia poseía cuatro cualidades: calor, frío, humedad y sequedad. Cada uno de los cuatro elementos estaba compuesto por pares de esas cualidades; por ejemplo, el fuego era caliente y seco, el agua fría y húmeda, el aire caliente y húmedo, y la tierra fría y seca. Esos elementos con sus cualidades se combinaban en diferentes proporciones para formar los componentes del planeta terrestre. Puesto que era posible cambiar las cantidades de cada cualidad en un elemento, se podía transformar un elemento en otro; así, se pensaba que era posible cambiar las sustancias materiales formadas por los elementos, por ejemplo, el plomo en oro.

La teoría de Aristóteles fue aceptada por los prácticos artesanos, especialmente en Alejandría, Egipto, que después del 300 a.C. se convirtió en el centro intelectual del mundo antiguo. Ellos pensaban que los metales de la Tierra tendían a ser cada vez más perfectos y a convertirse gradualmente en oro, y creían que podían realizar el mismo proceso más rápidamente en sus talleres, transmutando así de forma artificial los metales comunes en oro. Comenzando el año 100 de la era cristiana, esta idea dominaba la mente de los filósofos y los trabajadores del metal, y se escribió un gran número de tratados sobre el arte de la transmutación que empezaba a conocerse como alquimia. Aunque nadie consiguió hacer oro, en la búsqueda de la perfección de los metales se descubrieron muchos procesos químicos.

Después del declive del Imperio romano, en la Europa occidental empezaron a estudiarse menos los escritos griegos, e incluso fueron bastante abandonados en el Mediterráneo oriental. Sin embargo, en el siglo VI, un grupo de cristianos conocidos como los nestorianos, cuyo idioma era el sirio, expandieron su influencia por Asia Menor. Establecieron una universidad en Edessa, Mesopotamia, y tradujeron al sirio un gran número de escritos filosóficos y médicos griegos para que pudieran ser utilizados por los estudiantes. En los siglos VII y VIII, los conquistadores árabes expandieron la cultura islámica sobre gran parte de Asia Menor, norte de África y España. Los califas de Bagdad se convirtieron en mecenas activos de la ciencia y el saber. La traducción siria de los textos griegos fue traducida de nuevo, esta vez al árabe, y junto con el resto del saber griego volvieron a florecer las ideas y la práctica de la alquimia.

Laboratorio alquimista

Durante los siglos XIII y XIV, la influencia de Aristóteles sobre todas las ramas del pensamiento científico empezó a debilitarse. La observación del comportamiento de la materia arrojó dudas sobre las explicaciones relativamente simples que Aristóteles había proporcionado; estas dudas se expandieron con rapidez después de la invención (en torno al 1450) de la imprenta con tipos móviles. Después del 1500 aparecieron cada vez más trabajos académicos, así como trabajos dedicados a la tecnología. El resultado de este saber creciente se hizo más visible en el siglo XVI.

En la primera mitad del siglo XVII se empezaron a estudiar experimentalmente las reacciones químicas, no porque fueran útiles en otras disciplinas, sino más bien por razones propias. Jan Baptista van Helmont, médico que dejó la práctica de la medicina para dedicarse al estudio de la química, utilizó la balanza en un experimento para demostrar que una cantidad definida de arena podía ser fundida con un exceso de álcali formando vidrio soluble, y cuando este producto era tratado con ácido, regeneraba la cantidad original de arena (sílice). Ésos fueron los fundamentos de la ley de conservación de la masa. Van Helmont demostró también que en ciertas reacciones se liberaba un fluido aéreo. A esta sustancia la llamó gas. Así se demostró que existía un nuevo tipo de sustancias con propiedades físicas particulares.

En el siglo XVI, los experimentos descubrieron cómo crear un vacío, algo que Aristóteles había declarado imposible. Esto atrajo la atención sobre la antigua teoría de Demócrito, que había supuesto que los átomos se movían en un vacío. El filósofo y matemático francés René Descartes y sus seguidores desarrollaron una visión mecánica de la materia en la que el tamaño, la forma y el movimiento de las partículas diminutas explicaban todos los fenómenos observados. La mayoría de los iatroquímicos y filósofos naturales de la época suponían que los gases no tenían propiedades químicas, de aquí que su atención se centrara en su comportamiento físico. Comenzó a desarrollarse una teoría cinético-molecular de los gases. En esta dirección fueron notables los experimentos del químico físico británico Robert Boyle, cuyos estudios sobre el ‘muelle de aire’ (elasticidad) condujeron a lo que se conoce como ley de Boyle, una generalización de la relación inversa entre la presión y el volumen de los gases.

