Additional Practice

Investigation 1

Samples and Populations

Another peanut butter survey was conducted more recently than the survey you studied in Investigation 1. The data for natural and regular brands are presented in the table.

Brand	Quality Rating	Sodium per Serving (mg)	Price per Serving	Regular/ Natural	Creamy/ Chunky	Name Brand/ Store Brand
Arrowhead Mills	85	0	36	natural	creamy	name
Laura Scudder's (Southeast)	79	165	25	natural	creamy	name
Adams (West)	73	173	23	natural	creamy	name
Smucker's	73	180	26	natural	creamy	name
Nature's Cupboard (Safeway)	68	240	26	natural	creamy	store
Laura Scudder's Nutty (Southeast)	84	165	26	natural	chunky	name
Arrowhead Mills	83	0	37	natural	chunky	name
Smucker's	79	180	26	natural	chunky	name
Adams (West)	75	135	23	natural	chunky	name
Nature's Cupboard (Safeway)	72	195	26	natural	chunky	store
Jif	85	225	19	regular	creamy	name
Simply Jif	85	98	19	regular	creamy	name
Peter Pan	82	225	17	regular	creamy	name
Skippy	82	225	18	regular	creamy	name
Kroger	79	195	15	regular	creamy	store
Skippy Roasted Honey Nut	79	180	19	regular	creamy	name
America's Choice	77	225	17	regular	creamy	store
Reese's	68	173	19	regular	creamy	name
Townhouse (Safeway)	68	240	18	regular	creamy	store
Peter Pan Very Low Sodium	57	15	18	regular	creamy	name
Peter Pan Whipped	49	173	17	regular	creamy	name
Jif Extra Crunchy	88	195	19	regular	chunky	name
Skippy Super Chunk	87	210	19	regular	chunky	name
Peter Pan Extra Crunchy	86	180	17	regular	chunky	name
Reese's	86	120	19	regular	chunky	name
Skippy Roasted Honey Nut	86	180	19	regular	chunky	name
Kroger	84	195	15	regular	chunky	store
Simply Jif Extra Crunchy	83	75	19	regular	chunky	name
America's Choice Krunchy	80	188	17	regular	chunky	store
Townhouse (Safeway)	72	195	18	regular	chunky	store

Peanut Butter Comparisons

Source: "Peanut Butter: It's Not Just for Kids Anymore." Consumer Reports (September 1995): pp. 576-579.

Name	Date	Class
Additional Practice (continued)		Investigation 1
	• • • • • • • • • • • • • • • • • • • •	Samples and Populations
	. 1 1	1 1

1. The box plots below show the quality ratings of natural versus regular brands, creamy versus chunky brands, and name brands versus store brands. Based on these box plots, what characteristics would you look for if you wanted to choose a peanut butter based on quality rating? Explain your reasoning.

2. Make box plots to compare the peanut butters based on price. Mark any outliers with an asterisk (*). Which characteristic(s) help identify low-price peanut butters? Explain your reasoning.

Name	Date	Class
Additional Practice (continued)		Investigation 1
		Samples and Populations

Ms. Humphrey asked each of the 21 students in her class to choose a number between 1 and 50. Ms. Humphrey recorded the data and made this box plot:

- **3.** What is the median number that was chosen?
- **4.** What percent of students in Ms. Humphrey's class chose numbers above 15? Explain your reasoning.
- 5. About how many students chose numbers between 30 and 40? Explain.
- 6. What were the least and the greatest numbers chosen?
- **7.** Is it possible to determine from the box plot whether one of the students chose the number 27? Explain.

8. Is it possible to determine from the box plot whether one of the students chose the number 4? Explain.

Name	Date	Class
Additional Practice (continued)		Investigation 1
	•••••	Samples and Populations
For Exercises 9–12, refer to the table on the next page.		
9. Finish computing the values for the fifth column.		

10. What does it mean when the ratio of wingspan to body length is 1? Greater than 1? Less than 1?

 Compute the five-number summary for jet planes and the five-number summary for propeller planes of the ratio of wingspan to body length. Explain what the medians tell you about the relationship between wingspan and body length for jet planes and for propeller planes.

12. Make box plots from your five-number summaries. Explain what your plots reveal about how jet planes and propeller planes compare based on ratio of wingspan to body length.

