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Abstract. In this paper, we present related-key slide attacks on 2-key
and 3-key triple DES, and related-key differential and slide attacks on
two variants of DESX. First, we show that 2-key and 3-key triple-DES are
susceptible to related-key slide attacks. The only previously known such
attacks are related-key differential attacks on 3-key triple-DES. Second,
we present a related-key differential attack on DESX+, a variant of the
DESX with its pre- and post-whitening XOR operations replaced with
addition modulo 264. Our attack shows a counter-intuitive result, that
DESX+ is weaker than DESX against a related-key attack. Third, we
present the first known attacks on DES-EXE, another variant of DESX
where the XOR operations and DES encryptions are interchanged. Fur-
ther, our attacks show that DES-EXE is also weaker than DESX against
a related-key attack. This work suggests that extreme care has to be
taken when proposing variants of popular block ciphers, that it is not
always newer variants that are more resistant to attacks.

1 Introduction

Due to the DES’ small key size of 56 bits, variants of the DES under multiple
encryption have been considered, including double-DES under one or two 56-bit
key(s), and triple-DES under two or three 56-bit keys. Another variant based on
the DES is the DESX [9].

In this paper, we consider the security of 2-key and 3-key triple-DES against
related-key slide attacks, and the security of DESX variants against both related-
key slide and related-key differential attacks. We point out that our results on
the DESX variants do not invalidate the security proofs of [9, 10], but serve to
illustrate the limitations of their model. In particular, we argue that one should
also consider a more flexible model that incorporates related-key queries [1, 7,
8].

1.1 Our model

Related-key attacks are those where the cryptanalyst is able to obtain the en-
cryptions of certain plaintexts under both the unknown secret key, K, as well
as an unknown related key, K ′ whose relationship to K is known, or can even
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be chosen [1, 7, 8]. Most researchers consider related-key attacks as strictly the-
oretical and which involves a strong and restricted attack model. However, as
has been demonstrated by several researchers such as [7, 8], some of the current
real-world cryptographic implementations may allow for practical related-key
attacks. Examples of such instances include key-exchange protocols and hash
functions, details of which we refer the reader to [7, 8].

1.2 Outline of the paper

We briefly recall previous attacks on variants of triple-DES and DESX in Section
2. In Section 3, we present our related-key slide attacks on 2-key and 3-key
triple-DES. We then present in Section 4 related-key attacks on DESX+ [9],
a variant of DESX that replaces the pre- and post-whitening XOR operations
with additions modulo 264; and DES-EXE [6], a DESX variant with its outer
XOR operations interchanged with the inner DES encryption. We show that
these variants are weaker than the original DESX against related-key attacks.
We conclude in Section 5.

2 Previous Work

We review in this section, previous attacks on variants of triple-DES and of
DESX.

Two-key triple-DES can be broken with a meet-in-the-middle (MITM) attack
requiring 256 chosen-plaintexts (CPs), 256 memory and 256 single DES encryp-
tions [12]. There is also an attack by van Oorschot and Wiener [13] that requires
m known-plaintexts (KPs), m words of memory and approximately 2120−log2 m

single DES encryptions. For m = 256, the number of encryptions is roughly 2114.
Meanwhile, the most basic attack on three-key triple-DES is the MITM at-

tack which requires 3 chosen plaintexts, 256 memory and 2112 single DES en-
cryptions. In [11], Lucks proposed an attack that requires 232 known plaintexts,
288 memory and roughly 2106 single DES encryptions. There is also a related-key
differential attack by Kelsey et. al [7] that works with one known plaintext, one
related-key chosen ciphertext (RK-CC), and 256 single DES encryptions. 1

As for DESX, Daemen proposed an attack [5] requiring 232 chosen plaintexts
and 288 single DES encryptions, or 2 known plaintexts and 2120 single DES
encryptions. Meanwhile, another attack by Kilian and Rogaway [9, 10] requires
m known plaintexts and 2118−log2 m single DES encryptions. For m = 232, the
number of encryptions is roughly 2113. By making use of related-key queries,
Kelsey et. al [8] demonstrated an attack that requires 26 related-key known
plaintexts (RK-KPs) and 2120 single DES encryptions. Recently, Biryukov and
1 As pointed out by an anonymous referee, our estimates are independent of the mem-

ory access time in contrast to the approach taken in [14], and hence we assume no
difference between memory with slow access and memory with intensive access. Such
a general approach has been adopted in this paper to maintain uniformity with other
previous results.
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Wagner [4] presented a more efficient attack requiring 232.5 known plaintexts,
232.5 memory and 287.5 single DES encryptions.