Mientras muchos filósofos naturales especulaban sobre las leyes matemáticas, los primeros químicos intentaban utilizar en el laboratorio las teorías químicas para explicar las reacciones reales que observaban. Los iatroquímicos ponían especial atención en el azufre y en las teorías de Paracelso. En la segunda mitad del siglo XVII, el médico, economista y químico alemán Johann Joachim Becher construyó un sistema químico en torno a su principio. Becher anotó que cuando la materia orgánica ardía, parecía que un material volátil salía de la sustancia. Su discípulo Georg Ernst Stahl, hizo de éste el punto central de una teoría que sobrevivió en los círculos químicos durante casi un siglo. Stahl supuso que cuando algo ardía, su parte combustible era expulsada al aire. A esta parte la llamó flogisto, de la palabra griega flogistós, ‘inflamable’. La oxidación de los metales era análoga a la combustión y, por tanto, suponía pérdida de flogisto. Las plantas absorbían el flogisto del aire, por lo que eran ricas en él. Al calentar las escorias (u óxidos) de los metales con carbón de leña, se les restituía el flogisto. Así dedujo que la escoria era un elemento y el metal un compuesto. Esta teoría es casi exactamente la contraria al concepto moderno de oxidación-reducción, pero implica la transformación cíclica de una sustancia (aunque fuera en sentido inverso), y podía explicar algunos de los fenómenos observados. Sin embargo, recientes estudios de la literatura química de la época muestran que la explicación del flogisto no tuvo mucha influencia entre los químicos hasta que fue recuperada por el químico Antoine Laurent de Lavoisier, en el último cuarto del siglo XVIII.

En esa época, otra observación hizo avanzar la comprensión de la química. Al estudiarse cada vez más productos químicos, los químicos observaron que ciertas sustancias combinaban más fácilmente o tenían más afinidad por un determinado producto químico que otras. Se prepararon tablas que mostraban las afinidades relativas al mezclar diferentes productos. El uso de estas tablas hizo posible predecir muchas reacciones químicas antes de experimentarlas en el laboratorio. Todos esos avances condujeron en el siglo XVIII al descubrimiento de nuevos metales y sus compuestos y reacciones. Comenzaron a desarrollarse métodos analíticos cualitativos y cuantitativos, dando origen a la química analítica. Sin embargo, mientras existiera la creencia de que los gases sólo desempeñaban un papel físico, no podía reconocerse todo el alcance de la química. El estudio químico de los gases, generalmente llamados ‘aires’, empezó a adquirir importancia después de que el fisiólogo británico Stephen Hales desarrollara la cubeta o cuba neumática para recoger y medir el volumen de los gases liberados en un sistema cerrado; los gases eran recogidos sobre el agua tras ser emitidos al calentar diversos sólidos. La cuba neumática se convirtió en un mecanismo valioso para recoger y estudiar gases no contaminados por el aire ordinario. El estudio de los gases avanzó rápidamente y se alcanzó un nuevo nivel de comprensión de los distintos gases. En esa época, otra observación hizo avanzar la comprensión de la química. Al estudiarse cada vez más productos químicos, los químicos observaron que ciertas sustancias combinaban más fácilmente o tenían más afinidad por un determinado producto químico que otras. Se prepararon tablas que mostraban las afinidades relativas al mezclar diferentes productos. El uso de estas tablas hizo posible predecir muchas reacciones químicas antes de experimentarlas en el laboratorio.

Antoine Laurent de Lavoisier

La interpretación inicial del papel de los gases en la química se produjo en Edimburgo (Escocia) en 1756, cuando Joseph Black publicó sus estudios sobre las reacciones de los carbonatos de magnesio y de calcio. Al calentarlos, estos compuestos desprendían un gas y dejaban un residuo de lo que Black llamaba magnesia calcinada o cal (los óxidos). Esta última reaccionaba con el ‘álcali’ (carbonato de sodio) regenerando las sales originales. Así, el gas dióxido de carbono, que Black denominaba aire fijo, tomaba parte en las reacciones químicas (estaba “fijo”, según sus palabras). La idea de que un gas no podía entrar en una reacción química fue desechada, y pronto empezaron a reconocerse nuevos gases como sustancias distintas. En la década siguiente, el físico británico Henry Cavendish aisló el ‘aire inflamable’ (hidrógeno). También introdujo el uso del mercurio en lugar del agua como el líquido sobre el que se recogían los gases, posibilitando la recogida de los gases solubles en agua. Esta variante fue utilizada con frecuencia por el químico y teólogo británico Joseph Priestley, quien recogió y estudió casi una docena de gases nuevos. El descubrimiento más importante de Priestley fue el oxígeno; pronto se dio cuenta de que este gas era el componente del aire ordinario responsable de la combustión, y que hacía posible la respiración animal. Sin embargo, su razonamiento fue que las sustancias combustibles ardían enérgicamente y los metales formaban escorias con más facilidad en este gas porque el gas no contenía flogisto. Por tanto, el gas aceptaba el flogisto presente en el combustible o el metal más fácilmente que el aire ordinario que ya contenía parte de flogisto. A este nuevo gas lo llamó ‘aire deflogistizado’ y defendió su teoría hasta el final de sus días.