Additional Practice (continued)

Investigation 1

Samples and Populations

Airp	lane	Data
------	------	------

	•			
Plane	Engine Type	Body Length (m)	Wingspan (m)	Wingspan-to- Length Ratio
Boeing 707	jet	46.6	44.4	0.953
Boeing 747	jet	70.7	59.6	0.843
Ilyushin IL-86	jet	59.5	48.1	
McDonnell Douglas DC-8	jet	57.1	45.2	
Antonov An-124	jet	69.1	73.3	
British Aerospace 146	jet	28.6	26.3	
Lockheed C-5 Galaxy	jet	75.5	67.9	
Antonov An-225	jet	84.0	88.4	
Airbus A300	jet	54.1	44.9	
Airbus A310	jet	46.0	43.9	
Airbus A320	jet	37.5	33.9	
Boeing 737	jet	33.4	28.9	
Boeing 757	jet	47.3	38.1	
Boeing 767	jet	48.5	47.6	
Lockheed Tristar L-1011	jet	54.2	47.3	
McDonnell Douglas DC-10	jet	55.5	50.4	
Aero/Boeing Spacelines Guppy	propeller	43.8	47.6	
Douglas DC-4 C-54 Skymaster	propeller	28.6	35.8	
Douglas DC-6	propeller	32.2	35.8	
Lockheed L-188 Electra	propeller	31.8	30.2	
Vickers Viscount	propeller	26.1	28.6	
Antonov An-12	propeller	33.1	38.0	
de Havilland DHC Dash-7	propeller	24.5	28.4	
Lockheed C-130 Hercules/L-100	propeller	34.4	40.4	
British Aerospace 748/ATP	propeller	26.0	30.6	
Convair 240	propeller	24.1	32.1	
Curtiss C-46 Commando	propeller	23.3	32.9	
Douglas DC-3	propeller	19.7	29.0	
Grumman Gulfstream I/I-C	propeller	19.4	23.9	
Ilyushin IL-14	propeller	22.3	31.7	
Martin 4-0-4	propeller	22.8	28.4	
Saab 340	propeller	19.7	21.4	

Source: William Berk and Frank Berk. Airport Airplanes. Plymouth, Mich.: Plymouth Press, 1993.

2. Make a histogram for the time it takes the group of students in Exercise 1 to walk to school.

3. Make a histogram for the data. Use the intervals in the table.

Skill: Histograms

1. Would the data below be better displayed on a histogram with 3-minute intervals or 5-minute intervals? Explain.

Time to Walk to School															
Time (min.)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Tally					III		Ι				Ι	Ι			Ι

Hours Spent Doing Homework							
Number of Hours	Frequency						
1 – 1.75	1						
2 - 2.75	1						
3 - 3.75	2						
4 - 4.75	6						
5 - 5.75	8						
6 - 6.75	3						
7 – 7.75	2						
8 - 8.75	1						

.....

Samples and Populations

.....

Skill: Box-and-Whisker Plots

Use the box-and-whisker plot to find each value.

_____ Date _____ Class _

- **1.** the median height
- **2.** the lower quartile
- **3.** the upper quartile
- **4.** the greatest height

5. the shortest height

6. the range of heights

Investigation **1**

Samples and Populations

Name ____

8.

Skill: Box-and-Whisker Plots (continued)

Samples and Populations

Cargo Airlines in the U.S. (1991)									
Airline	Freight ton-miles (1,000,000s)								
Federal Express	3,622								
Northwest	1,684								
United	1,214								
American	884								
Delta	668								
Continental	564								
Pan American	377								
Trans World	369								
United Parcel Service	210								

Immigration to the U.S. (1981–1990)					
Country	Number (1,000s)				
Mexico	1,656				
Philippines	549				
China	347				
Korea	334				
Vietnam	281				
Dominican Republic	252				
India	251				
El Salvador	214				
Jamaica	208				
United Kingdom	159				

Make a box-and-whisker plot for each set of data.

Use box-and-whisker plots to compare data sets. Use a single number line for each comparison.

9. 1st set:	7 12 25 3 1 29 30 7 15 2 5	<+	+		+	+		+	+	+	+	
	10 29 1 10 30 18 8 7 29	0	5	10	15	20	25	30	35	40	45	50
2nd set:	37 17 14 43 27 19 32 1 8 48	1 st Set										
	26 16 28 6 25 18	2 nd Set										

Class

Additional Practice

Investigation 2

Samples and Populations

Aaron wants to learn about how much time students at his school spend playing sports. He asks all the boys on the basketball team and all the girls on the volleyball team to estimate how many hours per week they spend playing sports.

