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Preface 2006 

 
 
Dear Reader 
 
It is more than fifteen years since these pages were written, and, undoubtedly, many 
changes and advances have taken place than have had a profound influence in the 
development and use of Csound and the frequency domain processing tools (Chapter 11 – 
The Phase Vocoder) demonstrated in the text. 
 
Furthermore, when the book was written, the only personal computer (apart from 
mainframes and minicomputers) in which CSound was implemented was the Atari ST.  
 
However, although the some of the procedural indications have changed, most of the 
syntax of CSound and the Composers’ Desktop Project (CDP) version of the CARL phase 
vocoder processes have remained the same. Therefore, except for the interface 
commands for running CSound, the orchestras and scores should work as they are given 
in the text, and the phase vocoder processes are still achievable using the latest version of 
the CDP. 
 
Nevertheless, the following pointers might help you run CSound in a more contemporary 
environment and also find further information regarding the Phase Vocoder processes: 
 

1. The command for running CSound given in chapter 1 (page 6 onwards) should be 
replaced by that running on an current computer. For instance, on a PC, typical 
commands look as follows: 

a. To run CSound in real-time, directly to the soundcard 

csound -W -o dac 

b. To make CSound create an audio file that can be auditioned later 

csound -W -o <output name>.wav 

where <output name> is the name of the audio file you wish to create. 



2. Better still, it is worth using existing available public domain interfaces, such as the 
wonderful BLUE, by Steven Yi, which works in any platform and available for free 
download at http://www.csounds.com/stevenyi/blue/ . 

3. Information on the CDP is found at http://www.composersdesktop.com/. 

4. Finally, I have published a relatively more recent article, which develops the issues 
covered in chapter 11 to more depth and breath and contains a large number of 
additional examples: 

Fischman R, 1997. ‘The Phase Vocoder: Theory and Practice’ in Organised Sound 
2222(2). Cambridge University Press, Cambridge, UK, pp 127-145.  
 
 

Audio examples appear in the Organised Sound 2222(3) CD.  

Last time I checked, the was available for free download in PDF format at  
http://mustech.robodreams.com/ceos/reading/rajmil.pdf  

 
 
I hope that you find the texts useful 
 
Rajmil Fischman 
29/12/06 
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Prefacio 2006 

 
 
Querido Lector 
 
Hace ya más de quince años desde que escribí estas páginas, y sin duda, mucho ha 
cambiado desde entonces. Estos cambios han afectado el desarrollo y uso de CSound y 
de los útiles para procesamiento en el dominio de la frecuencia que este texto demuestra 
(Capítulo 11 – El Phase Vocoder). 

Es más, cuando el libro estaba siendo escrito, la única computadora personal (fuera de 
los mainframes y minicomputadoras) en el cual se había implementado CSound era la 
Atari ST. 

No obstante, aunque algunas instrucciones para lanzar el programa hayan cambiado, la 
mayoría de la sintáctica de CSound y los procesos obtenibles con la versión Composers’ 
Desktop Project (CDP) del phase vocoder de CARL se han mantenido intactos. Es por 
eso que las orquestas y partituras que aparecen en el texto funcionan aún, y los procesos 
del phase vocoder se pueden realizar usando las versiones más recientes del CDP. 

De todos modos, espero que las sugerencias que aparecen a continuación te ayuden a 
procesar en CSound usando equipo moderno y te aporten más información sobre el 
phase vocoder:  
 

5. El comando para lanzar a CSound que aparece en el capítulo 1 (a partir de la 
página 6) deberá ser sustituido con instrucciones adecuadas para computadores 
más recientes. Por ejemplo, en la PC, los comandos típicos serían: 

a. Para lanzar CSound en tiempo real, enviando los resultados directamente a 
la tarjeta de sonido 

csound -W -o dac 

b. Para crear un archivo sonoro con CSound: 

csound -W -o <nombre del salida>.wav 

donde <nombre de salida> es el nombre del archivo que se desee crear. 



6. Sería mejor aún usar alguno de los programas gráficos que procesan con CSound, 
tal como el maravilloso BLUE, de Steven Yi, que funciona en cualquier plataforma y 
puede ser bajado gratuitamente de http://www.csounds.com/stevenyi/blue/ . 

7. Puedes obtener información sobre el CDP en la página 
http://www.composersdesktop.com/. 

8. Finalmente, quisiera informarte que he publicado un artículo que es relativamente 
más reciente. Éste ensancha y profundiza los conceptos discutidos en el capítulo 
11, y provee ejemplos adicionales: 

Fischman R, 1997. ‘The Phase Vocoder: Theory and Practice’ in Organised Sound 
2222(2). Cambridge University Press, Cambridge, UK, pp 127-145.  
 

Los ejemplos de audio aparecen en el CD de Organised Sound 2222(3).  

La última vez que busqué el artículo, encontré la siguiente página, que permite 
bajarlo gratuitamente en formato PDF: 
http://mustech.robodreams.com/ceos/reading/rajmil.pdf  

 
 
Espero que este texto te sea provechoso. 
 
Rajmil Fischman 
29/12/06 
 
 
 
 
 
 
 
 
 
 
 
 



 
PrefacePrefacePrefacePreface 
 
It has been said more than once that the advent of computer technology and its application to 
music has given the electroacoustic composer command over a vast universe of sound that could 
only be the dream of his predecessors. 
 
While, at least in theory, it is reasonable to assume the validity of this statement, it is also important 
to bear in mind that the same developments have given rise to new problems confronting anyone 
willing to take full advantage of the new developments. For instance, the psychoacoustic effects of 
sound perception within a musical context are immediately apparent and much more significant 
than when dealing with traditional instruments: A concept like timbre, which is  reasonably defined 
within the orchestral palette, takes new significance as a time-varying, multidimensional entity, in 
which there is no one to one correspondence between the spectrum and timbral identity. 
 
Another well known difficulty is that involved in achieving sounds that are 'alive', rather than of 
neutral 'electronic' quality, experienced by anyone that has used a synthesizer, regardless of 
whether it is implemented as a piece of hardware or in a software package. 
 
In fact, a typical learning curve includes a threshold, below which the sounds that are produced are 
very similar to each other and usually of no great interest. A possible explanation is that while the 
various synthesis or processing techniques are reasonably simple, it is very difficult to find a 
correlation between these and the resulting sounds. The latter can only be discovered  by 
experience, either one's own, or that appearing in literature. 
 
At the time of writing, there is still very little literature sharing the results of this type of experience. 
It is true that there are publications which contain the principles of various techniques used to 
synthesize and process sounds, but few of these go a step beyond, showing what can be done 
with the  techniques and - not less important - showing their audible results. It is the wish of the 
author to share his own limited experience in the hope that it contributes to make the learning 
process shorter and more pleasant and that it suggests directions for possible further 
experimentation. 
 
For practical purposes, Csound (1) was chosen in order to illustrate the results. This is  because of 
its flexibility, as well as for being available in several microcomputers, particularly within the 
Composers' Desktop Project (CDP) Atari based system. However, alas, flexibility comes at the 
expense of simplicity. Therefore, and in view of the fact that Csound''s original manual assumes 



previous knowledge of similar computer music systems, the first part of this book consists of a 
stepwise approach towards the mastering of the basic tools offered by this package: it can be 
skipped by the initiated. It should be clear, though, that this is not a substitute for the manual and 
there are no pretensions to exhaustively cover all the possibilities offered by Csound. 
 
The second part deals with the principles of linear techniques: additive and subtractive synthesis, 
and the third with non-linear methods: amplitude modulation, waveshaping and frequency 
modulation. In the fourth part, devoted  to processing, the principles and some applications of the 
Phase Vocoder (2)  are discussed. 
 
Finally, an appendix containing time-varying reverberation instruments for both mono and stereo 
soundfiles is presented. 
 
All the examples were recorded to a cassette tape hereby included, and the code for these is 
available in floppy disk. 
 
The author would like to express his deepest gratitude to those that helped directly and indirectly in 
this research. Special thanks to Richard Orton, who first introduced him to MUSIC 11, and in 
general to computer music. Also thanks to Trevor Wishart, Tom Endrich and Andrew Bentley for all 
he was able to learn from their experience and for being responsible, together with Richard Orton, 
for the Composers' Desktop Project. To John Paynter, who, in spite of not being directly involved in 
electroacoustic music, provided, as a musician and composer, invaluable input from the aesthetic 
point of view which reverted back into the use of computer music techniques. Thanks to David 
Malham and Martin Atkins for being instrumental in the realisation of the CDP. Finally, but not 
least, special thanks to his colleagues at Keele University Music Department for their 
encouragement in a stimulating environment and for their constructive feedback. 
 
 
Rajmil Fischman 
Keele, April 1991. 
 
 
 
 
 
 
 



 
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
PART IPART IPART IPART I    
 
Introduction to Introduction to Introduction to Introduction to CsoundCsoundCsoundCsound    
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
1. Fundamental Concepts1. Fundamental Concepts1. Fundamental Concepts1. Fundamental Concepts    
Csound is a high level computer synthesis and processing language that serves the 
musician as a tool to create and manipulate samples representing sounds, by means of a 
variety of techniques. It is implemented in the CDP system and the results can be stored in 
magnetic media (usually a hard disk or DAT tape). Therefore, the sampled sounds can be 
played through loudspeakers. It is also possible to display them graphically as waveforms. 
 
Sampled sound is stored in a computer as a file, more specifically as a soundfile. At this 
point, it is worth noticing the difference between MIDI (Music Instrument Digital Interface) 
information and soundfile information. The former contains messages that activate 
synthesizers and other hardware, it does not contain actual sounds. The latter, on the 
other hand, consists of actual sampled sound. 
 
 
 
1.1Orchestra and ScoreOrchestra and ScoreOrchestra and ScoreOrchestra and Score    
 
The basic concept behind the implementation of Csound resembles the way sounds were 
initially produced in analogue synthesizers. Modules known as oscillators were patched 
together to create more complex units. These oscillators produce basic types of 
waveforms like sines, square and triangular waves, sawtooth, white noise, etc.  
 
In order to illustrate this principle, take for example a pure sine tone : a sine oscillator can 
be connected directly to the output. Both the frequency and amplitude of the sine wave 
depend on the data fed to the oscillator by means of control knobs. This data can be 
variable (it can assume several values according to the position of the knobs). Diagram 1 
shows a graphical representation of this setting. P3P3P3P3 represents the variable amplitude and 
P4P4P4P4 the variable frequency. 
 



Diagram 1  Pure sine tone oscillator 
 

  amp  freq 

 
 
If, instead of a sine wave, a square wave is needed, a different oscillator can be used. The 
setting, though,  would remain similar, as shown in diagram 2. 
 
Diagram 2  Square wave oscillator 
 
        amp  freq 

 
 
If some tremolo - (small sub-audio amplitude fluctuation) - is desired so that the sound is 
more realistic, then, instead of controlling the amplitude only through the knob; another 
oscillator with small amplitude and slower frequency could be added. This can be seen in 
diagram 3. P6P6P6P6 and P7P7P7P7 represent the amplitude and frequency of the second oscillator. The 
amplitude of the first oscillator fluctuates between P4P4P4P4 - P6P6P6P6 and P4P4P4P4 + P6P6P6P6. The rate at which 
the fluctuation repeats itself is P7P7P7P7. 
 



Diagram 3  Tremolo 
 

 amp frq amp frq 

 
 
 
All the previous examples have two common features: 
 
1. A constant configuration: the schematic connections are always the same. 
 
2. A set of variables: amplitude and frequency values could be changed. 
 
A further analogy can be drawn to a musician playing an instrument. In this case, the 
constant configuration consists of the morphology of instrument and the musician's own 
anatomy. When required to play, the performer is given a score which consists of a 
chronological list of musical events describing them in terms of specific pitches to play, 
durations, dynamics, etc. All these are values given to variables that determine the actual 
sounds that are consequently produced with the existing configuration. 
 
Csound's approach is based, at least in principle, on the  concept of a more or less 
constant configuration of instruments, called the orchestra; and a chronological list of 
events, called the score. Each event invokes an instrument and specifies a set of values 
given to its corresponding variables. 
 



In order to make it possible to use different scores with the same orchestra the orchestra 
and the score are stored in the computer as separate text (ASCII) files. This resembles 
even more the situation of a musician who can play different pieces on his instrument. 
 
It should be pointed out that the orchestra-score paradigm is not always the best approach 
to sonic composition. For example, sometimes it is desirable to have a so called 
'instrument' that itself creates a series of events. Furthermore, there is a preconception 
regarding the traditional approach to timbre, by which a given instrument will always have 
a recognisable timbral identity, which, of course, is not true of a Csound  instrument. This 
will become obvious in later examples. 
 
 
1.2 Creating a SoundCreating a SoundCreating a SoundCreating a Sound    
As mentioned above, the orchestra and the score are stored as text files in a computer. 
These are created using a text editor  and subsequently, have to be translated to computer 
language, that is, they have to be compiled. In this case the equivalent of the compiler is 
the actual program called Csound. 
 
However, there is a difference between Csound and a real compiler like those used in C or 
PASCAL. Csound does not only translate the score and orchestra into computer language 
commands, but also causes the computer to carry out these. Therefore, in the end, the 
computer directly produces a soundfile when Csound code is compiled. 
 
Before entering into details on how to compile, there is one more issue that has to be 
clarified : Csound allows the user to specify events in any chronological order within a 
section. This means that it assumes the responsibility of ordering events chronologically. 
For this reason, there is a program called CSORT.PRG that sorts the events creating a 
new version of the score in a file called SCORE.SRT . It is this file, and not the original 
score that is used in conjunction with the orchestra when compiling. 
 
In order to show how a sound is produced once the orchestra and score are created, it will 
be assumed that these exist and are respectively called CS1.ORC and CS1.SC and that 
the soundfile produced after running Csound is called CS1.OUT . 
 



There are two steps to be followed in order to create the soundfile: 
 
1. Sort the score chronologically. 
 
2. Compile using a given orchestra. 
 
 
The following commands will do exactly that 
 
csort cs1.sc 
 
csound -Ncs1.out cs1.orc 
 
 
The first command is quite obvious. The second command contains the flag -N, which tells 
the compiler that the following letters represent the name of the soundfile to be created. If 
the name of the output is not specified, the default name CSOUND.OUT will be given to 
the soundfile. The name of the orchestra is then specified. It is not necessary to specify 
the name of score because Csound will always use the sorted version contained in the file 
SCORE.SRT . 
 
An example orchestra and score are given below, that can be compiled in order to create a 
soundfile. The meaning of their contents will become clearer in the following chapters. 
 
The orchestra is called CS1.ORC and  represents an instrument with the configuration 
given in diagram 4. 
 



Diagram 4 CS1.ORC 
 

   amp freq 

 
 
 
; This is a comment, Csound will ignore it 
; CS1.ORC 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 1 
 
a1   oscil   p4, p5, 1; oscillator 
          out     a1; output 
 
endin 
 
 
The score file is called CS1.SC. It instructs this instrument to produce a sine wave of 
frequency 440 hz. 
 