3 Related-Key Slide Attacks on Triple-DES

3.1 Attacking 3-key Triple-DES

We first consider the three-key triple-DES, which was attacked by a related-
key differential attack in [7]. We denote such an encryption of P under key
K = (K1,K2,K3) by:

C = EK3(E
−1
K2

(EK1(P ))). (1)

If we also obtain the three-key triple-DES decryption of another plaintext,
P ′ = EK1(P ) under a related key K ′ = (K1,K3,K2), we will get the situation
as shown in Fig. 1.

C ′- E−1
K2

- EK3
- E−1

K1
-P
′

-P EK1
- E−1

K2
- EK3

-C

Fig.1. Sliding-with-a-twist on 3-key triple-DES of the form EK1E
−1
K2

EK3

We have in essence aligned the encryption, EK1 o E−1
K2

o EK3 under key K,
with the decryption, E−1

K2
o EK3 o E−1

K1
under key K ′ in a sliding with a twist [4]

style. The plaintexts, P and P ′, and the ciphertexts, C and C ′ are hence related
by the following slid equations:

C ′ = EK1(P ) (2)

P ′ = E−1
K1

(C) (3)

Our related-key slide attack works as follows:
1. Obtain 232 known plaintexts, P encrypted with three-key triple-DES under
the key, K = (K1,K2,K3)
2. Obtain another 232 known ciphertexts, C ′ decrypted with three-key triple-
DES under the key, K ′ = (K1, K3,K2). Store the values of (C ′, P ′) in a table,
T1. By the birthday paradox, we would expect one slid pair (P,C) and (P ′, C ′)
such that the slid equations (2) and (3) are satisfied.
3. Guess all 256 values of K1 and do:
(i) Partially encrypt all 232P under the key, K1.
(ii) Search through T1 for a collision of the 1st element with the result of (i).
Such a collision satisfies the slid equation in (2).
(iii) For such a collision, partially decrypt C under K1 and check for a collision
of this result with the 2nd element of T1. The latter collision satisfies the slid
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equation in (3).

The first step requires 232 known plaintexts while Step 2 requires 232 related-
key known ciphertexts and 232 × 2 = 233 words of memory. Step 3 requires
256 × 232 = 288 single DES encryptions, and no memory. To summarize, we
have an attack on three-key triple-DES that requires 232 known plaintexts, 232

related-key known ciphertexts (RK-KCs), 233 words of memory and 288 single
DES encryptions.

We note that a similar attack also applies to the case of three-key triple-DES
of the form:

C = EK3(EK2(EK1(P ))). (4)

In this case, instead of sliding an encryption with a decryption, we slide
two encryptions, one under the key K = (K1,K2,K3) and the other under
K ′ = (K2,K3,K1), and obtain the situation as shown in Fig. 2.

P ′- EK2
- EK3

- EK1
-C
′

-P EK1
- EK2

- EK3
-C

Fig.2. Sliding 3-key triple-DES of the form EK1EK2EK3

3.2 Attacking 2-key Triple-DES

Two-key triple-DES is also vulnerable to a related-key slide attack. We slide
an encryption under the key K = (K1,K2), with a decryption under the key
K = (K2,K1). We then have the situation in Fig. 3.