- **1.** Is Aaron's sample a voluntary-response sample, a systematic sample, or a convenience sample? Explain your reasoning.
- **2.** Suppose Aaron asked all the students in his mathematics class to estimate how many hours per week they spend playing sports.
 - **a.** Would this be a voluntary-response sample, a systematic sample, or a convenience sample? Explain your reasoning.
 - **b.** Would you expect the median number of hours spent playing sports for students in Aaron's mathematics class to be higher or lower than his sample from the basketball and volleyball teams? Explain your reasoning.
- © Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.
- **3.** There are 1,232 students enrolled at Aaron's school. The principal's office has an alphabetical list of all the students' names. Suppose Aaron asked every 20th student on the list to estimate the number of hours he or she spends playing sports each week. Would this be a voluntary-response sample, a systematic sample, or a convenience sample? Explain.
- **4.** Aaron placed an ad in the school newspaper with a form for students to complete and return. The form asked how much time the students spent playing sports each week. Aaron received 53 responses. Is this a voluntary-response sample, a systematic sample, or a convenience sample? Explain.

Nan	ne	Date	Class
Ad	ditional Practice (continued)		Investigation 2
••••			Samples and Populations
For at N 41 p	Exercises 5–7, use this information: Marci Ietropolis Middle School. Of the 92 busine purchased advertising space in the yearboo	i works on the yearbook s esses in the downtown are ok last year.	staff ea,
5. S tl 1	Suppose Marci wants to investigate why bu he yearbook last year. Describe a sampling 0 businesses.	isinesses did not advertise g strategy she could use to	in o call

6. Suppose Marci wants to investigate how satisfied advertisers are with yearbook ads. Describe a sampling strategy she could use to call 10 businesses.

7. Suppose Marci wants to investigate how likely a typical downtown business is to advertise in the upcoming yearbook. Describe a sampling strategy she could use to call 10 businesses.

- 8. The principal of a nearby school, Megalopolis Middle School, decided to conduct a survey of the 1,107 enrolled students. She asked three teachers how many students they thought should be surveyed. One teacher said to survey 200 girls and 100 boys, the second said to randomly select and survey 50 students, and the third said to survey the first 100 students to enter the building one morning next week.
 - **a.** Explain which of the three samples will produce data that may best represent all the students at Megalopolis.
 - **b.** Explain why you feel that the other two samples would not be as representative of all the students as the one you chose in part a.

Name	Date	Class
Additional Practice (continued)		Investigation 2
		Samples and Populations
In a survey of the cafeteria food at a middle scho	ol, 50 students were	asked to
rating and 10 being the highest rating. The box p	lot below was made f	from the
collected data.		

Cafeteria Food Survey

- 9. What is the range of students' ratings in the sample?
- **10.** What percent of the students in the sample rated the cafeteria food between 5.75 and 9?
- **11.** Based on the sample data, how many of the 1,000 students at the school do you estimate would rate the cafeteria food 6 or higher? Explain your reasoning.
- **12.** A rating of 8 to 10 indicates "highly satisfied" on the rating scale.
 - **a.** What percent of students in the sample are "highly satisfied" with the cafeteria food?
 - **b.** Estimate how many students at the middle school would give the cafeteria food a "highly satisfied" rating.

Skill: Random Samples	Investigation 2
	Samples and Populations
You want to survey students in your school about their exercise habits. Tell whether Exercises 1–2 are likely to give a random sample of the population Explain.	1.
 You select every tenth student on an alphabetical list of the students in y school. You survey the selected students in their first-period classes. 	our
 At lunchtime you stand by a vending machine. You survey every student buys something from the vending machine. 	who

In a mall, 2,146 shoppers (age 16 and older) were asked, "How often do you eat at a restaurant in the mall?" Here is how they responded.

3. What population does the sample represent?

- **5.** What is the sample size?
- 6. Can you tell if the sample is random?