 
; This is a comment, Csound will ignore it 
; CS1.SC 



 
f1 0 512 10 1 
 
t 0 60 
 
i1 0 2 32000 440 
 
e 
 
 
Csound tape example 1 contains the admittedly not very exciting 440 hz sine wave. 
 
1.3 Some ShortcSome ShortcSome ShortcSome Shortcutsutsutsuts    
It is quite tedious to repeatedly type two commands with as much wording as CSORT and 
CSOUND need. In fact, if Csound is used from a command line environment like the 
COMMAND.TOS program, a batch-file can be written. A batch-file is a text file that 
contains a list of commands. When the computer is told to run a batch-file, it reads the 
commands one by one and performs them as if they were successively typed in via the 
keyboard by the user. 
 
For example a batch-file called PERF.BAT can be written that gets the name of the 
orchestra and the name of the score and creates a file called CSOUND.OUT: 
 
csort %1 
 
csound %2 
 
 
%1 and %2 mean respectively the first and second name typed after the name of the 
batch-file. 
 
In our previous example the line 
 
 



perf cs1.sc cs1.orc 
 
 
will sort the score and create the soundfile called    CSOUND.OUT . 
 
 
Another possibility suitable to the case in which the orchestra and the score have the 
same name (like in the previous case: CS1), is to create the following batch-file 
 
csort %1.sc 
 
csound -N%1.out %1.orc 
 
 
which will produce a soundfile with the extension .OUT . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2. Syntax of the Orc2. Syntax of the Orc2. Syntax of the Orc2. Syntax of the Orchestrahestrahestrahestra    
 
As with any other computer language, there is a set of syntactic rules that has to be 
observed when creating a Csound  orchestra and score. 
 
A look at CS1.ORC in the previous chapter gives an idea of how an orchestra file should 
look. In the first place, it is possible to include comments giving explanatory remarks or 
other information which are ignored by Csound but, at the same time, very useful to the 
user. Comments are always preceded by semicolons ';;;;' . Anything contained between a 
semicolon and the end of a line is ignored. 
 
 
The rest of the orchestra consists of different parts which are described in the following 
sections. 
 
 
 
2.1 The HeaderThe HeaderThe HeaderThe Header    
 
The first four lines that are not comments constitute the header. This is used to define 
quantities that are needed in order to produce sampled sound. These are: 
 
2.1.1  Sampling Rate (sr) 
The first line defines the sampling rate. In the case of CS1.ORC, it is 44100 
samples/second. 
 
2.1.2  Control Rate (kr) 
Lets consider the oscillator producing a tremolo effect discussed in the previous chapter 
(see diagram 3). A reasonably fast tremolo would have a frequency of about 15 hz. 
Therefore, sampling  this oscillator at 44100 hz can be unnecessarily wasteful with regard 
to computational power and time. It is for this reason that an alternative slower sampling 
rate called control rate is defined. Its name stems from the fact that it is not used for 
oscillators that produce sound but for modules that control other oscillators. 
 



Another common example of control rate use can be found in the generation of amplitude 
envelopes. 
 
 
2.1.3  Samples Skipped (ksmps) 
Using the slower control rate is equivalent to skipping samples at the actual sampling rate. 
ksmps indicates how many samples are skipped. Therefore  
 
     sr 
ksmps  =  ----- 

 kr 
 
NOTE: The sampling rate has to be a multiple of the control rate. 
 
 
2.1.4  Number of channels (nchnls) 
This states how many audio channels are being used. There can be 1 channel (mono), 2 
(stereo) and 4 (quad). 
 
 
2.2 Instrument DefinitionInstrument DefinitionInstrument DefinitionInstrument Definition    
Next after the header is the statement instr 1 .  This tells the  computer that an instrument 
will be defined by the subsequent lines. In this case it is instrument number 1. A number 
has to be given because there may be more than one instrument in the orchestra. 
 
Then, the statements defining the instrument follow. Statements contain variables, 
constants or arithmetic expressions using variables and constants. In the case of 
CS1.ORC, there are two statements. As will be seen below, the first one defines the 
oscillator and the second the output. 
 
Finally, endin  is used to signal that this is the end of the definition of instrument 1. 
 
 
 



 
2.3 General Form of the Orchestra FileGeneral Form of the Orchestra FileGeneral Form of the Orchestra FileGeneral Form of the Orchestra File    
It is now possible to define the general form of an orchestra file defining nnnn instruments. 
 
Header ( sr, kr, ksmps, nchnls, etc. )  
 
instr 1 statements ... 
endin  
 
instr 2 statements ... 
endin  
. 
. 
instr n statements ... 
endin  
 
2.4 OSCIL and OUTOSCIL and OUTOSCIL and OUTOSCIL and OUT    
So far no attempt has been made to explain the statements defining instrument 1. In fact, 
both statements  are perhaps the most popular and useful in Csound. We will now proceed 
to describe them. 
 
2.4.1 OSCIL 
This represents the simplest oscillator. The basic waveform can be a sine, a square wave, 
triangular, sawtooth and virtually anything else. 
 
Its general form is 
 
ar oscil amp, freq, func ( , phase )   
 
where 
 
ar is used to name the output of the oscillator. 
 
amp is the amplitude. It can be a variable whose value is given in the score. The 



maximum value the amplitude can attain is 32,767 ( 216- 1 ) since soundfiles 
are currently sampled at 16 bit resolution. 

 
freq is the frequency in cycles per second (CPS or hz). It can be a variable whose 

value is given in the score. 
 
func refers to a function defining the basic waveform (sine, square, etc. ). The 

function is defined in the score. 
 
phase is the phase of the waveform. It is in brackets because it does not have to be 

specified, in which case it is assumed to have a default value of 0. 
 
 
 
In CS1.ORC the output is called a1a1a1a1. The amplitude is given by the variable p4p4p4p4. This is a 
special kind of variable. A pppp followed by a number tells the computer that this is a 
parameter that will be given in the score. p4p4p4p4 means that the fourth parameter given in any 
line of the score referring to this specific instrument (instr 1) will determine the amplitude. 
 
 
Similarly, the frequency is given by p5p5p5p5. Again, this means that the fifth parameter in any 
line referring to instrument 1 determines the frequency. 
 
 
Finally, the waveform is 1. This tells Csound that the score will contain a definition of the 
shape of one cycle of the oscillator identified by the number 1. The cycle so defined will be 
repeated by the oscillator to produce a continuous waveform. 
 
 
 
 
 
 
 



 
2.4.2  OUT 
OUT is used in order to produce an actual output. In other words, it tells the computer to 
create a soundfile. 
 
The general form is 
out signal  
 
where 
 
signal is the actual waveform that is going to be contained in the soundfile. It is 

usually an output or an arithmetic combination of outputs of one or more 
oscillators 

 
In CS1.ORC, the statement 
out a1 
 
means that the soundfile created contains  a1a1a1a1: the output of the oscillator. 
 
Any combination of outputs is possible. For example, if an instrument has three oscillators 
with outputs represented by a1, a2 and a3 then the statement 
 
out a1 + a2/2 + a3*1.5 
 
effectively mixes the three with different gains. 
 
 
 
 
 
 
 
 
 



3. Syntax of the Score3. Syntax of the Score3. Syntax of the Score3. Syntax of the Score    
 
It is now possible to proceed to see how the score works. Again, a look at the example 
CS1.SC in the first chapter, will prove helpful. 
 
Comments can also be written into the score starting with a semicolon ';;;;'. It is also 
permissible to use the letter cccc instead. 
 
Each line in the score starts with a letter. The possible letters are: aaaa, cccc, eeee, ffff, iiii, ssss, and tttt. They 
are followed by numbers which are the actual data. A letter tells Csound  what type of 
information the data refers to. For example, the letter ffff means that the information in that 
line refers to the basic waveform of an oscillator. the letter tttt  refers to tempo , iiii invokes an 
instrument, and so on. 
 
 
 
3.1 Function Statements Function Statements Function Statements Function Statements ---- GEN routines GEN routines GEN routines GEN routines    
The first line appearing after the comments in CS1.SC is a statement starting with the 
letter ffff. It is called a function statement or f-statement, because it provides the computer 
with a mathematical function that describes the shape of one cycle of the waveform that 
will be used by an oscillator in an instrument. 
 Once the computer gets the information given by the f-statement it produces a sampled 
version of the cycle of that waveform called the function table, because it is used as a 
basic table from which actual waveforms can be built by interpolation in order to get the 
right frequency, and then by repetition of the cycle in order to produce a periodic signal.  
Before we look at the actual information given in an     f-statement, a new comparison with 
the analogue synthesizer may prove helpful. In chapter 1, it was seen that the same 
configuration used in diagram 1 with a sine generator could be used with a square 
generator in diagram 2, thus producing a different waveform. Therefore, the basic cycle of 
a waveform depends on the signal generator used by the oscillator. 
 
In a similar fashion, different signal generators available in Csound can produce the most 
diverse signals. These generators, known as GEN routines, are each called by using an 
identification number. For example, GEN10 is used to produce sine waves and 



combinations of a fundamental and its harmonics, GEN9 is used to produce a combination 
of non-harmonic and/or out of phase sine waves, GEN7 is used to produce waveforms that 
can be built of straight lines like square and triangular waves, and so on. 
 
The actual result depends on the data fed into the GEN routines, and this is exactly what 
an f-statement provides. 
 
The general form of an f-statement is 
 
f  number  time  size  GEN-number  data  
 
number is a number given to the specific function table resulting from this 

statement, so it can be addressed by the orchestra. In the example, the 
third parameter of the oscillator defined in the orchestra is 1. This means 
that it will use the waveform cycle defined by f1f1f1f1. Using a negative number 
cancels a previous definition of a function. 

 
time indicates at what time (in beats) is the signal generator first going to be 

used. If the function number is negative, it indicates a time at which this 
function definition will be cancelled. 

 
size indicates the number of samples used to produce the table. Obviously if 

more samples are used, the shape of the cycle will be defined more 
accurately. On the other hand, this requires more computing time. 

 
The size has to be a power of 2 (2, 4, 8, 16, 32, 64, etc.). A reasonably 
practical value is 512. 

 
GEN-number indicates the specific GEN routine number used. 
 
data is the specific data required by that GEN routine. 

For example, GEN7 and GEN10 need different parameters: while the first 
of them requires break points that are going to be joined by straight lines 
to produce the waveform cycle, the latter requires the number of harmonic 



and its relative amplitude. 
 
In the CS1.SC, the statement 
 
f1 0 512 1 0 1 
 
tells Csound  that the table containing the basic cycle of the waveform is table 1. It is used 
at time = 0 (the beginning of the score), it is defined by 512 samples and it uses GEN10. 
 
The data required by GEN10 is the relative values of the harmonics. We see that only the 
first harmonic or fundamental is used. Thus, the waveform will be a sine wave. 
 
 3.2 Tempo StatementTempo StatementTempo StatementTempo Statement    
Next in the CS1.SC comes a line starting with the letter  tttt: a tempo statement or t-
statement. 
 
Time is specified in beats, like in instrumental music, therefore the tempo, or number of 
beats per minute has to be defined. 
 
Its general form is 
 
t  beat#  speed  beat#  speed ..... 
 
beat# is the beat number at which the tempo is specified. 
 
speed is the number of beats per minute (metronome mark). 
 
In short, a tempo statement contains a series of beat numbers and speeds. The computer 
interpolates the speeds in between the beats, therefore producing accelerando  or 
ritardando  effects. 
 
In CS1.SC, the tempo is constant and specified once at the beginning as 60 MM. 
Therefore every beat lasts exactly a second and in this case, counting beats is the same 
as counting seconds. 



If there is no tempo statement in the score, the default value of 60 MM is used 
automatically. 
 
3.3 Instrument Statements Instrument Statements Instrument Statements Instrument Statements ---- Parameter Fields Parameter Fields Parameter Fields Parameter Fields    
The next line starts with the letter iiii.  This is an instrument statement or i-statement, 
because it defines an event for a specific instrument in the orchestra. The data obviously 
varies according to the configuration of the instrument. 
 
There are some parameters pertinent to a particular instrument that have no meaning for 
others. This also happens in traditional music: it is quite improbable to find an indication 
like sul tasto in a horn part! On the other hand, all events have to be given a starting time 
and a duration. Therefore, it is useful to specify all the indispensable data first: instrument 
number, start time and duration, and then allow for specific parameters to be given for 
each particular instrument. 
 
This leads to the general form of an i-statement 
 
i  instr-number   start-time   duration  other parameters...  
 
where 
 
instr-number is the identification number of the instrument as defined in the 

orchestra. In the example, it is instrument 1 (i1i1i1i1). 
 
start-time is the time in beats at which the event starts. In the example, it is 0 

which means that the event is produced at the very beginning. 
 
duration is the duration in beats of the event. Sometimes an instrument in the 

orchestra uses the duration as a parameter. For example, the speed 
of a tremolo can depend on how long is the sound. It may be 
remembered that in order to use data from the score, special variables 
that use the letter pppp and a number are used. In this case, since the 
duration is the third parameter, the variable representing it in any 
instrument is p3p3p3p3. 



 
other parameters These are the corresponding values given to variables represented by 

p4, p5, p6, etc. in the orchestra. This purely depends on the particular 
configuration of the instrument. But it is common practice to assign p4 
to the amplitude, and p5 to the fundamental frequency or to the pitch if 
any of those is defined in the instrument. 

 
 
In CS1.SC there is only one instrument line 
 
i1 0 2 3 2000 440 
It addresses instrument 1 (i1i1i1i1), which should produce an event at time = 0 (second 
parameter), with a duration  of 2 beats (third parameter), an amplitude of 32000 (fourth 
parameter, corresponding to p4p4p4p4 in the orchestra) and a frequency of 440 hz (fifth 
parameter, corresponding to p5p5p5p5). 
 
 
3.4 End of ScoreEnd of ScoreEnd of ScoreEnd of Score    
Finally, the last line contains the single letter eeee which stands for: end of score. 
 
3.5 SectionsSectionsSectionsSections    
When scores became too long, it is useful to divide them into sections. 
 
The advantage of this is that time is reset at the beginning of each section. That is, time 
starts at 0. Functions can also be redefined. 
 
In order to separate sections, the letter ssss is used. 
 
 



3.6 General Form of the Score FileGeneral Form of the Score FileGeneral Form of the Score FileGeneral Form of the Score File    
 
It is now possible to define the general form of a score file. 
 
 
f-statements 
 
 
t-statement 
 
 
i-statements 
 
s 
 
 
f-statements 
 
 
t-statement 
 
 
i-statements 
 
s 
 
. 
. 
. 
 
e  
 
 



3.7 Example Example Example Example ---- Use of GEN10 Use of GEN10 Use of GEN10 Use of GEN10    
 
The following example uses the same orchestra as CS1.ORC. This time, though, four sine 
waves will be produced. 