C ′- E−1
K2

- EK1
- E−1

K2
-P
′

-P EK1
- E−1

K2
- EK1

-C

Fig.3. Sliding-with-a-twist on 2-key triple-DES of the form EK1E
−1
K2

EK1

We thus obtain the slid equations:

C ′ = EK1(P ) (5)

P ′ = E−1
K2

(C) (6)

The attack follows:
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1. Obtain 232 known plaintexts, P encrypted with two-key triple-DES under the
key, K = (K1,K2).
2. Obtain another 232 known ciphertexts, C ′ decrypted with two-key triple-DES
under the key, K ′ = (K2,K1). Store the values of (C ′, P ′) in a table, T1. By the
birthday paradox, we would expect one slid pair (P, C) and (P ′, C ′) such that
the slid equations (5) and (6) are satisfied.
3. Guess all 256 values of K1 and do:
(i) Partially encrypt all 232P under the key, K1.
(ii) Store (EK1(P ), C, K1) in another table, T2.
4. Search through T1 and T2 for collisions in the first element, which immediately
reveals the corresponding key, K1. With 256 × 232 = 288 entries in T2, and a
probability of 2−64 for a collision to occur, we expect 288 × 2−64 = 224 values
of K1 to be suggested, and 224 (EK1(P ), C, K1) entries in T2 to survive this
filtering.
5. For all 224 remaining values of K1, guess all 256 values of K2 and do:
(i) Partially decrypt EK1(P ) under the guessed key, K2.
(ii) Further encrypt the result under K1, and verify if the result is equal to C.
The correct K = (K1,K2) should satisfy this due to (5). Repeat with another
plaintext-ciphertext pair if necessary.

The first step requires 232 known plaintexts while Step 2 requires 232 related-
key known ciphertexts. Step 3 requires 256 × 232 = 288 single DES encryptions,
and 288 × 3 ≈ 289.5 words of memory. Step 4 is negligible while Step 5 requires
224 × 256 × 2 = 281 single DES encryptions, and no memory. To summarize,
we have an attack on two-key triple-DES that requires 232 known plaintexts,
232 related-key known ciphertexts, 289.5 words of memory and 288 single DES
encryptions.

4 Related-Key Attacks on DESX Variants

DESX encryption is denoted by:

C = Kb ⊕ EK(P ⊕Ka). (7)

In this section, we will present related-key attacks on two DESX variants, namely
the DESX+ [9] and the DES-EXE [6].

4.1 An Attack on DESX+

It was suggested in [9] to replace the XOR pre- and post-whitening steps in DESX
by addition modulo 264, to obtain the DESX variant which we call DESX+,
denoted by:

C = Kb + EK(P + Ka) (8)
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where + denotes addition modulo 264. We show here that this variant can be at-
tacked by a related-key attack. The key observation is that if we obtain the
DESX+ encryption of P under key, K = (Ka,K, Kb), and also obtain the
DESX+ encryption of P under key K ′ = (Ka,K, K ′

b) = (Ka,K, Kb⊕4), where
Kb ⊕ K ′

b = 4 is any arbitrary known difference, then the two encryptions are
related pictorially as in Fig. 4.

- +K′
b

-EK
-P +Ka

- C ′
-P +Ka

- EK
- +Kb

-C

Fig.4. Related-key differential attack on DESX+

Here, +Ka denotes addition modulo 264 with Ka. Notice that we started
off with the same plaintext, P , and the similarity between the two encryptions
remains until just before +Kb

.
Based on this observation, our related-key differential attack is given by:
1. Obtain the DESX+ encryption of P under key, K = (Ka,K, Kb), and denote
that as C.
2. Obtain the DESX+ encryption of P under key K ′ = (Ka, K,K ′

b) = (Ka,K, Kb⊕
4), and denote that as C ′.
3. Guess all 264 values of Kb, and do:
(i) Compute X = C −Kb.
(ii) Compute X ′ = C ′ −K ′

b.
(iii) If X = X ′, then the guessed Kb could be the right key value. The right
key value would always satisfy this condition, whereas a wrong key value would
satisfy this only with some probability, hence the number of possible values of
Kb is reduced. Wrong key values can be easily checked against a trial encryption
in the second analysis phase.