Name _____ Date _____ Class _____

never 45%

regularly

25%

occasionally

30%

Date	Class	

Additional Practice

Name

Investigation 3

- **Samples and Populations**
- **1.** A group of students surveyed several pizza shops in two parts of the United States. They asked about prices and sizes of small, medium, and large cheese pizzas, and they made box plots from the data they collected.
 - **a.** These box plots show the prices for each size pizza, including outliers. Which size appears to be the least expensive? Explain your reasoning.

b. One of the small pizzas had a diameter of 8 inches and a price of \$3.87. Its price per square inch is \$0.077. How was this calculated?

Name		Date	Class
Additional Practi	. Ce (continued)		Investigation 3
			Samples and Populations
c. These box plots sho Which size appears	w the price per square inch to be the best buy? Explain	n of pizza for each s n.	size.
Pizza	Prices per Square Inch	I	
		* small	pizzas
		— medium pizzas	5
*		⊣ ∗ large pizzas	

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 Price per Square Inch (dollars)

d. Consider your responses to parts (a) and (c). Which set of box plots better reflects the actual price of a pizza? Explain.

Name	Date	Class
Additional Practice (continued)		Investigation 3
		Samples and Populations

2. Suppose Jeff and Ted decide to change their advertising slogan to "Seven giant chips in every cookie!" They mix 70 chips into a batch of dough and make 10 cookies from the dough. When they remove the cookies from the oven and inspect them, they count the number of chips in each cookie. Their results are shown below. Notice that only 5 of the 10 cookies contained 7 chips or more.

Chips in a Batch of 10 Cookies

				Co	okie	Num	ber			
	1	2	3	4	5	6	7	8	9	10
	+		_						_	_ +
	X	X	X	X	X	X	X	X	X	X
	X	X	X	X	X	X	X	X	X	X
	X	X	X	X	X	X	X	X	X	X
	X	X	X	X	X	X	X	X	X	X
	X	X		X	X	X	X	X	X	
	X	X		X	X	X	X	X	X	
7 chips	-*-	- -X - ·			- ¥-	- X -			- -X - ·	
		X			X	X			X	
					X	X			X	
					X	X				

a. Conduct a simulation to determine the number of chips needed to be added to a batch of 10 cookies until each cookie has at least 7 chips. Carry out the simulation five times so that you have five data values for the number of chips needed.

b. What is the minimum number of chips Jeff and Ted should use to be confident that each cookie will have at least 7 chips? Support your answer with statistics and graphs.

Name	Date	Class
Additional Practice (cor	tinued)	Investigation 3
		Samples and Populations
3. After testing many samples, an	egg shipper determined that approxim	nately
3 in every 100 cartons of eggs w	ill contain at least one cracked egg. Th	ne
company ships 200,000 cartons	of eggs every month. Estimate how ma	any
cartons of eggs each month will	contain at least one cracked egg.	

4. From a shipment of 500 batteries, a sample of 25 was selected at random and tested. If 2 batteries in the sample were found to be dead, how many dead batteries would be expected in the entire shipment?

Name	Date	Class
Skill: Simulation		Investigation 3

Samples and Populations

A soccer player scores a goal on about 1 out of every 6 shots.

1. Explain how you could use a number cube to simulate the player's scoring average.

2. Use your simulation to find the probability of the player making 4 out of 5 of her next attempts.

188

Additional Practice

. **Samples and Populations**

Use the tables below, which display the results of a study of 47 half-ounce boxes of two brands of raisins.

Vine Hill Raisins

Number in Box	Mass (grams)	Number in Box	Mass (grams)
29	14.78	38	16.3
35	16.59	38	16.85
35	16.01	38	17.33
35	16.55	38	17.57
36	16.99	40	16.2
38	16.34	40	16.78
38	16.3	40	17.35
39	17.83	41	17.43
39	16.66	41	16.64
39	18.36	41	16.62
39	16.93	31	14.7
40	16.25	34	16.04
40	17.92	35	16.81
40	17.12	36	16.86
40	17.37	36	16.75
42	16.95	36	17.18
42	17.45	36	15.77
44	18.48	36	16.28
35	15.64	37	16.25
36	16.88	37	17.42
36	16.36	37	16.25
36	16.3	37	15.63
37	17.25	37	17.74
37	15.61		

Suntime Raisins						
Number in Box	Mass (grams)		Number in Box	Mass (grams)		
25	14.15		31	16.13		
26	16.74		31	16.6		
27	15.42		32	16.6		
27	16.74		33	16.55		
27	15.98		33	17.11		
28	17.43		34	16.88		
28	16.44		34	18.1		
28	16.55		35	17.63		
28	15.55		35	17.32		
28	15.33		26	15.34		
29	16.75		28	14.11		
29	16.19		29	16.94		
29	16.36		29	15.16		
29	17.1		29	15.75		
29	16.58		29	15.65		
30	16.36		30	16.5		
30	16.29		31	15.83		
31	15.9		31	17.17		
29	16.18		32	16.6		
29	15.91		32	16.59		
30	16.66		32	16.38		
31	15.73		33	17.11		
31	16.38		34	17.24		
31	16.92					

Investigation 4

.....