261.625 hz corresponding to middle C 
329.627 hz corresponding to E above 
391.995 hz corresponding to G above 
466.163 hz corresponding to Bb above. 

 
C will sound at the beginning, then E will be added, then G and finally Bb. In order to do 
so, GEN10 is used to produce a sine wave. Therefore, the statement defining f1f1f1f1 in 
CS1.SC can still be used. 
 
The score looks as follows 
 
f1 0 512 10 1 
 
;                p3       p4       p5 
;instr  start    dur     amp    freq 
i1       0         5       8000    261.625 
i1       1         4       .        329.627 
i1       2         3       .        391.995 
i1       3         2       .        466.163 
e 
 
A new feature of Csound can be noticed: If a variable repeats itself, a dot '....' can be used 
instead to avoid typing long numbers. In this case, the amplitude is the same for all the 
notes, so instead of the value corresponding to p4, a dot can be used in the second, third 
and fourth lines. 
 
It is important to bear in mind that the amplitudes are added, so that if the notes are to be 
heard together, the sum of their amplitudes can not be greater than 32,767 which is the 
maximum amplitude value that can be represented with 16 bits, otherwise the sound will 
be distorted. If this happens, Csound will issue a message while compiling. 



 
 
 
 
Diagram 5  Waveform produced by the f-statement: f1 0 512 10 1 
 

 
 
GEN10 can also be used to produce more complex waveforms. The following score uses 
the same fundamentals for its waveforms, but the generating function is defined differently. 
 
f1 0 512 10 1 0 .5 0 .7 0 .9 0 2 
 
;                   p3    p4       p5 
;instr  start  dur   amp     freq 
i1      0        5      8000   261.625 
i1      1        4      .          329.627 
i1      2        3      .          391.995 
i1      3        2      .          466.163 
e 
 
The meaning of the definition of f1 is 
 
The fundamental has a relative amplitude of 1 
 
The second harmonic has a relative amplitude of 0 
 
The third harmonic has a relative amplitude of .5 
 
The fourth harmonic has a relative amplitude of 0 
 
The fifth harmonic has a relative amplitude of .7 



 
The sixth harmonic has a relative amplitude of 0 
 
The seventh harmonic has a relative amplitude of .9 
 
The eight harmonic has a relative amplitude of 0 
 
The ninth harmonic has a relative amplitude of 2 
 
 
In other words, this produces an instrument with odd harmonics. 
 
Diagram 6 Waveform produced by the f-statement : 
 

f1 0 512 10 1 0 .5 0 .7 0 .9 0 2 
 

 
 
Finally, another example score 
 
f1 0 512 10 1 .5 .7 .9 .2 .87 .76 
 
;                p3       p4       p5 
;instr  start   dur      amp    freq 
 
i1       0        5       8000   261.625 
i1       1        4       .        329.627 
i1       2        3       .        391.995 
i1       3        2       .        466.163 
 
e 
 
 



This time f1 defines an oscillator with 7 harmonics. 
 
Diagram 7 Waveform defined by the f-statement 
 

f1 0 512 10 1 .5 .7 .9 .2 .87 .76 

 
 
Csound tape example 2 is the realization of the score CS2.SC in which the three previous 
scores are played one after the other. This is possible since it is allowed to redefine f1 
after the end of a section. In order to have a gap of 1 beat, a dummy note of 0 amplitude is 
introduced. 
 
It can be noticed that each note starts and ends with a click. The next chapter will deal with 
ways of avoiding this problem. Apologies for the time being. 
 
 
Orchestra and score: 
; CS2.ORC       Simple Oscillator 
;               Uses table defined by f1 
 
; NOTE :        Clicks will be heard since 
;               there is no envelope. 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 1 
 
        a1      oscil   p4, p5, 1       ; oscillator 
                out     a1              ; output 
 



endin 
 
; CS2.SC 
 
f1 0 512 10 1 
 
;               p3      p4      p5 
;instr  start   dur     amp     freq 
 
i1      0        5      8000    261.625 
i1      1        4      .       329.627 
i1      2        3      .       391.995 
i1      3        2      .       466.163 
i1      5        1      0       0 
 
s 
 
f1 0 512 10 1 0 .5 0 .7 0 .9 0 2 
 
;               p3      p4      p5 
;instr  start   dur     amp     freq 
 
i1      0        5      8000    261.625 
i1      1        4      .       329.627 
i1      2        3      .       391.995 
i1      3        2      .       466.163 
i1      5        1      0       0 
 
s 
 
f1 0 512 10 1 .5 .7 .9 .2 .87 .76 
 
;               p3      p4      p5 
;instr  start   dur     amp     freq 



 
i1      0        5      8000    261.625 
i1      1        4      .       329.627 
i1      2        3      .       391.995 
i1      3        2      .       466.163 
 
e 
 
 
It now remains to be seen how to combine the different timbres in the same section. This 
requires two things : 
 
1. More than one waveform table is needed. This is easily accomplished by defining 

the tables f2, f3, f4, etc. with different parameters for GEN10. 
 
2. Our instrument has to be told which waveform to use. This suggests a variable that 

represents the table number. Thus, a new parameter, p6p6p6p6, can be introduced in oscil  
that gets the table number. When p6p6p6p6 assumes the value 1, f1f1f1f1 will be used. When p6p6p6p6 
is 2, f2f2f2f2 will be used and so on. 

 
This is applied to CS3.ORC and CS3.SC 
 
; CS3.ORC       -       Simple Oscillator 
;               Uses table defined by function number 
;               indicated in p6. 
 
; NOTE :        Clicks will be heard since 
;               there is no envelope. 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 



instr 2 
 
        a1      oscil   p4, p5, p6      ; oscillator 
                out     a1              ; output 
 
endin 
 
; CS3.SC 
 
f1 0 512 10 1 0 .5 0 .7 0 .9 0 2 
f2 0 512 10 1 .5 .7 .9 .2 .87 .76 
f3 0 512 10 1 .7 0 .9 0 .87 0 .76 
f4 0 512 10 1 
 
t 0 120 
 
;                p3       p4       p5            p6 
;instr   start    dur      amp  freq      func no. 
i2       0        10       8000   261.625  1 
i2      2         8       .        329.627  2 
i2       4         6       .        391.995  3 
i2       6         4       .        466.163  4 
e 
 
Csound tape example 3 is the realization of the above orchestra and score. 
 
 
 
 
 
 
 
 
 



4. Envelopes4. Envelopes4. Envelopes4. Envelopes    
The sounds produced so far have a problematic feature: when they end (and sometimes 
even when they start), a click is heard. Clicks like this are usually due to quick changes in 
the amplitude of a waveform. This usually happens when a sound is interrupted and the 
value of the current sample is much larger than zero, therefore producing a sudden drop to 
silence (zero amplitude), as shown in diagram 8. 
 
 
Diagram 8 Appearance of Clicks 
 
 

 
 
   Click                No Click 
 
In order to rid the sounds of these clicks, a mechanism that produces smooth transitions 
between silence and actual sounds is needed. The best way of achieving this is by means 
of an envelope. 
 
Envelopes also shape sounds, and in some cases even help determine their timbre. For 
example, a piano sound without its characteristic attack will not be recognizable. 
Furthermore, reversing a low piano note will actually produce something similar to a 
bowed string. 
 
4.1 RatesRatesRatesRates    
 
Before dealing in more detail with the production of envelopes it is worth remembering that 
the control rate provides the means of saving some computer calculation time by setting a 
lower sampling rate for signals that are expected to change relatively slow. 
 
Envelopes are usually slow changing signals. It makes sense to assign the output of an 
envelope generator to a variable that is sampled at the control rate. In Csound, control 
variables always start with the letter kkkk, as opposed to audio signals, sampled at the audio 



rate, which  start with the letter aaaa. For example, k1, kenv, k56, represent control signals, 
while a3, asig, aleft, represent audio signals. 
 
Furthermore, there are some cases in which it is necessary to calculate the value of a 
variable only once, at the beginning of an event. This type of variable is called initialization 
variable. Its value is calculated only once per event. This is referred by the manual as the 
initialization rate. In Csound initialization variables always start with the letter iiii. i1 and ifreq 
are examples of initialization variables. 
 
Finally, there are variables, like the values in the header of the orchestra (sampling rate, 
control rate, etc.) that are set only once in the whole 'piece'. These are called setup rate    
variables and are described in the manual. However, for practical purposes only the three 
rates need to be considered: 
 
a-rate  For audio signals.  Variables beginning with aaaa    
k-rate  For control signals.  Variables beginning with kkkk    
i-rate  For values that are  Variables beginning with iiii    

calculated once, at the 
beginning of an event. 

 
4.2 Envelope GeneratorsEnvelope GeneratorsEnvelope GeneratorsEnvelope Generators    
We will now proceed to discuss some of the most common ways of creating envelopes in 
Csound. 
 
 
4.2.1 LINEN 
The first and most direct way of producing an envelope is by using the LINEN statement. It 
produces a linear envelope as shown in the following diagram. 
 



Diagram 9 Linear Envelope 

 
 
 
Its general form is 
 
kr linen amp, attack, dur, decay  
 
where 
 
amp is the maximum amplitude. 
 
attack is the duration of the attack. 
 
dur is the duration of the sound. 
 
decay is the duration of the decay.  
 
 
4.2.2 LINSEG 
Sometimes, more complicated shapes are desired. LINSEG is used do this. By specifying 
a list of amplitudes and the time it takes to reach each amplitude from the previous one, 
the envelope can be calculated. 
 
For example if an event lasts 3 seconds, and the desired envelope starts at 0, then 
increases in .5 sec to an amplitude of 20,000, then decreases to 8,000 during the following 
1.2 seconds, followed by an increase to 15,000 after .6 sec and finally decreases to 0 for 
the remaining 1.1 seconds, the amplitudes are 
 



0 , 20000 , 8000 , 15000 , 0 
 
The time durations are 
 
From 0 to 200000  .5 sec 
From 20000 to 8000 1.2 sec 
From 8000 to 150000 .6 sec 
From 15000 to 0  1.1 sec 
 
and the following list of numbers represents the envelope 
0 ,  0.5 ,  20000 , 1.2 ,  8000 ,  0.6 ,  15000 , 1.1 ,  0 
 
amp    dur     amp     dur    amp     dur    amp     dur   amp 
 
Then straight linear interpolation is used to calculate the values in between, as the 
following diagram shows 
 
Diagram 10 
 

 
 
The general form of LINSEG is therefore 
 
kr linseg amp1, dur1, amp2, dur2, amp3, dur3, ...  
 
where 
 
amp1, amp2, amp3... are the amplitudes. 
 
dur1, dur2, dur3... are the time durations.  



 
4.2.3 EXPSEG 
This envelope generator works in a similar fashion to LINSEG, the only difference being 
that instead of interpolating straight lines between the given points, it uses exponential 
segments. 
 
It is worth remembering that an exponential function can never be 0. Therefore if the same 
values as before were to be used, the computer would issue an error message. In order to 
avoid this, a very small value, like 0.0001 can be given.   For example, if an EXPSEG 
generator is given the same values as before replacing the zeros at the beginning and the 
end with 0.0001 the result is : 
 
Diagram 11 
 
 

 
 
 
4.2.4 Other Means of Producing Envelopes 
There are at least two other ways of producing an envelope. One is the envelope 
generator ENVLPX. It is explained in the Csound  manual and will not be covered here. 
 
The second method is achieved by using an oscillator to generate an envelope. The 
envelope generator must have a period of oscillation equal to the duration of the event. In 
order to achieve an envelope oscillator with a period  T T T T  equal to p3p3p3p3 the duration of the 
event its frequency must be 
 
freq =  1/T = 1/p3 
 
 



The advantage of using an oscillator is that it can take advantage of the GEN routines in 
order to generate most diverse and capricious envelopes. 
 
Following is an example of an instrument that uses an oscillator to generate an envelope 
with its shape of the determined by the function table 1. The shape of the audio waveform 
is determined by the function table 10. 
 
instr 3 
k1 oscil p4, 1/p3, 1; envelope 
a1 oscil k1, p5, 10; audio signal 

out a1; output 
endin 
 
4.3 Example Example Example Example ---- Three Different Envelopes Three Different Envelopes Three Different Envelopes Three Different Envelopes    
CS4.ORC contains three instruments that play a waveform with different envelopes. 
 
instr 4  uses LINEN with an attack given by the parameter p6 p6 p6 p6  and a decay time given by 
p7 p7 p7 p7 . As usual, p3p3p3p3 represents the duration. 
 
instr 5  uses LINSEG with an attack that is .05 of the duration of the note ( p3 p3 p3 p3  ), then a 
decrease to .4 of the amplitude that takes .3 of the duration of the note, followed by an 
increase to .75 of the amplitude in .15 of the duration of the note, and finally a decay to 
zero in the remaining time ( .5 of the duration ). 
 
instr 6  uses EXPSEG with the same amplitudes and durations as above. 
 
In the score, a 2 second sound coming from the same signal generator is played in each 
instrument giving different results according to the envelope as shown in diagrams 12, 13 
and 14. The results can be heard in Csound tape example 4. 
 



Diagram 12 Instrument 4 :Use of LINEN 
 

 
 
Diagram 13 Instrument 5 :Use of LINSEG 
 

 
 
Diagram 14 Instrument 6 :Use of EXPSEG 
 

 
 
 



The orchestra and the score are listed below: 
; CS4.ORC       -       Simple Oscillators 
;with envelopes 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 4; uses LINEN 
 
;p4amplitude 
;p5frequency 
;p6attack 
;p7decay 
;p8function table 
 
k1linenp4, p6, p3, p7; envelope 
a1oscilk1, p5, p8; oscillator 
outa1              ; output 
 
endin 
 
instr 5; uses LINSEG 
 
;p4amplitude 
;p5frequency 
;p6function table 
 
i1=.05*p3                            ;dur1 
i2=.15*p3                            ;dur2 
i3=.3*p3                             ;dur3 
i4=.5*p3                             ;dur4 
k1linseg0,i1,p4,i2,.3*p4,i3,.75*p4,i4,0 ; envelope 



a1oscil   k1, p5, p6                        ; oscillator 
out     a1                                ; output 
endin 
 
 
instr 6; uses EXPSEG 
 
;p4amplitude 
;p5frequency 
;p6function table 
 
i1=.05*p3                               ;dur1 
i2=.15*p3                               ;dur2 
i3=.3*p3                                ;dur3 
i4=.5*p3                                ;dur4 
k1expseg  .0001,i1,p4,i2,.3*p4,i3,.75*p4,i4,.0001 ;env 
a1oscil   k1, p5, p6                              ; osc 
outa1                                   ; out 
endin 
 
 
 
 
; CS4.SC 
 
f5 0 512 10 1 .5 .7 .9 .2 .87 .76 
 
;Uses simple linear envelope 
;               p3      p4      p5      p6      p7      p8 
;instr  start   dur     amp     freq    rise    decay   func 
 
i4      0        2      30000   120     .05     1       5 
 
s 



 
;Uses linear envelope 
;               p3      p4      p5      p6 
;instr  start   dur     amp     freq    func 
 
i5      1        2      30000   120     5 
 
s 
 
;Uses exponential envelope 
;               p3      p4      p5      p6 
;instr  start   dur     amp     freq    func 
 
i6      1        2      30000   120     5 
 
e 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5. Some Useful Devices5. Some Useful Devices5. Some Useful Devices5. Some Useful Devices    
 
In addition to statements representing oscillators, envelopes and 
filters,  Csound offers a series of facilities in the shape of functions that can perform quick 
operations to relieve the user from doing tedious calculations. For example, there is a 
function to convert dB to amplitude and another to convert amplitude back to dB. 
 
