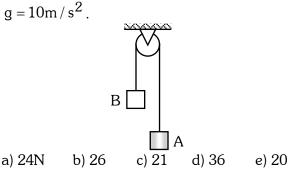
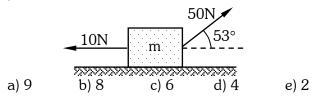
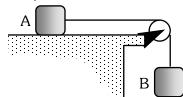
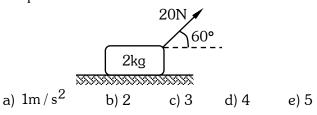

Colegio "Santa María La Mayor"


Física I – Dirigido por: David Guevara Galdos TAREA Nº 1 – Dinámica Lineal

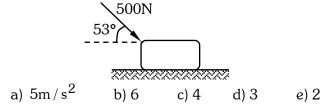

1. Determine el módulo de la aceleración que experimenta el bloque de 50 kg sobre la superficie horizontal lisa $(g = 10 \text{m/s}^2)$.


2. Determinar la tensión de la cuerda que une a los bloques A y B. $m_A = 3kg$; $m_B = 2kg$; $g = 10m/s^2$

3. Calcular la aceleración (en m/s^2) que experimenta el bloque, sabiendo que el piso es liso y m = 5kg.

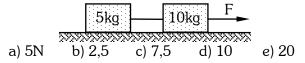


- **4.** Un cuerpo de $10 \, \text{kg}$ se suelta de lo alto de un plano inclinado 30° con la horizontal. Si el bloque se desliza sin rozamiento. ¿Cuál será su aceleración en $\, \text{m/s}^2 \, ?$
 - a) 9,8
- b) 4,9
- c) 19,6
- d) 4,5
- e) 6,2
- **5.** Determinar la aceleración con la cual se desplazan los bloques A y B del sistema mostrado, si $m_A=m_B=5{\rm kg}$ y no existe rozamiento. Determinar también la tensión en la cuerda. $(g=10{\rm m/s}^2)$.

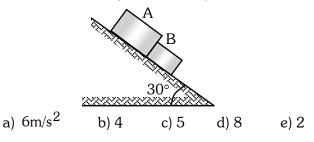


- a) $5 \text{m/s}^2 \text{ y } 25 \text{N}$
- b) $8m/s^2 y 30N$
- c) $10 \text{m/s}^2 \text{ y } 20 \text{N}$
- d) $5m/s^2 y 10N$
- e) $6m/s^2$ y 15N

- **6.** Un bloque se mueve por la acción de una fuerza constante de 200N sabiendo que la masa del cuerpo es de 50kg. Calcular el valor de la aceleración despreciar rozamiento.
 - a) $4m/s^2$
- b) 5
- c) 6
- d) 7
- e) N.A.
- **7.** En la figura mostrada hallar la aceleración del bloque:



8. Hallar la aceleración del bloque, si su masa es de 50kg y todas las superficies son lisas.



9. En la figura se tienen 2 bloques m₁ y m₂ de 2kg y 4kg respectivamente, si se aplica una fuerza constante de 30N al primer bloque, calcular la tensión "T".

10.En la figura, si la tensión de la cuerda es de 2,5N y no hay rozamiento, hallar el valor de la fuerza "F" en Newton.

11.En la figura los cuerpos A y B tienen pesos de 100N y 40N, respectivamente y resbalan sobre el plano inclinado. La aceleración de los bloques tiene un valor de: $(g = 10m/s^2)$.

Fecha de entrega: Lunes 30 de Marzo