Name	Date	Class
Additional Practice (continued)		Investigation 4

- Samples and Populations
- **1.** The two scatter plots below show the data from the tables. Which scatter plot shows the data for Suntime raisins? Which shows the data for Vine Hill raisins? Explain your reasoning.

- **2.** Is this statement true or false: "Vine Hill raisins typically have more raisins in a box than do Suntime raisins." Explain your reasoning using the two graphs.
- **3.** Is there a relationship between the number of raisins in a box and the mass in grams? Explain.

190

Additional Practice (continued)

Samples and Populations

For Exercises 4–6, use the data below.

Chicken Sandwiches From Restaurant Chains

Size (oz)	Calories	Fat (g)	Carbohydrates (g)
8	360	7	44
10	370	8	53
8	380	4	57
9	400	5	57
8	400	16	37
8	470	20	51
8	470	20	46
10	500	24	52
8	510	19	57
10	540	30	42
9	550	23	55
10	550	30	46
10	570	25	48
12	580	19	58
11	640	29	61
13	660	29	56
12	720	30	65
13	740	30	78
12	910	40	86
15	950	56	76

4. a. Make a scatterplot for size vs. calories.

Investigation 4

Name	DateClass
Additional Practice (continued)	Investigation 4
	Samples and Populations
b. Describe any relationship you see between calories. Explain your reasoning.	he size of the sandwich and

5. a. Make a scatterplot for size of sandwich vs. fat.

b. What is the relationship between sandwich size and fat content? Explain.

6. a. Make a scatterplot for size vs. carbohydrates.

b. What is the relationship between size of a sandwich and the carbohydrates? Explain.

192

Additional Practice (continued)

7. a. Make a scatterplot of the data below for price vs. weight.

.

Bike Comparisons

Type of Bike	Price	Weight (lb)
Front Suspension Mountain Bike	\$450	29.5
Front Suspension Mountain Bike	\$440	29.5
Front Suspension Mountain Bike	\$440	30.5
Front Suspension Mountain Bike	\$450	31.5
Front Suspension Mountain Bike	\$440	31.0
Front Suspension Mountain Bike	\$500	30.5
Front Suspension Mountain Bike	\$500	31.5
Front Suspension Mountain Bike	\$400	32.0
Comfort Bike	\$300	33.0
Comfort Bike	\$300	32.5
Comfort Bike	\$300	35.5
Comfort Bike	\$300	32.0
Comfort Bike	\$280	31.5
Comfort Bike	\$290	33.0
Comfort Bike	\$285	33.5

- **b.** Is there a strong or weak relationship between the weight of a bike and the price for the bike? Explain your reasoning.
- **c.** If you pay more, are likely to get a heavier or lighter bike?

Г

1993–94 1,862 1,125 1992-93 1,832 1,126

Residents of Maintown

Homeowners

2,050

1,987

1,948

1,897

2. Make a scatter plot for the data. If there is a trend, draw a trend line.

Arm Span vs. Height								
Person #	Height							
1	156	162						
2	157	160						
3	159	162						
4	160	155						
5	161	160						
6	161	162						
7	162	170						
8	165	166						
9	170	170						
10	170	167						
11	173	185						
12	173	176						

Year

1997-98

1996-97

1995-96

1994-95

1. Make a scatter plot showing the number of homeowners on one axis and vacation homeowners on the other axis. If there is a trend, draw a trend line.

Vacation

Homeowners

973

967

1,041

1,043

-					

Investigation 4

Samples and Populations

.

Name	Date	Class
Skill: Scatter Plots (continued)		Investigation 4
	••••••	Samples and Populations

Decide whether the data in each scatter plot follow a linear pattern. If they do, find the equation of a trend line.