We have implemented this attack on a scaled-down generalization of DESX+,
which we call FX32+, whose ciphertext, C is defined as:

C = Kb + FK(P + Ka) (9)

Here, F denotes a random function, and P, C, Ka,Kb, and K are all 32 bits
instead of 64. The execution takes just less than 1 minute on a Pentium 4,
1.8GHz machine with 256MB RAM, running on Windows XP. The correct Kb

value is always suggested, while the number of wrong key values suggested ranges
from O(1) to O(231), depending on the hamming weight of the key difference,
4. The higher the hamming weight, the more efficient the filtering of wrong
key values. An anonymous referee remarked that as the only difference between
XOR and modulo addition lies in the carries, and that if the addition with Kb

generates no carries, the attack on DESX+ would not work since in that case
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modulo addition would be the same as XOR. This possible complication can be
overcome by using a 4 with a large hamming weight, or by repeating the attack
with different plaintext-ciphertext pairs.

Once Kb is obtained in this way, the remaining keys Ka and K can be
obtained from exhaustive search of 2120 single DES encryptions. But we can do
better than that. We use Kb to peel off the +Kb

operation, and apply a basic
MITM attack on the remaining cipher that requires 256 words of memory and 256

DES encryptions [12]. Alternatively, we could reverse the roles of the plaintexts
and ciphertexts, and repeat our attack to recover Ka in a similar way. What
remains is then a single DES which can be attacked by exhaustive key search of
256 values.

The main bulk of this attack is step 3, requiring 264 × 2 = 265 modulo
subtractions, which is negligible, so most of the work needed lies in the exhaustive
key search of the remaining keys or an MITM attack on the remaining double-
DES.

In summary, we have a related-key differential attack on DESX+ that re-
quires 1 known plaintext, P encrypted under the secret key, K and related key,
K ′, and 2120 single DES encryptions. The work complexity is similar to the at-
tack on DESX in [8], but the text complexity is much less. Alternatively, our
attack could work with the same text complexity but with 256 words of memory
and 256 single DES encryptions. In this case, when memory is available, then
both the text and work complexities are much less than those in [8].

Ironically, the original DESX with XOR for pre- and post-whitening is re-
sistant to this attack. Therefore, this is the first attack for which the original
DESX is stronger than the DESX+. This is counter-intuitive since the common
belief is that the XOR operation is weaker than modulo addition. 2

4.2 Attacks on DES-EXE

In [6], the authors posed the question of whether, DES-EXE, a DES variant of
the form:

C = EKb
(K ⊕ EKa(P ))) (10)

would be stronger or weaker than DESX. Note that the DES-EXE is simply
the DESX with its XOR operations in the pre- and post-whitening stage inter-
changed with the DES encryption in the middle.

Consider a key, K = (Ka,K, Kb), and a related key, K ′ = (Kb,K, Ka). Then,
the encryptions under these two related keys could be slid as shown in Fig. 5.

2 Except in the work by Biham and Shamir [2, 3] that showed how replacing XOR
with addition in certain locations in the DES can significantly weaken the DES.



8 Raphael C.-W. Phan

P ′- EKb
- ⊕

K
- EKa

-C
′

-P EKa
- ⊕

K
- EKb

-C

Fig.5. Sliding DESX-EXE

Therefore, we have the slid equations:

P ′ = EKa(P )⊕K, (11)

E−1
Ka

(C ′) = C ⊕K. (12)

XORing (10) and (11), we obtain:

P ′ ⊕ E−1
Ka

(C ′) = EKa
(P )⊕ C. (13)

A related-key slide attack proceeds as follows:
1. Obtain 232 known plaintexts, P encrypted with DES-EXE under the key,
K = (Ka,K, Kb).
2. Obtain another 232 known plaintexts, P ′ encrypted with DES-EXE under the
key, K = (Kb,K, Ka). Store the values of (P ′, C ′) in a table, T1. By the birthday
paradox, we would expect one slid pair (P, C) and (P ′, C ′) such that the slid
equations (10) and (11), and hence (12) are satisfied.
3. Guess all 256 values of Ka, and do:
(i) Compute EKa(P )⊕ C for all (P, C) and store (EKa(P )⊕ C,Ka) in a table,
T1.
(ii) Compute P ′ ⊕ E−1

Ka
(C ′) for all (P ′, C ′) and store (P ′ ⊕ E−1

Ka
(C ′),Ka) in a

table, T2.
4. Search through T1 and T2 for a collision in the first entry, which immediately
reveals the key, Ka.