Some of these facilities will be surveyed in this chapter. At the same time, new examples 
of slightly more sophisticated instruments will be shown. 
 
 
5.1 LINELINELINELINE    
 
This time we will begin with an example. An instrument will be designed that has some 
voice-like qualities. As an example it will be used to play the first two Kyrie Eleison of 
Palestrina's Missa Papae Marcelli. 
 
The properties that add interest to the instrument are 
 
1. An amplitude that 'swells' to up to an additional 1/5 of the maximum amplitude 

indicated by p4p4p4p4. In order to do this, an envelope generator that produces a straight 
line is used. 

 
Diagram 15 Line Envelope Generator 

 
 
 
2. A 5 hz vibrato (frequency fluctuation), of width that varies from 0 to 1/100 of the 

frequency (p5p5p5p5) in the first half of the note and then decreases to 0 at the end. This is 
achieved by using an envelope to determine the vibrato width, which is then fed into 
an oscillator that produces the actual vibrato subsequently added to the actual 
frequency. 



Diagram 16 Vibrato Module 

 
 
The amplitude swell can be implemented by using LINSEG. However, this is an 
opportunity to introduce a new statement: LINE. 
 
This statement is a variation of LINSEG that produces only one linear segment. Its general 
form is 
 
kr line amp1, dur, amp2  
 
where 
amp1 is the first amplitude 
 
amp2 is the last amplitude 
 
dur is the duration. 
 
Therefore this statement is equivalent to 
kr linseg amp1, dur, amp2 
 
Since  the former two improvements take care of adding higher harmonics and some 
dynamic variation, the sound generator does not need to be very complicated. In fact, a 
sine wave is used. 
 
The whole instrument is shown in diagram 17 
 
 
 
 



Diagram 17  Instrument 7 

 
 
The orchestra and score are listed below. Csound tape example 5 contains the results. 
 
; CS5.ORC       -       Oscillator with variable width 
;                       vibrato and swell. 
 
;p4     amplitude 
;p5     frequency 
;p6     attack 
;p7     decay 
;p8     function table 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 7 
 
     i1   =       1/5                  ; maximum swell 
        i2   =       p5/100               ; maximum vib width 
        i3   =       p3/2                 ; half a cycle 



        k1   linen   p4,p6,p3,p7          ; envelope 
        k2   line    0, p3, i1            ; swell 
        k3   linseg  0, i3, i2, i3, 0     ; vib width 
        k4   oscil   k3, 5, 1             ; vibrato 
        a1   oscil   k1*(1+k2), p5+k4, p8 ; oscillator 
        out     a1                   ; output 
 
endin 
; CS5.SC 
; First two Kyrie Eleison from Palestrina's Missa Papae Marcelli 
 
f1 0 8192 10 1 
 
;       SOPRANO 
;               p3      p4      p5      p6      p7      p8 
;instr  start   dur     amp     freq    attack  decay   func 
i7      1       1.5     4000    587.329 .05     .05     1    ; D 
i7      +       0.5     .       .       .       .       .    ; D 
i7      +       1       .       .       .       .       .    ; D 
i7      +       0.75    .       783.991 .       .       .    ; G 
i7      +       0.25    .       698.456 .       .       .    ; F 
i7      +        .      .       659.255 .       .       .    ; E 
i7      +        .      .       587.329 .       .       .    ; D 
i7      +        .      .       523.251 .       .       .    ; C 
i7      +        .      .       493.883 .       .       .    ; B 
i7      +        .      .       440     .       .       .    ; A 
i7      +        .      .       391.995 .       .       .    ; G 
i7      +       1       .       .       .       .       .    ; G 
i7      +       0.5     .       369.994 .       .       .    ; F# 
i7      +       1       .       391.995 .       .       .    ; G 
; second phrase 
i7      +        .      .       587.329 .       .       .    ; D 
i7      +       0.75    .       493.883 .       .       .    ; B 
i7      +       0.25    .       440     .       .       .    ; A 



i7      +        .      .       493.883 .       .       .    ; B 
i7      +        .      .       523.251 .       .       .    ; C 
i7      +       0.5     .       587.329 .       .       .    ; D 
i7      +       0.75    .       659.255 .       .       .    ; E 
i7      +       0.25    .       587.329 .       .       .    ; D 
i7      +        .      .       523.251 .       .       .    ; C 
i7      +        .      .       440     .       .       .    ; A 
i7      +       0.75    .       587.329 .       .       .    ; D 
i7      +       0.25    .       523.251 .       .       .    ; C 
i7      +       1       .       523.251 .       .       .    ; C 
i7      +       0.5     .       493.883 .       .       .    ; B 
i7      +       2       .       523.251 .       .       .    ; C 
 
 
;       ALTO 
;               p3      p4      p5      p6      p7      p8 
;instr  start   dur     amp     freq    attack  decay   func 
 
i7      3       1.5     .       391.995 .       .       .    ; G 
i7      +       0.5     .       .       .       .       .    ; G 
i7      +       1       .       .       .       .       .    ; G 
i7      +       2       .       523.251 .       .       .    ; C 
i7      +        .      .       493.883 .       .       .    ; B 
; second phrase 
i7      10.5    1       .       391.995 .       .       .    ; G 
i7      +       0.5     .       .       .       .       .    ; G 
i7      +       1       .       .       .       .       .    ; G 
i7      +       0.5     .       440     .       .       .    ; A 
i7      +       1       .       391.995 .       .       .    ; G 
i7      +       0.5     .       349.228 .       .       .    ; F 
i7      +       1       .       391.995 .       .       .    ; G 
i7      +       2       .       329.627 .       .       .    ; E 
 
 



;       TENOR 1 
;               p3      p4      p5      p6      p7      p8 
;instr  start   dur     amp     freq    attack  decay   func 
 
i7      0       1.5     4000    293.664 .05     .05     1    ; D 
i7      +       0.5     .       .       .       .       .    ; D 
i7      +       1       .       .       .       .       .    ; D 
i7      +       0.75    .       391.995 .       .       .    ; G 
i7      +       0.25    .       349.228 .       .       .    ; F 
i7      +       0.5     .       329.627 .       .       .    ; E 
i7      +        .      .       293.664 .       .       .    ; D 
i7      +       1.5     .       329.627 .       .       .    ; E 
i7      +       0.5     .       293.664 .       .       .    ; D 
i7      +       1       .       261.625 .       .       .    ; C 
; second phrase 
i7      +       1       .       293.664 .       .       .    ; D 
i7      +       0.5     .       246.941 .       .       .    ; B 
i7      +        .      .       195.997 .       .       .    ; G 
i7      +       0.75    .       391.995 .       .       .    ; G 
i7      +       0.25    .       349.228 .       .       .    ; F 
i7      +       0.5     .       329.627 .       .       .    ; E 
i7      +        .      .       293.664 .       .       .    ; D 
i7      +       0.5     .       261.625 .       .       .    ; C 
i7      +       1       .       329.627 .       .       .    ; E 
i7      +       0.5     .       293.664 .       .       .    ; D 
i7      +       0.5     .       329.627 .       .       .    ; E 
i7      +       0.25    .       293.664 .       .       .    ; D 
i7      +        .      .       261.625 .       .       .    ; C 
i7      +       1       .       293.664 .       .       .    ; D 
i7      +       2       .       261.625 .       .       .    ; C 
 
 
;       TENOR 2 
;               p3      p4      p5      p6      p7      p8 



;instr  start   dur     amp     freq    attack  decay   func 
 
i7      8       1.5     4000    293.664 .05     .05     1    ; D 
i7      +       0.5     .       .       .       .       .    ; D 
i7      +       1       .       .       .       .       .    ; D 
i7      +       0.75    .       391.995 .       .       .    ; G 
i7      +       0.25    .       349.228 .       .       .    ; F 
i7      +        .      .       329.627 .       .       .    ; E 
i7      +        .      .       293.664 .       .       .    ; D 
i7      +        .      .       261.625 .       .       .    ; C 
i7      +        .      .       246.941 .       .       .    ; B 
i7      +       0.5     .       220     .       .       .    ; A 
i7      +       0.5     .       246.941 .       .       .    ; B 
i7      +       1       .       261.625 .       .       .    ; C 
 
 
;       BASS 1 
;               p3      p4      p5      p6      p7      p8 
;instr  start   dur     amp     freq    attack  decay   func 
 
i7      2       1.5     4000    195.997 .05     .05     1    ; G 
i7      +       0.5     .       .       .       .       .    ; G 
i7      +       1       .       .       .       .       .    ; G 
i7      +       1.5     .       261.625 .       .       .    ; C 
i7      +       0.5     .       246.941 .       .       .    ; B 
i7      +       1       .       220     .       .       .    ; A 
i7      +       2       .       195.997 .       .       .    ; G 
; last chord 
i7      16      2       .       130.812 .       .       .    ; C 
 
 
;       BASS 2 
;               p3      p4      p5      p6      p7      p8 
;instr  start   dur     amp     freq    attack  decay   func 



 
i7      9       1.5     4000    195.997 .05     .05     1    ; G 
i7      +       0.5     .       .       .       .       .    ; G 
i7      +       1       .       .       .       .       .    ; G 
i7      +       1.5     .       261.625 .       .       .    ; C 
i7      +       0.5     .       246.941 .       .       .    ; B 
i7      +       1       .       220     .       .       .    ; A 
i7      +       3       .       391.995 .       .       .    ; G 
 
e 
 
A new feature can be noticed in the score: when consecutive events are played, a '++++' in 
the start time field means 'play after the previous sound has finished'. This effectively 
relieves us from having to calculate the start time for each event. 
 
5.2 EXPONEXPONEXPONEXPON    
 
There is an equivalent of LINE that produces an exponential between to amplitudes. It is 
called EXPON and it uses the same parameters as LINE. 
 
Also 
 
kr expon amp1, dur , amp2 
 
is equivalent to 
 
kr expseg amp1, dur, amp2 
 
It is now possible to produce an instrument that uses an exponential swell instead of the 
linear one: 
 
instr 8; Oscillator with varying  vibrato rate and ;width, and exponential 'swelling' amplitude. 
     i1   =       1/5                  ; maximum swell 
        i2   =       p5/100               ; maximum vib width 



        i3   =       p3/2                 ; half a cycle 
        k1   linen   p4,p6,p3,p7          ; envelope 
        k2   expon   .0001, p3, i1        ; exponential swell 
        k3   linseg  0, i3, i2, i3, 0     ; vib width 
        k4   oscil   k3, 5, 1             ; vibrato 
        a1   oscil   k1*(1+k2), p5+k4, p8 ; oscillator 
        out     a1                   ; output 
endin 
 
The previous score can be used. 
 
5.3 Pitch RepresentationPitch RepresentationPitch RepresentationPitch Representation    
The fact that pitches are represented by frequencies makes the task of producing the 
score in the previous examples a very tedious and unnatural one. Fortunately, there are 
two alternatives to using frequencies. 
 
5.3.1  PCH Representation 
This is akin to tempered tuning: A pitch is represented by a number consisting of an 
integer representing the octave and a fractional part usually ranging from .00 to .12 
representing the number of semitones above C. 
 
The middle C octave is represented by the integer 8. Therefore, the lower octave is 7, two 
octaves lower 6, and so on. In a similar way, the octaves above are 9, 10, etc. 
 
Examples 
 
8.07is 7 semitones above middle C: G. 
6.10is 10 semitones above C two octaves below: Bb. 
 
Microtones can be achieved by using more decimal places. For example 
 
8.065 is a quarter tone above F#. 
 
Finally, if the number of semitones indicated by the decimal part is bigger than 12, this will 



indicate more than an octave above C. 
For example 
 
8.15 is 15 semitones above middle C: Eb a minor tenth above. This is equivalent to Eb, a 
minor third above C in the next octave: 9.03. 
 
 
5.3.2 OCT Representation 
This representation uses a number consisting of an integer part that represents the octave, 
and a fraction that represent an actual subdivision of the octave. 
 
For example 
8.5 is half an octave above middle C. This is F#. If PCH representation was used, this 
would be represented as 8.06. 
 
The score in the previous example can now be written using PCH representation. As an 
example, the first phrase of Tenor 1 is listed below. The whole score is given as CS6.SC in 
the floppy disk containing the code for the examples. 
 
;       TENOR 1 
;               p3      p4      p5      p6      p7      p8 
;instr  start   dur     amp     PCH     attack  decay   func 
 
i9      0       1.5     4000    8.02    .05     .05     1   ; D 
i9      +       0.5     .       .       .       .       .   ; D 
i9      +       1       .       .       .       .       .   ; D 
i9      +       0.75    .       8.07    .       .       .   ; G 
i9      +       0.25    .       8.05    .       .       .   ; F 
i9      +       0.5     .       8.04    .       .       .   ; E 
i9      +        .      .       8.02    .       .       .   ; D 
i9      +       1.5     .       8.04    .       .       .   ; E 
i9      +       0.5     .       8.02    .       .       .   ; D 
i9      +       1       .       8.00    .       .       .   ; C 
 



5.3 Pitch ConvertersPitch ConvertersPitch ConvertersPitch Converters    
The use of PCH notation makes the score easier to write and understand. However, this 
presents a problem in the orchestra: OSCIL needs data expressed in cycles per second 
(CPS or hz). Therefore, it is necessary to translate PCH data into frequency. 
 
Csound provides a function that can convert PCH information into cycles per second: 
CPSPCH. 
 
The general form of this converter is 
 
variable = cpspch( PCH )  
where 
 
variable is equal to the frequency corresponding to the PCH representation. 
 
Instrument 9 is an altered version of instrument 7 that can cope with PCH notation thanks 
to the variable i0i0i0i0, which is made equal to the frequency corresponding to p5p5p5p5 (given in PCH 
representation) and use subsequently instead of p5p5p5p5. 
 
i0 = cpspch(p5) 
 
The whole instrument is given next 
; CS6.ORC-Oscillator with variable width 
;         vibrato and swell. 
;              Accepts pitch and converts it ;to frequency. 
 