Lavoisier demostró con una serie de experimentos brillantes que el aire contiene un 20% de oxígeno y que la combustión es debida a la combinación de una sustancia combustible con oxígeno. Al quemar carbono se produce aire fijo (dióxido de carbono). Por tanto, el flogisto no existe. La teoría del flogisto fue sustituida rápidamente por la visión de que el oxígeno del aire combina con los elementos componentes de la sustancia combustible formando los óxidos de dichos elementos. Lavoisier utilizó la balanza de laboratorio para darle apoyo cuantitativo a su trabajo. Definió los elementos como sustancias que no pueden ser descompuestas por medios químicos, preparando el camino para la aceptación de la ley de conservación de la masa. Sustituyó el sistema antiguo de nombres químicos (basado en el uso alquímico) por la nomenclatura química racional utilizada hoy, y ayudó a fundar el primer periódico químico. Después de morir en la guillotina en 1794, sus colegas continuaron su trabajo estableciendo la química moderna. Un poco más tarde, el químico sueco Jöns Jakob Berzelius propuso representar los símbolos de los átomos de los elementos por la letra o par de letras iniciales de sus nombres.

A principios del siglo XIX, la precisión de la química analítica había mejorado tanto que los químicos podían demostrar que los compuestos simples con los que trabajaban contenían cantidades fijas e invariables de sus elementos constituyentes. Sin embargo, en ciertos casos, con los mismos elementos podía formarse más de un compuesto. Por esa época, el químico y físico francés Joseph Gay-Lussac demostró que los volúmenes de los gases reaccionantes están siempre en la relación de números enteros sencillos, es decir, la ley de las proporciones múltiples (que implica la interacción de partículas discontinuas o átomos). Un paso importante en la explicación de estos hechos fue, en 1803, la teoría atómica química del científico inglés John Dalton. Dalton supuso que cuando se mezclaban dos elementos, el compuesto resultante contenía un átomo de cada uno. En su sistema, el agua podría tener una fórmula correspondiente a HO. Dalton asignó arbitrariamente al hidrógeno la masa atómica 1 y luego calculó la masa atómica relativa del oxígeno. Aplicando este principio a otros compuestos, calculó las masas atómicas de los elementos conocidos hasta entonces. Su teoría contenía muchos errores, pero la idea era correcta y se podía asignar un valor cuantitativo preciso a la masa de cada átomo.

John Dalton

La teoría de Dalton no explicaba por completo la ley de las proporciones múltiples y no distinguía entre átomos y moléculas. Así, no podía distinguir entre las posibles fórmulas del agua HO y H2O2, ni podía explicar por qué la densidad del vapor de agua, suponiendo que su fórmula fuera HO, era menor que la del oxígeno, suponiendo que su fórmula fuera O. El físico italiano Amedeo Avogadro encontró la solución a esos problemas en 1811. Sugirió que a una temperatura y presión dadas, el número de partículas en volúmenes iguales de gases era el mismo, e introdujo también la distinción entre átomos y moléculas. Cuando el oxígeno se combinaba con hidrógeno, un átomo doble de oxígeno (molécula en nuestros términos) se dividía, y luego cada átomo de oxígeno se combinaba con dos átomos de hidrógeno, dando la fórmula molecular de H2O para el agua y O2 y H2 para las moléculas de oxígeno e hidrógeno, respectivamente. Las ideas de Avogadro fueron ignoradas durante casi 50 años, tiempo en el que prevaleció una gran confusión en los cálculos de los químicos. En 1860 el químico italiano Stanislao Cannizzaro volvió a introducir la hipótesis de Avogadro. Por esta época, a los químicos les parecía más conveniente elegir la masa atómica del oxígeno, 16, como valor de referencia con el que relacionar las masas atómicas de los demás elementos, en lugar del valor 1 del hidrógeno, como había hecho Dalton. La masa molecular del oxígeno, 32, se usaba internacionalmente y se llamaba masa molecular del oxígeno expresada en gramos, o simplemente 1 mol de oxígeno. Los cálculos químicos se normalizaron y empezaron a escribirse fórmulas fijas. El antiguo problema de la naturaleza de la afinidad química permanecía sin resolver. Durante un tiempo pareció que la respuesta podría estar en el campo de la electroquímica, descubierto recientemente. El descubrimiento en 1800 de la pila voltaica, la primera pila eléctrica real, proporcionó a los químicos una nueva herramienta que llevó al descubrimiento de metales como el sodio y el potasio. Berzelius opinaba que las fuerzas electrostáticas positivas y negativas podían mantener unidos a los elementos, y al principio sus teorías fueron aceptadas. Cuando los químicos empezaron a preparar y estudiar nuevos compuestos y reacciones en las que las fuerzas eléctricas parecían no estar implicadas (compuestos no polares), el problema de la afinidad fue postergado por un tiempo. 1
Hosted by www.Geocities.ws