The remaining keys can be obtained via exhaustive search, or we could use Ka

to peel off one layer and apply an MITM attack on the remaining two layers
requiring 256 words of memory and 256 DES encryptions.

Step 1 requires 232 known plaintexts while Step 2 requires 232 related-key
known plaintexts. Step 3 requires 256×232×2 = 289 single DES encryptions, and
288× 3× 2 ≈ 290.5 words of memory. Step 4 is negligible. Meanwhile, exhaustive
search of the remaining keys requires 256×264 = 2120 single DES encryptions, or
an alternative MITM attack requires 256 memory and 256 DES encryptions. To
summarize, we have an attack on DES-EXE that requires 232 known plaintexts,
232 related-key known plaintexts, 290.5 words of memory and 289 single DES
encryptions.

A better attack works by observing that if we obtain the encryption, C of
a plaintext, P under the key K = (Ka,K, Kb), and subsequently obtain the
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decryption of C under the key K ′ = (K ′
a,K, Kb) = (Ka ⊕4,K, Kb) where 4 is

any arbitrary known difference, then we get the situation as indicated in Fig. 6.

¾ EKb
¾⊕

K
¾P ′

EK′
a
¾ C

-P EKa
- ⊕

K
- EKb

-C

Fig.6. Related-key differential attack on DESX-EXE

Here, ⊕K denotes an XOR operation with the key, K. The following relation
then applies:

P ′ = E−1
Ka′

(EKa(P )). (14)

For all 256 values of Ka, check that (13) satisfies, and Ka can be recovered
with 256 encryptions. Use this to peel of the first layer, and apply an MITM at-
tack on the remaining two layers, requiring 256 memory and 256 encryptions [12].
In summary, we require one known plaintext, one related-key chosen ciphertext,
256 words of memory and 256 single DES encryptions. This shows that DES-EXE
is much weaker than the original DESX against a related-key differential attack.

5 Conclusions

We have presented related-key slide attacks on 2-key and 3-key triple-DES. Our
attacks are the first known related-key slide attacks on these triple-DES variants.

We have also presented attacks on DESX variants. In particular, we showed
that contrary to popular belief, the DESX+, a DESX variant that uses addition
modulo 264 for its pre- and post-whitening, is weaker than DESX against a
related-key differential attack. Our attacks on DES-EXE, another DESX variant
with the outer XOR operations interchanged with the middle DES encryption,
also show that DES-EXE is much weaker than the original DESX against related-
key attacks. In Tables 1 and 2, we present a comparison of our attacks with
previous attacks on variants of triple-DES and DESX.
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Table 1. Comparison of Attacks on Triple-DES Variants

Block Cipher Texts Memory DES Encryptions Source

2-key Triple-DES 256CP 256 256 [12]

2-key Triple-DES 256KP 256 2114 [13, 14]

2-key Triple-DES 232KP, 232RK-KC 289.5 288 This paper

3-key Triple-DES 3 CP 256 2112 [12]

3-key Triple-DES 1 KP, 1 RK-CC 256 256 [7]

3-key Triple-DES 232KP 288 2106 [11]

3-key Triple-DES 232KP, 232RK-KC 233 288 This paper

Table 2. Comparison of Attacks on DESX Variants

Block Cipher Texts Memory DES Encryptions Source

DESX 232CP - 288 [5]

DESX 2 KP - 2120 [5]

DESX 232KP - 2113 [9, 10]

DESX 26RK-KP - 2120 [8]

DESX 232.5KP 232.5 287.5 [4]

DESX+ 1 RK, 1 RK-KP - 2120 This paper

DESX+ 1 RK, 1 RK-KP 256 256 This paper

DES-EXE 232KP, 232RK-KP 290.5 289 This paper

DES-EXE 1 KP, 1 RK-CC 256 256 This paper
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