;p4     amplitude 
;p5     frequency 
;p6     attack 
;p7     decay 
;p8     function table 
 
sr = 44100 
kr =  4410 



ksmps = 10 
nchnls = 1 
 
instr 9 
 
     i0=   cpspch(p5)           ; pitch to frequency 
     i1=       1/5                  ; max swell 
     i2=       i0/100               ; maximum vib width 
     i3=       p3/2                 ; half a cycle 
     k1linen   p4,p6,p3,p7          ; envelope 
     k2line    0, p3, i1            ; swell 
     k3linseg  0, i3, i2, i3, 0     ; vib width 
     k4oscil   k3, 3, 1             ; vibrato 
     a1oscil   k1*(1+k2), i0+k4, p8 ; oscillator 
            out     a1                   ; output 
endin 
 
Csound tape example 6 shows the result of using CS6.ORC and CS6.SC which is 
identical to example 5. 
 
There are other converters that transform OCT to frequency, PCH to OCT, etc., namely 
CPSPCHconverts PCH to CPS. 
CPSOCTconverts OCT to CPS. 
OCTCPSconverts CPS to OCT. 
OCTPCHconverts PCH to OCT. 
PCHOCTconverts OCT to PCH. 
There is no conversion from CPS to PCH. 
 



5.4 Value ConvertersValue ConvertersValue ConvertersValue Converters    
 
Csound offers functions that help avoid tedious calculations called value converters. In this 
section, two of these will be used to produce an instrument that expands or squeezes the 
octave around middle C according to a factor given by p9p9p9p9. 
 
The principle behind this new instrument is: At the beginning of each note, the given pitch 
is converted into semitones above or below middle C. This is stored in the variable istististist (if ist 
is positive then the pitch is above middle C otherwise it is below). Then, that number of 
semitones is multiplied by the factor given by p9. Finally, it is added to middle C. 
 
The number of semitones above (below) middle C is found as follows: 
 
Middle C in PCH notation is octave 8. That is  8 x 12 = 96 semitones. 
 
The pitch given is separated into 
 
1. Its integer part, representing the number of octaves, which is subsequently 

multiplied by 12. 
 
2. Its fractional part, representing the number of semitones above that octave. In order 

to find the actual number of semitones, this fraction has to be multiplied by 100. 
 
Therefore, the total number of semitones is  

integer part x 12  + fractional part x 100 
 
Finally, the variable istististist is equal to 
 

ist = total number of semitones - 96 
 
For example, if G, 7 semitones above middle C is given, its PCH representation will be 
8.07. 

integer part = 8->8 x 12 = 96 semitones 
fractional part = .07->.07 x 100 = 7 semitones 



total number of semitones = 96 + 7 = 103 
ist = 103 - 96=7 semitones above 

 
The integer and fractional parts of the PCH representation are obtained by respectively 
using the converters INT and FRAC. 
 
instr 10 is the implementation of an instrument that can squeeze or expand intervals above 
and below middle C. 
 
; CS7.ORC-Oscillator with variable width 
;              vibrato and swell. Accepts pitch and converts  
;to frequency and squeezes or expands the  
;octave above and below middle C 
 
;p4     amplitude 
;p5     frequency 
;p6     attack 
;p7     decay 
;p8     function table 
;p9     squeeze/expansion factor 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 10 
 
;squeeze or compress 
 
     ist  = int(p5)*12 + frac(p5)*100 - 96  
                                              ; semitones above  
                                              ; middle C 
        itot = 96 + ist*p9          ; total semitones 



        ioc  =     int(itot/12)         ; octave 
        ist  =     itot - ioc*12        ; semitones above 
        i0   =     ioc+ist/100          ; to PCH notation                                              ; middle C 
 
;the rest is identical to instrument 9 
 
        i0   =     cpspch(i0)           ; PCH to freq 
        i1   =     1/5                  ; max swell 
        i2   =     i0/100               ; max vib width 
        i3   =     p3/2                 ; half a cycle 
        k1   linen p4,p6,p3,p7          ; envelope 
        k2   line  0, p3, i1            ; swell 
        k3   linseg0, i3, i2, i3, 0     ; vib width 
        k4   oscil   k3, 3, 1             ; vibrato 
        a1   oscil   k1*(1+k2), i0+k4, p8 ; oscillator 
          out     a1                 ; output 
endin 
 
The score in the two previous examples can be used with instrument 10 by adding 
parameter p9p9p9p9. 
 
Csound tape example 7 contains two versions: First, the octave is squeezed by .65 and 
then it is expanded by 1.35. They do not appear to do much good to this piece. However, 
this instrument could be used to investigate non-rigid transformations of the tempered or 
any other scale. Non-rigid transformations do not preserve interval distances. 
 
The previous instrument can still be made more sophisticated. The centre pitch can be 
given in the score and set as a variable in the orchestra. All that has to be done is convert 
it to semitones. 
 
 
Instrument 11 is a realization of this enhancement and Csound tape example 8 uses the 
first note in (yet) the same score - D above middle C - as the centre pitch and expands the 
octave by a factor of 1.3 . 



 
 
; CS8.ORC-Oscillator with variable width 
;              vibrato and swell. 
;              Accepts pitch and converts to frequency. 
;              and squeezes or expands the octave above and  
;              below a centre pitch given by p10 
 
;p4     amplitude 
;p5     frequency 
;p6     attack 
;p7     decay 
;p8     function table 
;p9     squeeze/expansion factor 
;p10    centre pitch 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 11 
 
 
;Convert centre pitch to semitones 
 
        icst=         int(p10)*12 + frac(p10)*100 
 
;squeeze or compress 
 
     ist  = int(p5)*12 + frac(p5)*100 - icst 
                                              ; semitones above  
                                              ; centre pitch 
        itot = icst + ist*p9        ; total semitones 



        ioc  =     int(itot/12)         ; octave 
        ist  =     itot - ioc*12        ; semitones above 
        i0   =     ioc+ist/100          ; to PCH notation                                              ; middle C 
 
;the rest is identical to instrument 9 
 
        i0   =     cpspch(i0)           ; PCH to freq 
        i1   =     1/5                  ; max swell 
        i2   =     i0/100               ; max vib width 
        i3   =     p3/2                 ; half a cycle 
        k1   linen p4,p6,p3,p7          ; envelope 
        k2   line  0, p3, i1            ; swell 
        k3   linseg0, i3, i2, i3, 0     ; vib width 
        k4   oscil   k3, 3, 1             ; vibrato 
        a1   oscil   k1*(1+k2), i0+k4, p8 ; oscillator 
          out     a1                 ; output 
 
endin 
 
 
5.5 Example Example Example Example ---- Fan Out Fan Out Fan Out Fan Out    
After the lengthy discussion on pitch representation and manipulation, Csound may appear 
to be a note oriented synthesis language. This is not necessarily so, since an event  does 
not have to be a note. On the contrary, sounds with very complex morphologies can be 
produced, as will be shown in later sections. 
 
The next example shows an instrument that, given a certain frequency, 'fans out' 3 upper 
and 3 lower glissandi. The width of each glissando is a multiple of a fraction of the original 
frequency. The fraction is determined by p8p8p8p8 in the score. 
 



 
 
For example, if 440 hz and a factor of .1 are given 
 
The separation in hz will be 
 
440 hz x .1=44 hz 
 
The upper glissandi will fan out to 440 + 44 = 484 hz 
484 + 44 = 528 hz 
528 + 44 = 572 hz 
 
and the lower will fan to 
 
440 – 44 = 396 hz 
396 – 44 = 352 hz 
352 – 44 = 308 hz 
 
Two versions are given: One with a linear fan-out (instrument 12) and one with an 
exponential fan-out (instrument 13). 
 
Csound example 9 shows the results of using instrument 12 with CS9.SC (given below). 
 
; CS9.ORC       -       Fan Out Instrument 
;               From one frequency, 3 upper and 3 lower glissandi 
;               fan out. They are separated by a fraction of the  
;               frequency given in p9 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 12; linear fan-out 



 
;p4 :   amplitude 
;p5 :   frequency 
;p6 :   attack 
;p7 :   decay 
;p8 :   fraction 
;p9 :   function table 
 
     ihz     =       p8*p5; separation in hz 
     iu1     =       p5+ihz; first fan up freq. 
     iu2     =       iu1+ihz; second fan up freq. 
     iu3     =       iu2+ihz; third fan up freq. 
     il1     =       p5-ihz; first fan down freq. 
     il2     =       il1-ihz; second fan down freq. 
     il3     =       il2-ihz; third fan down freq. 
 
     k1      linen   p4, p6, p3, p7  ; envelope 
; linear glissandi 
 
     ku1     line    p5, p3, iu1; first glissando up 
     ku2     line    p5, p3, iu2; second gliss. up 
     ku3     line    p5, p3, iu3; third gliss. up 
     kl1     line    p5, p3, il1; first gliss down 
     kl2     line    p5, p3, il2; second gliss down 
     kl3     line    p5, p3, il3; third gliss down 
 
; each glissando has its own oscillator 
 
     al1     oscil   k1, kl1, p9     ; oscillator 
     al2     oscil   k1, kl2, p9     ; oscillator 
     al3     oscil   k1, kl3, p9     ; oscillator 
     au1     oscil   k1, ku1, p9     ; oscillator 
     au2     oscil   k1, ku2, p9     ; oscillator 
au3     oscil   k1, ku3, p9     ; oscillator 



 
; mix and output   
out     (au1+au2+au3+al1+al2+al3)/6 
 
endin 
 
 
instr 13; exponential fan-out 
 
;p4 :   amplitude 
;p5 :   frequency 
;p6 :   attack 
;p7 :   decay 
;p8 :   fraction 
;p9 :   function table 
 
     ihz     =       p8*p5; separation in hz 
     iu1     =       p5+ihz; first fan up freq. 
     iu2     =       iu1+ihz; second fan up freq. 
     iu3     =       iu2+ihz; third fan up freq. 
     il1     =       p5-ihz; first fan down freq. 
     il2     =       il1-ihz; second fan down freq. 
     il3     =       il2-ihz; third fan down freq. 
 
     k1      linen   p4, p6, p3, p7  ; envelope 
 
; linear glissandi. In this case CARE must be taken in order ; to avoid iu1, iu2, iu3, il1, il2, 
il3  being negative or ; zero since an exponential can never be zero or change ; sign. This 
is done by not allowing p8 to be larger than ; 1/3 
 
     ku1     expon   p5, p3, iu1; first glissando up 
     ku2     expon   p5, p3, iu2; second gliss. up 
     ku3     expon   p5, p3, iu3; third gliss. up 
     kl1     expon   p5, p3, il1; first gliss down 



     kl2     expon   p5, p3, il2; second gliss down 
     kl3     expon   p5, p3, il3; third gliss down 
 
; each glissando has its own oscillator 
 
     al1     oscil   k1, kl1, p9     ; oscillator 
     al2     oscil   k1, kl2, p9     ; oscillator 
     al3     oscil   k1, kl3, p9     ; oscillator 
     au1     oscil   k1, ku1, p9     ; oscillator 
     au2     oscil   k1, ku2, p9     ; oscillator 
au3     oscil   k1, ku3, p9     ; oscillator 
 
; mix and output   
out     (au1+au2+au3+al1+al2+al3)/6 
 
endin 
 
;CS9.SCExample score 
 
f1 0 512 10 1 .7 .4 1 .3 .8 .95 
 
;               p3      p4      p5     p6     p7     p8     p9 
;instr  start   dur     amp     freq   attack decay  fract. func 
 
i12     0       1       15000    300    .05     1     .3     1 
i12     2       6       4500      60    .05     1     .2     1 
i12     4.5     4       .        680    .       .     .3     1 
i12     4.7     3.5     .        400    .       .     .1     1 
i12     5       3       .        560    2       1     .15    1 
i12     6.4     1.5     .        230    .       .5    .25    1 
i12     6.7     1.3     .       1200    .       .5    .06    1 
i12     6.8     3       .       2000    .       1     .13    1 
 
e 
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6. Additive Synthesis6. Additive Synthesis6. Additive Synthesis6. Additive Synthesis    
 
Additive synthesis is one of the oldest techniques. The main assumption is that sound can 
be decomposed into a unique sum of pure sine waves - called partials - each with its own 
amplitude, frequency and phase. The description of a sound in terms of the frequencies 
and amplitudes of its partials is called the spectrum. 
 
 
6.1Static SpectrumStatic SpectrumStatic SpectrumStatic Spectrum    
 
The simplest approach to additive synthesis is to imagine that the spectrum of a sound is 
always the same throughout its duration. In other words, the spectrum is assumed to be 
static. 
 
If the sound waveform is represented by a function of time: s(t), this function can be 
expressed as follows 

s(t) = A0 + A1 sin(2 π  f1t + p1)  +  A2 sin(2 π  f2t + p2) + ... 

 

= A0 + Σ { Ai sin(2 π  fit + pi) } 
             i 
 

π  = 3.1415927... 
 
where the amplitudes A0, A1, A2 ...  the frequencies f0, f1, f2 ... , and phases p0, p1, p2 ... 

are all constant: they do not change as time goes by. 
 
It can then be inferred that: 
 
1. Different sets of amplitudes and frequencies (different spectra) produce different 

sounds. Experiments seem to indicate that the phase is not a significant factor in 
sound recognition, but rather has to do more with positioning a sound in space. 

2. Two sounds that have the same component frequencies but differ in the relative 
amplitudes of these partials, have different timbre. 

 



3. Sounds that have partials that are close to multiples of the lowest frequency 
(fundamental) tend to be more 'pitched' than those that do not. When there is such a 
relation, the partials are also called harmonics and the spectrum is said to be 
harmonic. 

 
 
6.1.1Harmonic Spectrum 
Harmonic static spectrum has been dealt with when examining GEN10, which requires the 
relative amplitude of each harmonic. Examples can be found in chapter 3, section 3.10, 
(CS2.ORC and CS2.SC). 
 
This is an appropriate place to introduce an statement very similar to OSCIL. This 
statement is called OSCILI and requires exactly the same parameters as OSCIL. 
ar oscili  amp, freq, func ( , phase )  
 
The only difference between these two is that OSCILI uses a more accurate method of 
producing a waveform, therefore the sounds so produced are cleaner. But, as expected, 
there is a price that has to be paid: OSCILI is about twice as slower to compile than 
OSCIL. 
 
In order to enjoy the speed of OSCIL with the accuracy of OSCILI, larger function tables 
can be used with OSCIL (8192 points or more) which sample the cycle of a waveform 
more accurately at the expense of more memory needed to store the function table. A few 
table sizes of 8192 should not be a terrible problem to handle for a 512 Kbyte or 1 Mbyte 
RAM microcomputer. 
 
6.1.2 Inharmonic Spectrum 
Inharmonic spectra occur when the frequencies of the partials are not multiples of a 
fundamental. This requires a signal generator that allows specifying the frequency of each 
partial as well as its amplitude. 
 
Theoretically, such a generator is available in GEN9, which also allows specification of the 
phase.  Thus, for each partial GEN9 requires three values 
 



freq ratio amplitude phase 
 
where 
 
amplitude is the relative amplitude of that partial, like in GEN10. 
 
freq ratio is the ratio between the frequency of that partial and the fundamental. For 

example, if the fundamental is 100 hz and the partial is 141 hz, the ratio is 
 

141 / 100=1.41 
 
phase is the phase of the partial given in degrees. 
 
For example, the function  
f2 0 4096 9   1 1 0   1.41 .8 20   1.89 .9 45   2.3 .7 90 
 
defines a waveform that has the following 4 partials. 
 

freq ratio amplitude phase 
fundamental  1  1     0 
2nd partial 1.41   .8   20 
3rd partial 1.89    .9   45 
4th partial 2.3   .7    90 
 
    
If the fundamental were 100 hz, then the partials would be: 141, 189 and 230 hz. 
 
However, this will not really produce the effect of a sound that has different inharmonic 
spectrum. What GEN9 really does is to produce a cycle that can be repeated, with no 
regard to the fact that the partials are not necessarily contained a whole number of times 
in that cycle, thus truncating their continuation. In the end, because of the fact that a cycle 
is repeated, a pitched sound is produced regardless of how complicated the data given to 
GEN9 may be. Effectively, because of the truncation of the partials, the spectrum of the 
resulting sound is distorted and does not necessarily contain the specified frequencies. 



 
This can be shown if an instrument that truly produces inharmonic spectra is devised. The 
instrument is readily done by dedicating an oscillator to each partial and mixing the result 
at the end, as shown in diagram 18. Instrument 14 (shown below in CS10.ORC) is a 
realisation of this diagram. 
 
Diagram 18 Instrument that Produces Seven Partials  

 
 
In order to prove that the results given by this instrument and GEN9 are different, 
CS10.ORC and CS10.SC implement a waveform that is generated both by a simple 
oscillator using GEN9, and by instrument 14 using pure sines. For the sake of simplicity, 
the phases are left to be 0. This comparison can be heard in Csound tape example 10. 
First the GEN9 generated signal is played, then the one produced with instrument 14, 
which is the truly unpitched sound. 
Waveform description  

Partial number RelativeFrequency Relative Amplitude 
fundamental     1                1 

          2                0.8             1.41 
          3                0.9             1.89 
          4                0.7             2.3 
          5                0.65           2.6 
          6                0.93             3.2 
          7                0.94             3.5 
 



; CS10.ORC 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 3        ; Simple Oscillator 
               ; Uses table defined by function number 
                ; indicated in p8. 
 
        k1linen   p4, p6, p3, p7  ; envelope 
        a1     oscil   k1, p5, p8      ; oscillator 
               out     a1         ; output 
endin 
 
instr 14        ; Inharmonic oscillator. Up to 7 partials. 
 
;p4 : overall amplitude 
;p5 : fundamental frequency 
;p6, p8, p10, p12, p14, p16, p18 : relative amplitudes  
;of partials 
;p7, p9, p11, p13, p15, p17, p19 : relative frequencies  
;of partials 
                         
     i1      =       p5*p7           ; 1 partial freq 
     i2      =       p5*p9           ; 2 partial freq 
     i3      =       p5*p11          ; 3 partial freq 
     i4      =       p5*p13          ; 4 partial freq 
     i5      =       p5*p15          ; 5 partial freq 
     i6      =       p5*p17          ; 6 partial freq 
     i7      =       p5*p19          ; 7 partial freq 
     k1      linen   p4, .1, p3, .1  ; envelope 
     a1      oscil   p6, i1, 1       ; 1 partial 
     a2      oscil   p8, i2, 1       ; 2 partial 



     a3      oscil   p10, i3, 1      ; 3 partial 
     a4      oscil   p12, i4, 1      ; 4 partial 
     a5      oscil   p14, i5, 1      ; 5 partial 
     a6      oscil   p16, i6, 1      ; 6 partial 
     a7      oscil   p18, i7, 1      ; 7 partial 
 
     ; mix and output 
        out     k1*(a1+a2+a3+a4+a5+a6+a7)/7  
endin 
 
;CS10.SC 
f1 0 4096 10 1 
f2 0 4096 9  1 1 0   1.41 .8 0   1.89 .9 0  2.3 .7 0   
   2.6 .65 0   3.2 .93 0   3.5 .94 0 
 
; Using GEN9 
;             p3    p4      p5     p6     p7      p8 
;instr start  dur   amp  freq rise decay func 
i3      0      2    30000 300    .1     .1      2 
s 
 
; Using 7 oscillators 
;             p3    p4        p5      p6,p8...p18   p7,p9...p19 
;instr  start  dur   amp    fund   relative relative 
                        overall  freq    amplitudes    frequencies 
i14     2      2     30000    300     1               1 

.8              1.41 

.9              1.89 

.7              2.3 

.65             2.6 

.93             3.2 

.94             3.5 
e 



A snapshot of the waveforms is shown in diagram 19. Observe the periodicity of the GEN9 
waveform. 
 
Diagram 19 

 
 
1. Using GEN9  
 

 
 
2. Using Independent Oscillators in instr 14 
 

 
 
6.2 Dynamic SpectrumDynamic SpectrumDynamic SpectrumDynamic Spectrum    
So far a static spectrum has been assumed. However, sounds in nature have a dynamic    
spectra. That is, they change as time goes by. In the early days, this was one of the main 
reasons for the 'dead' quality of synthesized sounds. 
 
From a formal point of view a waveform is now represented as: 

s(t) = A0(t) + A1(t) sin( 2 π  f1(t)t + p1(t) ) +  ... 

 

= A0(t) + Σ { Ai(t) sin( 2 π  fi(t)t + pi(t) ) } 
      i 

where A0(t), A1(t), A2(t) ... , f0(t), f1(t), f2(t) ...  and p0(t), p1(t), p2(t) ... are now themselves 

functions of time, changing as the sound evolves. 
 
A dynamic spectrum gives sounds their morphology. Therefore, regardless of which 



technique is in use, the main aim is always to produce such spectrum and to control its 
evolution. In additive synthesis, this is done by varying the amplitudes and frequencies of 
the partials through time, which amounts to giving each of these components an individual 
amplitude and frequency envelope. 
 
Csound offers a module called ADSYN. This used to require some tedious preparation, but 
there is a graphical interface, ADSYN DRAW, created by Richard Orton at York University, 
through which the envelopes for each partial are drawn using a mouse. Information about 
this program is available in the CDP users manual. 
 
6.3 Example Example Example Example ---- A Dynamic Spectrum Simple Instrument A Dynamic Spectrum Simple Instrument A Dynamic Spectrum Simple Instrument A Dynamic Spectrum Simple Instrument    
In spite of having a graphics interface like ADSYN DRAW, producing a sound by creating 
each envelope is still a very lengthy process that implies accurate knowledge of the 
envelopes of each partial. This is extremely time consuming, especially if a wide range of 
timbres and morphologies are needed. 
 
A great deal of work can be saved if the synthesis of a sound is approached in a more or 
less intuitive way, based on a reasonable assumption of what the desired characteristics 
are; therefore having a rough idea of how the spectrum varies, how the envelope of that 
sound affects its morphology, etc. Once the rough sound is produced, it can be refined. 
 
As an example, an instrument will now be produced to comply with one requirement. To 
produce a dynamic spectrum that results in a very definite gesture. 
 
This will be achieved by making some modifications to instr 14, as follows 
 
1. An envelope that rises in two stages: slowly at first and then more abruptly as 

shown in diagram 20. The parameter p20p20p20p20 is used to determine the position of the 
breakpoints. 

 



Diagram 20  Overall envelope Shape 
 

 
 
 
2. A vibrato that changes from a maximum width of 1/10  of the fundamental at the 

beginning of the sound (when it is not very loud), to almost nothing at the end. This 
vibrato affects each partial differently since it is a frequency added up and not a 
factor that multiplies all the spectrum. For each oscillator, the diagram looks as 
follows 

 
Diagram 21 Oscillator for One Partial 

 

 
 
 
In order to obtain a richer spectrum, the generating function is not necessarily restricted to 
being a sine wave. 
 
; CS11.ORC 
sr = 44100 
kr =  4410 
ksmps = 10 



nchnls = 1 
 
instr 15    ;Inharmonic oscillator. Up to 7 partials with  
                ;   vibrato shape determined by function 2 
 
;p4 : overall amplitude 
;p5 : fundamental frequency 
;p6, p8, p10, p12, p14, p16, p18 : relative amplitudes  
;of partials 
;p7, p9, p11, p13, p15, p17, p19 : relative frequencies  
;of partials 
;p20 : envelope shaper 
;p21 : function table 
                         
        i1      =       p5*p7           ; 1 partial freq 
        i2      =       p5*p9           ; 2 partial freq 
        i3      =       p5*p11          ; 3 partial freq 
        i4      =       p5*p13          ; 4 partial freq 
        i5      =       p5*p15          ; 5 partial freq 
        i6      =       p5*p17          ; 6 partial freq 
        i7      =       p5*p19          ; 7 partial freq 
        ifrq1   =       1/p3            ; freq = 1/dur  
 
        ; overall envelope 
 
        k1      linseg  0,p3-.7*p20,p4/4,.3*p20,p4,.4*p20,0  
 
        ; frequency vibrato envelope 
 
        k2      line    1, p3, 0 
        k3      oscil   k2*p5/10, 10, 2 ; frequency change 
 
        a1      oscil   p6, i1+k3, p21  ; 1 partial 
        a2      oscil   p8, i2+k3, p21  ; 2 partial 



        a3      oscil   p10, i3+k3, p21 ; 3 partial 
        a4      oscil   p12, i4+k3, p21 ; 4 partial 
        a5      oscil   p14, i5+k3, p21 ; 5 partial 
        a6      oscil   p16, i6+k3, p21 ; 6 partial 
        a7      oscil   p18, i7+k3, p21 ; 7 partial 
 
        ; mix and output 
 
                out     k1*(a1+a2+a3+a4+a5+a6+a7)/7  
 
endin 
 
Csound tape example 11 contains the sounds produced with the following score: 
 
;CS11.SC 
 
f1 0 1024 10 1 
f2 0 1024 10 1 
f3 0 1024 10 1 .5 .6 .9 1 .3 .4 .2 
 
t 0 80 
 
;            p3    p4      p5    p6..p18 p7..p19 p20     p21 
;instr start dur   amp     fund  relat.  relat.  env     func 
;                  overll  freq  amps    freqs   shaper 
 
i15   0      .5    10000   300     1       1                
                                   .8      1.41 
                                   .9      1.89 
                                   .7      2.3 
                                   .65     2.6 
                                   .93     3.2 
                                   .94     3.5    .15     1 
i15   1.3    .7   10000    300     1       1        



                                   .8      1.41 
                                   .9      1.89 
                                   .7      2.3 
                                   .65     2.6 
                                   .93     3.2 
                                   .94     3.5    .15     1 
i15   1.8    .5   15000    900     1       1        
                                   .8      1.41 
                                   .9      1.89 
                                   .7      2.3 
                                   .65     2.6 
                                   .93     3.2 
                                   .94     3.5    .15     1 
i15   1.9    3    19000     40     1       1        
                                   .8      1.41 
                                   .9      1.89 
                                   .7      2.3 
                                   .65     2.6 
                                   .93     3.2 
                                   .94     3.5    .8      1 
i15   4.4    2    19000    600     1       1        
                                   .8      1.41 
                                   .9      1.89 
                                   .7      2.3 
                                   .65     2.6 
                                   .93     3.2 
                                   .94     3.5    1       3 
 
e 
 



6.4 Example Example Example Example ---- Risset's Beating Harmonics Risset's Beating Harmonics Risset's Beating Harmonics Risset's Beating Harmonics    
 
Jean-Claude Risset's beating harmonics constitute one of the most successful displays of 
ingenuity achieved with additive synthesis. The principle behind this sound (shown in 
Csound tape example 12), is the very simple fact that when two sine waves are mixed, 
they produce a cosine wave of half the difference of their frequencies that serves as an 
envelope to a sine wave of half of the sum of those frequencies. 
 
Assuming that the frequencies of the sine waves are f1 and f2. Then m(t), the result of 

mixing them can be written as follows 
 
m(t)  =  sin(2 π  f1t) + sin(2 π  f2t) 

 
but from trigonometry: 
        a-b         a+b 
sin(a) + sin(b) = 2 [ cos( ------ ) sin( ------ ) ] 

    2  2 
    
therefore 
 
                     f1- f2     f1- f2 

m(t) = 2 [ cos(2 π    ------ ) sin(2 π   ------- ) ] 
  2        2 

 
For example, if the frequency of the one of the sine waves is 100 hz and the second one is 
150 hz, a cosine of 25 hz will serve as an envelope to a 175 hz sine wave. 
 
Now, if the values of the frequencies are carefully chosen so that they are very close, it is 
possible to end up with a very slow changing cosine that serves as an envelope to a sine 
that is itself very close to the original frequencies. 
 
For example, 110 and 110.03 hz will give an envelope of 0.015 hz (one cycle will take 
about 66 seconds) and an audible sine of 110.015 hz. When the 0.015 hz cosine reaches 
its maximum value, the 110.015 hz sine will be loud. Conversely, when the cosine value is 



close to 0, the sine will be attenuated. 
 
If instead of mixing a two sines, two complex harmonic signals are mixed, then each of the 
harmonics of one signal will interact with those of the other to produce envelopes that have 
different rates. Especially important are the corresponding harmonics of 110 and 110.03 
which will still be very close creating slow envelopes. For example, the corresponding 
second harmonics are 220 and 220.06 hz. Their interaction will produce an envelope of 
0.03 hz (1 cycle lasts ~33 seconds) shaping a 220.03 hz sine wave. The corresponding 
third harmonics will produce an envelope of 0.045 hz (1 cycle lasts ~22 seconds) shaping 
a 330.045 sine, and so on. 
 
Therefore, different harmonics will be heard at different times, corresponding to the 
maximum value of their envelopes. 
 
Finally, if more harmonic rich signals are mixed, their harmonics will interact with each 
other creating the beating effect. A good set of values is 109.88, 109.91, 109.94, 109.97, 
110, 110.03, 110.06, 110.09 and 110.12 hz, used in CS12.SC . The beauty of the idea 
lays in the simplicity of its orchestra, which of an oscillator with an envelope (instrument 3). 
The orchestra and score are listed below. 
 
;CS12.ORC      This produces a simple oscillator with an 
;envelope needed to produce RISSET's beating ;harmonics 
 
sr = 44100 
kr = 4410 
ksmps = 10 
nchnls = 1 
 
instr 3 
 
;p4 : amplitude 
;p5 : fundamental 
 
 



        k1      linen p4, .5, p3, .5; envelope 
        a1      oscil   k1, p5, 1; oscillator 
                out     a1 
 
endin 
 
 
;       CS12.SC 
;       This produces the original Risset beating harmonics 
 
f1 0 8192 10 1 1 1 1 1 1 1 1 1 1 1 1 
 
;               p3      p4      p5 
;instr  start   dur     amp     fund 
 
i3      0       35      3500    110 
i3      .       .       .       110.03 
i3      .       .       .       110.06 
i3      .       .       .       110.09 
i3      .       .       .       110.12 
i3      .       .       .       109.97 
i3      .       .       .       109.94 
i3      .       .       .       109.91 
i3      .       .       .       109.88 
 
e 
 
 
 
 
 
 
 
 



7. Subtractive Synthesis7. Subtractive Synthesis7. Subtractive Synthesis7. Subtractive Synthesis    
 
This is another technique that has been used since the early days of electronic synthesis. 
The principle behind it is simple: a source signal that is rich in partials is passed through 
filters that enhance or attenuate some of these, literally shaping the sound. 
 
RICH SIGNAL  --->  FILTER  -->  OUTPUT 
 
 
 
7.1 Input Input Input Input ---- Sources Sources Sources Sources    
 
The main synthetic sources used as input to the filters are noise generators and pulses. 
Square waves are also rich in harmonics and can be used. 
 
 
7.1.1 Noise Generators 
 
The spectrum of ideal white noise contains all possible frequencies evenly distributed up to 
half of the sampling rate (Nyquist frequency). Therefore, it is very useful for subtractive 
synthesis purposes. 
 
The basic white noise generator in Csound is RAND, which generates pseudo-random 
numbers every sample. The prefix 'pseudo' is used because these are not real random 
numbers picked by chance, but rather the result of a formula that simulates randomness 
by producing a sequence of values that can not be perceived as having any repetition 
pattern. This formula takes a seed number as a starting value from which it generates the 
rest. Therefore, if the same seed is used, the numbers generated will always be the same. 
 
When the purpose of using RAND is to produce white noise, using the same seed should 
not make any difference, but if a pseudo-random generator is used to produce a slow 
sequence of values, like for example, a  pitch series, this fact must be taken into account, 
in which case repetition can be avoided by using a different seed each time a new 
sequence is produced. 



 
RAND produces values between -1 and +1. To change this range, it is possible to multiply 
each number by an amplitude. Thus, the resulting series can be set to be between -
amplitude and +amplitude. 
 
The general statement for RAND is 
 
ar rand amp (,seed)  
 
where 
 
ar is the output signal. 
 
amp is the amplitude that determines the range. For example, if numbers between 

-32000 and 32000 are desired, amp = 32000. 
 
seed is the starting value used by the random generator. It is optional, therefore if 

it is not given, a default value of .5 is taken. 
 
 
As stated above, white noise has a uniform frequency distribution. Sometimes, noise that 
has a greater density at lower frequencies is desired sounding more like a rumble. 
 
In order to find out how to influence the frequency distribution, a rule of thumb stating that 
very quick changes in amplitude are a sign of existing high frequencies will be adopted 
(this is why clicks, that are a sudden change in amplitude, can sometimes be removed by 
appropriate low pass filters). 
 
This rule can give a heuristic explanation to the uniform distribution of frequencies in white 
noise: since RAND produces a random number at each sample, it could produce two 
consecutive random numbers with the same value, which 
could be interpreted as part of a constant or 0 hz frequency signal. On the other hand, it 
could produce 1 and -1 as two consecutive values, which can be interpreted as being part 
of the component that can change the quickest, having a cycle of two samples, thus a 



frequency of half of the sampling rate. But this is no other than the Nyquist frequency. Any 
two changes between these extremes will belong to other frequencies, larger drops or 
increments in amplitude will belong to higher frequencies and viceversa. This is illustrated 
in diagram 22. 
 
The immediate conclusion is that in order to lower the probability of having high 
frequencies, the rate at which random numbers are produced must be lowered: instead of 
producing a random number each sample (that is at a frequency equal to half of the 
sampling rate), it could be produced at a lower frequency. 
 
Diagram 22 Extreme Cases in White Noise 
 

 
 
RANDH is an alternative to RAND that can generate random numbers at any frequency. It 
will hold to the value of the last number generated until it is time to produce a new one. Its 
general form is 
 
ar randh amp, freq, (,seed)  
 
where 
 
ar is the output. 
 
freq is the frequency at which the random numbers are produced. If the frequency 

is equal to the sampling rate, the random numbers will be produced every 
sample, thus the effect is the same as with RAND. 

seed is the seed, is also optional and has the same default as with RAND. 
 



RANDH can then produce a signal that has a higher density in the low part of the 
spectrum. If an even higher predominance of low frequencies is desired,  there are still 
some corners that can be cut. The samples at which the numbers change to a new value, 
are points of very quick amplitude variation. If they are smoothed, making a gradual 
transition between two values then those high frequency components can be further 
neutralised, as shown in diagram 23, which displays the result of series of random 
numbers produced at a frequency of 400 hz (a new number every 2.5 milliseconds), once 
by changing  values change  abruptly and then by changing them gradually. 
 
Diagram 23 Random Numbers Produced Every 2.5 msec 
 
23.1 Abrupt change between values.  
 
 
 
23.2 Gradual change between values. 
 
 
 
For the reasons mentioned above, there is a third generator in Csound called RANDI, 
which produces random numbers at a given frequency but instead of changing abruptly 
from one number to the other, it interpolates between them. Its general form has the same 
variables and default seed as RANDH. 
 
ar randi amp, freq ( ,seed ) 
 
In order to hear the difference between the three, instruments using each of the random 
generators are implemented in CS13.ORC and compiled with CS13.SC . 

 

 



; CS13.ORC      -       Use of RAND, RANDH, RANDI 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
 
instr 16       ;       uses RAND 
 
;p4  : amplitude 
;p5  : not used 
;p6  : attack 
;p7  : decay 
 
 
k1      linen   p4, p6, p3, p7  ; envelope 
     a1      rand    k1              ; noise source 
             out     a1              ; output 
endin 
 
 
 
instr 17       ;       uses RANDH 
 
;p4  : amplitude 
;p5  : random oscillator frequency 
;p6  : attack 
;p7  : decay 
 
 
k1      linen   p4, p6, p3, p7  ; envelope 
          a1      randh   k1,p5           ; noise source 
                  out     a1              ; output 



endin 
instr 18       ;       uses RANDI 
 
;p4  : amplitude 
;p5  : random oscillator frequency 
;p6  : attack 
;p7  : decay 
 
 
k1      linen   p4, p6, p3, p7  ; envelope 
          a1      randi   k1,p5           ; noise source 
                  out     a1              ; output 
endin 
 
 
The score produces : 
 
1.2 seconds of 'white noise'. 
 
2.2 seconds of noise produced with RANDH at a frequency of 400 hz. 
 
3.2 seconds of noise produced with RANDI at the same frequency of 400 hz. 
 
The results can be heard in Csound tape example 13. The second sound is perceived as 
being lower than the first, and the third is heard as being even lower. 
 
;CS13.SC        Noise Generators 
 
;               p3      p4      p5      p6      p7       
;instr  start   dur     amp     freq    attack  decay    
                                                        
;       RAND 
i16     0        2      10000   0       .1      .1 
 



;       RANDH   400 hz 
i17     3        2      10000   400     .1      .1 
 
 
;       RANDI   400 hz 
i18     6        2      10000   400     .1      .1 
 
e 
 
7.1.2 Pulse Generators 
An ideal pulse is a signal containing an infinite number of partials. In practice, the most 
direct way of obtaining an approximation of a pulse is by having as many partials as 
possible, all with the same relative amplitude. However care must be taken: if a large 
number of partials is taken indiscriminately, there is the danger of exceeding the Nyquist 
frequency, which means aliasing ! 
 
Csound provides a generator that produces pulses - with as many partials as required - 
which repeat periodically. The actual sonorous result is similar to a buzz. For this reason, 
the statement is called ... BUZZ. Its general form is 
 
ar buzz amp, freq, nharm, func (, phase ) 
 
where 
 
ar is the output. 
 
amp is the overall amplitude. 
 
freq is the frequency of the fundamental. 
 
nharm is the required number of harmonics. In order to avoid exceeding the Nyquist 

frequency the number of harmonics must be less than the number of times 
the fundamental is contained in the Nyquist frequency. Thus, the following 
formula can be used to obtain the maximum possible partials 



 
 

nharm = int( (sr/2) / fundamental ) 
 

where sr, is the variable used by Csound to store the sampling rate. int() is 
used because it is necessary to round down the result. 

 
func is a function table containing a sine wave. 
 
phase is the optional phase of the signal. 
 
CS14.ORC contains an instrument that uses BUZZ. The score CS14.SC produces pulses 
that have a fundamental of 40 hz and 5, 15 and 45 partials respectively. The cycles so 
produced can be seen in diagram 24. 
 
; CS14.ORC      -       Use of BUZZ 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
 
instr 19 
 
;p4  : amplitude 
;p5  : fundamental 
;p6  : attck 
;p7  : decay 
;p8  : number of partials 
 
k1      linen   p4, p6, p3, p7; envelope 
          a1      buzz    k1, p5, p8, 1      ; pulse generator 
                  out     a1                 ; output 
endin 



; CS14.SC 
 
f1 0 8192 10 1 
 
 
;               p3   p4    p5   p6   p7p8 
;instrstartduramp freq atckdecayNo. of 
;                                   partials 
 
i19     0         2    30000 40   .1   .1  5 
 
i19       3         2    .     40   .1   .1        15 
 
i19       6         2    .     40   .1   .1        45 
 
e 
 
 
Diagram 24 Shape of One Pulse Generated by BUZZ with a Fundamental of 40 hz. 
 
 
24.1 Using 5 harmonics. 
 
 
 
24.2 Using 15 harmonics. 
 
 
24.3 Using 45 harmonics. 
 
 
 
Csound tape example 14 contains the sounds produced. 
 

 

 

 



BUZZ can be used in order to produce inharmonic spectra. In order to do this a 
fundamental that is below the auditory range (less than ~15 hz) should be used. This way, 
the missing fundamental will not be heard and the lowest audible frequency will not be at 
integer ratios with the other partials. 
 
There is an alternative generator, called GBUZZ, that allows control over low frequency 
and high frequency partials. This is done by varying their relative amplitudes using a factor 
that multiplies each partial and increases or decreases with the harmonic number. It is also 
possible to start at any partial, not necessary from fundamental. 
 
The general form of GBUZZ is 
 
ar gbuzz  amp, freq, npart, lowest, fact, func (,phase) 
 
where 
 
ar is the output. 
 
amp is the overall amplitude. 
 
freq is the frequency of the fundamental. 
 
lowest is the lowest partial relative to the fundamental that should be produced. 

Compare this with BUZZ, in which the partials will always start with the 
fundamental. 

 
npart is the required number of partials starting from lowest. For example if a 

fundamental of 100 hz is specified and the pulse is to contain 10 partials 
starting from the fifth (500 hz), then 

 
freq = 100 
lowest = 5 
npart = 10 

 



The actual components of the pulse will be 500, 600, 700, 800, 900, 1000, 
1100, 1200, 1300, and 1400 hz. 

 
This time, in order to avoid exceeding the Nyquist frequency, the number of 
the highest partial must be less than the number of times the fundamental is 
contained in the Nyquist frequency. Thus, the following formula can be used 
to obtain the maximum possible partials 

 
 

nharm = int( (sr/2)/freq ) - lowest + 1 
 
fact is the factor that multiplies the relative amplitude of each partial according to 

its harmonic number. 
 

The amplitude of the lowest partial is left as it is. 
 

The amplitude of the next partial is multiplied by fact. The amplitude of the 
following partial is multiplied by fact2. The next one is multiplied by   fact3, 
and so on. 

 
If fact  is bigger than 1, the higher harmonics will be amplified. If, instead, it is 
smaller than 1, they will be attenuated. 

 
fact  can be made to vary in time, by assigning it to a control rate variable. 

 
func is the function table. It has to be a cosine wave. 
 
phase is the optional phase of the signal. 
 
For example, if the fundamental is 20 hz, the beginning partial is the fifth (5 x 20 = 100 hz), 
a total of 4 partials is requested and the factor is .5, the relative amplitudes of the partials 
will be 
 
 



Partial  Frequency Relative Amplitude 
 
fifth  100 hz 1 
sixth  120 hz 0.5 
seventh 140 hz 0.52 = .25 
eight  160 hz 0.53 = .125 
 
 
CS15.ORC contains an instrument that use GBUZZ with partials 
specified by the score and an amplitude factor that progresses linearly from a value at the 
beginning of the event to a different value at the end. 
 
The score produces a sound with a fundamental of 30 hz, a lowest partial of 150 hz, a total 
of 30 partials and a factor that changes from 0.7 to 1.7. 



; CS15.ORC      -       Use of GBUZZ 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 20 
;p4  : amplitude 
;p5  : fundamental 
;p6  : attack 
;p7  : decay 
;p8  : beginning value of amplitude multiplier 
;p9  : final value of amplitude multiplier 
;p10 : lowest partial number 
;p11 : total number of partials 
 
          k2   line   p8,p3,p9             ; changing multiplier  
          k1   linen  p4,p6,p3,p7          ; envelope 
          a1   gbuzz  k1,p5, p11,p10,k2,1  ; pulse generator 
          out    a1                    ; output 
endin 
 
;CS15.SC 
f1 0 512 9 1 1 90; cosine wave 
;            p3  p4    p5    p6   p7     p8   p9   p10  p11 
 
;instr start dur amp   freq  atck decay  beg  end  low  numb 
;                                                          mult mult  part part 
i20    0     4   25000 30    .1      .5         .7    1.7    5    30 
e 
 
The result can be heard in Csound tape example 15. 



7.2 Shaping of the Spectrum with FiltersShaping of the Spectrum with FiltersShaping of the Spectrum with FiltersShaping of the Spectrum with Filters    
 
The four basic types of ideal filters are shown in diagram 25. Apart from these there is the 
all-pass filter, which only delays a signal, changing its phase. The all-pass will not be 
discussed here. 
 
Diagram 25Basic Types of Filters 
 
1.Low-Pass      2.High-Pass 
 

 
 
 
 

2.Band-Pass      3.Band-Stop 
 

 
 
 
 

 
All these filters have a cut-off value ffffcccc that determines the limit for frequencies which will be 
passed or stopped. However, the figures above, are only ideal approximations. Real filters 
have ripples and a transition region, as shown in diagram 26. Therefore, for a real filter, 
the cut-off is defined as the frequency at which a signal is attenuated by -3 dB. 
 
In addition, the transition region is characterized by a parameter called roll-off, that 
measures its steepness. The roll-off is defined as the change in the intensity of a signal 
when its frequency is doubled. In other words, it measures the change of the frequency 
response in dB per octave . 
 
 

  

 
 



Diagram 26 Cut-off Frequency for a Real Life Filter 
 

 
 
The sharpness of a filter can be increased by narrowing the transition region (which is 
equivalent to increasing the value of the roll-off). This is achieved by connecting it with an 
identical copy of itself. Doing this usually narrows the bandwidth, which is not always 
desirable. 
 
In order to avoid a narrower bandwidth, the filters can have their cut-off frequencies slightly 
shifted above and below the actual cut-off. 
 
Diagram 27 shows qualitatively the result of connecting two band-pass filters with centres 
at 500 hz, and compares it with the connection of two filters centred at 480 hz and 520 hz 
respectively. The bandwidth in the second case is better preserved. As an additional 
benefit, flatter pass and attenuation regions are produced. 
 



Diagram 27 Connected Band-Pass Filters 

 
 
 Same Bandwidth  Shifted Bandwidths 
 
We will now proceed to discuss the implementation of the four basic filters in Csound. 
 
7.2.1 Low-Pass and High-Pass: TONE and ATONE 
 
Csound provides a first order recursive filter. A filter is called recursive when the value of 
its current output depends on previous outputs. It is of the first order when it only depends 
on its immediate previous value. Therefore, if xn is the nth sample of the input, then yn is 
the nth sample of the output and yn-1 is the immediate previous sample of that same 

output. The mathematical expression for the first order recursive can then be written as 
follows 
 
yn = c0xn + d1yn-1 

 
 
The cut-off frequency and whether the filter is a low-pass or a high-pass depend on the 
coefficients cccc0000 and dddd1111. However, this should not trouble the Csound user, since there are 
two different statements, each representing a different type, which  require the value of the 
cut-off frequency, rather than those of the coefficients. The statements representing those 
filters are: 



 
TONE  for a low-pass. 
 
ATONE for a high-pass. 
 
 
The general statements are : 
 
ar tone ain, cutoff (, init ) 
 
ar atone ain, cutoff (, init ) 
 
where 
 
ar is the output. 
 
ain is the input. 
 
cutoff is the cut-off frequency in hz. 
 
init describes the initial conditions of the filter: it is always necessary to state the 

initial value of the output, because the current output is dependent on its 
immediate previous value. Therefore, the first output has to be determined in 
order to start this process. 

 
If init is 0, the initial value is 0. This is also the default value. 

 
If a non-zero value is given, the initial output recalls the value obtained the 
last time the filter was used . 

 
 
 



7.2.2 Band-Pass and Band-Stop: RESON and ARESON 
 
These are second order filters (they depend on the previous two values of either their input 
or their output). The band-pass filter is recursive - its current output depends on the two 
previous outputs - and is represented by the following expression: 
 
yn = c0xn + d1yn-1 + d2yn-2 

 
The band-stop is actually non-recursive: it only depends on its two previous inputs. Its 
representation is given below. 
 
yn = c0xn + c1xn-1 + c2xn-2 

 
The coefficients cccc0, dddd1and dddd2 and  cccc0, cccc1and cccc2 determine the centre frequency and 

bandwidth of the band-pass and band-stop, respectively. This, again, does not have to 
worry the user since the statements in Csound do the calculations themselves. The 
statements are 
 
RESON for a band-pass. 
 
ARESON for a band-stop. 
 
 
Their general form is 
 
ar reson ain, cfreq, bw, scaling (,init) 
 
and 
 
ar areson ain, cfreq, bw, scaling (,init) 
 
where 
 
ar is the output. 



 
ain is the input. 
 
cfreq is the centre frequency in hz. 
 
bw is the bandwidth. 
 
scaling is a scaling factor. When a signal is filtered, the components that are 

attenuated do not contribute to the average intensity. This may result in an 
output with a much lower loudness. For this reason, it is sometimes 
necessary to amplify the output. 

 
If the scaling is 0, the signal is not amplified. 

 
If the scaling is 1, the pass-band frequencies are amplified to the maximum 
amplitude of the signal. 

 
If the scaling is 2, the average intensity is kept. It is not clear from the manual 
what will higher scaling values do. Experience shows that there is some 
amplification. 

 
NOTES: 

 
1. The scaling factor changes the steepness of the transition between pass 

and stop bands. 
 

2. If a large scaling is used, the amplitude may become larger than 32,767 
or smaller than -32,768 causing distortion. 

 
init describes the initial conditions of the filter, and acts in the same way as with 

TONE and ATONE. 
 

If init is 0, the initial values are 0. This is also the default. 
 



If a non-zero value is given, the initial outputs (RESON) or inputs (ARESON) 
recall values obtained the last time the filter was used. 

 
 
7.3 Output: BALANCEOutput: BALANCEOutput: BALANCEOutput: BALANCE    
 
As stated above, when a signal is filtered, the components that are attenuated do not 
contribute to the average intensity, resulting in a lower level signal. 
 
Apart from using a scaling factor of 1 or 2 within the filter, there is another method used in 
order to amplify the output: the average intensity of the output is made equal to the 
average intensity of the input or of another signal used for this purpose. This technique is 
usually safer for avoiding amplitudes larger than 32,767. 
 
In Csound, a special filter called BALANCE is used: 
 
ar balance ain, acomp, (, lowcutoff, init )  
where 
 
ar is the output. 
 
ain is the signal that has to be balanced. 
 
acomp is the signal to which it is compared. 
 
lowcutoff is the cut-off frequency of an internal low-pass filter built into BALANCE. The 

purpose of this is to stop frequencies below the auditory range that do not 
contribute to the intensity of the perceived sound. If no value is given, the 
default is 10 hz. 

 
init determines the initial conditions of BALANCE in the same way as with TONE 

and RESON. 
 
 



A typical example of the use of a filter and BALANCE is now given. A signal ainainainain is sent 
through a high-pass filter of 100 hz cut-off. Then the output of the filter is balanced with the 
original signal. 
 
aout atone  ain, 100 
aout balance aout, ain 
 
7.4 Example Example Example Example ----Filtered NoiseFiltered NoiseFiltered NoiseFiltered Noise    
The principle behind subtractive synthesis is the filtering of sounds with rich spectrum. It is 
highly desirable that the output has a dynamic spectrum. Therefore, it is necessary that at 
least the sound source or the filter (or both) change their spectral characteristics as time 
goes by. 
 
Accurate control of filter characteristics is possible when using a computer. For example, 
the cut-off frequency of a low-pass filter can be driven by a control signal that changes in 
time. Combinations of several filters can be used to shape a signal to a tighter degree. 
However, it is worth bearing in mind that increasing quantity and complexity increases the 
number of operations a computer has to perform resulting in slower processing. 
 
The following example, instrument 21, uses white noise as a source which is passed 
through a band-pass filter with centre frequency and bandwidth controlled respectively by 
the time varying control signals k2k2k2k2 and k3k3k3k3. 
 
k2k2k2k2 varies, according to the shape of a linear oscillator, between the centre frequencies p7p7p7p7 
and p8p8p8p8. k3k3k3k3 varies, according to the shape of an exponential oscillator, with bandwidths that 
are between p9p9p9p9/100 of the minimum centre frequency and p10p10p10p10/100 of the maximum centre 
frequency. A graphic representation of this instrument is given in diagram 28. 
 
The orchestra, CS16 is given below, followed by a score which consists of  two events: 
 
1. Simulation of a blow by increasing the centre frequency from 260 to 650 hz and the 

bandwidth from 0.1% to 20% of the centre frequency. 
 
2. The reverse of 1: The centre frequency decreases from 650 to 260 hz and the 



bandwidth from 20% to .1 %. 
 
Csound tape example 16 contains the two events produced. 
 
Diagram 28 Instrument 21: White Noise Shaped with a Variable Centre Frequency and 

Variable Bandwidth filter. 
 

 
 
; CS16.ORC      -       FILTERED NOISE 
;               White noise is passed through a band-pass filter 
;               with varying centre frequency and bandwidth. 
 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 21 
 
;p4  : amplitude 



;p5  : attack 
;p6  : decay 
;p7  : minimum centre frequency 
;p8  : maximum centre frequency 
;p9  : minimum bandwidth in % 
;p10 : maximum bandwidth in % 
 
i1=       1/p3; one cycle 
     i2   =       p9*p7/100             ; minimum bandwidth 
     i3   =       p10*p8/100            ; maximum bandwidth 
     k1   linen   p4, p5, p3, p6        ; envelope 
     k2   oscil   p8-p7, i1, 1          ; varying centre freq 
     k3   oscil   i3-i2, i1, 2          ; varying bandwidth  
     a1   rand    1                     ; random numbers 
     a2   reson   a1, p7+k2, i2+k3, 4   ; filter 
     a2   balance a2,a1                 ; power balance 
          out     k1*a2                 ; output 
endin 
 
;CS16.SC 
;       FROM PITCH TO NOISE SLIDING UP 
 
f1 0 1024 7 0 512 .3 512 1; controls centre frequency 
f2 0 1024 5 .001 512 1 512 .4; controls bandwidth 
 
;            p3   p4      p5     p6    p7    p8     p9    p10 
;instr start dur  amp     attack dec     centre     Bandwidth 
;                                      frequency      in % 
;                                      min   max    min   max 
 
i21    0     2    10000   .5     .7    260   650    .1    20 
i21    2.9    .1      0   .      .     .     .      .      . 
 
s 



;       FROM NOISE TO PITCH SLIDING DOWN 
 
f1 0 1024 7 1 512 .3 512 0; controls centre frequency 
f2 0 1024 5 .4 512 1 512 .001; controls bandwidth 
 
;            p3   p4      p5     p6    p7    p8     p9    p10 
;instr start dur  amp     attack dec     centre     Bandwidth 
;                                      frequency      in % 
;                                      min   max    min   max 
 
i21    0     2    10000   .7     .5    260   650    .1    20 
 
e 
 
7.5 FormantsFormantsFormantsFormants    
 
It has been found that one of the major factors influencing timbre recognition in traditional 
music is the enhancement of frequencies in certain regions of the audible spectrum that 
particular types of instruments show. The enhanced regions are called formants. 
 
This assumption is strengthened by the fact that there are significant differences in 
waveform characteristics when different pitches produced with the same instrument are 
examined. 
 
Formants are due to the physical characteristics of an instrument and are independent of 
the pitch produced. 
 
For example, an oboe has its first and second formants at 1400 and 3000 hz respectively. 
This means that if a 440 hz A pitch is produced, the harmonics falling in the 1400 and 
3000 hz regions will be strongly emphasised as shown by the underlined values given 
below. 
 

440 880 1320  1760  2200  2640  3080  3520 
 



 
Formant theory also applies to the most versatile of all instruments: the human voice. 
Speech production theories describe  human voice articulation in terms of pulses or bands 
of noise produced by air passing through the vocal chords - pulses for voiced sounds and 
noise for unvoiced sounds like P, T, K and other consonants.  These sounds are then 
filtered by the shape of the vocal tract, which changes dynamically according to the 
position of the tongue, lips, jaws, etc, thus changing the formant regions. This principle is 
used to produce very articulated sounds with instrument 22: A very rich pulse (maximum 
possible harmonics )is passed through five band-pass filters in parallel with centre 
frequencies in different regions of the audible spectrum: 500, 1000, 2000, 3300 and 4800 
hz. These frequencies and bandwidths are made fluctuate by random number interpolators 
(RANDI). 
 
To enhance the articulation of the sounds the following steps are taken: 
 
1. The frequency of the random number generators is varied by a function that makes 

it fluctuate between a minimum and a maximum value given in the score by p8 and 
p9. The control variable determining this frequency is kfrndkfrndkfrndkfrnd. In this particular score, 
the frequency fluctuates between 3 and 50 hz. 

 
2. The fundamental frequency of the pulse generator is made to fluctuate by up to 1/5 

of its value using the same function. The change in pitch provides for expressivity in 
a similar way to that in which the human voice is articulated. The control variable 
determining the frequency of the fundamental is kprndkprndkprndkprnd. 

 The output of the filters is balanced with a sine wave especially generated for this 
purpose. The reason for not using the pulse generator to balance it is that a pulse is an 
extreme type of signal with most of its energy bursting very quickly followed by almost 
silence until the next pulse appears. Therefore if it were used for balancing purposes, the 
output would be distorted. 
The graphical representation of this instrument 22 is shown below. 
 



Diagram 29 Voice-like Instrument 22 
 

 
 
The score contains a short and very articulated sound, using a fundamental of 70 hz and a 
random number frequency that varies between 10 and 15 hz, followed by two other events 
producing distorted versions by changing the fundamental, the duration and random 
number frequency more drastically. Both sounds were used towards the end of the piece 
Dreams of Being and can be heard in in Csound tape example 17. 
 
The orchestra and the score are given next. 
 
; CS17.ORC      -       FILTERED PULSE WITH FORMANTS 
;               A pulse is passed through 5 parallel bandpass  
;               filterswith varying centre frequency and  
; bandwidth. 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 22 



 
;p4  : amplitude 
;p5  : fundamental 
;p6  : attack 
;p7  : decay 
;p8  : minimum frequency of RANDI 
;p9  : maximum frequency of RANDI 
 
ip3     =       1/p3            ; one cycle 
     ipfl    =       p5/5            ; pitch fluctuation 
     iffl    =       p9-p8           ; freq fluctuation of RANDI 
 
     inh     =       int(sr/2/(p5+ipfl)); maximum harmonics 
     kenv    linen   p4,p6,p3,p7     ; envelope 
 
     krand   oscil   .5, ip3, 2      ; oscil between -.5 and .5 
     krand   =       krand + .5      ; correct between 0 and 1 
 
     kfrnd   =       p8+iffl*krand   ; actual frequency of RANDI 
     kprnd   =       p5+ipfl*krand   ; variable pitch 
 
     a1      buzz    1,kprnd,inh,1   ; pulse 
     abal    oscil   1,p5,1       ; balancing sine wave 
 
;random number generator for each filter 
 
     k1      randi   1,kfrnd,.12     ; random generator  
     k2      randi   1,kfrnd,.23     ; for each filter 
     k3      randi   1,kfrnd,.34     ; each with a  
     k4      randi   1,kfrnd,.45     ; different seed 
     k5      randi   1,kfrnd,.56     ;  
 
;formant filters 
 



     a2 reson a1, 500+k1*100, 30*(1+k1), 0   ; 500 hz bandpass 
     a3 reson a1, 1000+k2*200, 40*(1+k2), 0  ; 1000 hz bandpass 
     a4 reson a1, 2000+k3*300, 80*(1+k3), 0  ; 2000 hz bandpass 
     a5 reson a1, 3500+k4*500, 200*(1+k4), 0 ; 3500 hz bandpass 
     a6 reson a1, 4800+k5*800, 400*(1+k5), 0 ; 4800 hz bandpass 
 
;mix outputs 
 
     a7      =       a2+a3+a4+a5+a6 
 
     a7      balance a7,abal         ; balance intensity 
 
             out kenv*a7                     ; output 
endin 
 
 
;CS17.SC 
 
f1 0 4096 10 1 
f2 0 512 7 0 50 .6 50 .8 50 .3 50 .7 50 .9 50 .4  
50 .1 50 .01 62 .2 
 
;              p3   p4      p5     p6    p7    p8      p9 
;instr  start  dur  amp     fund.  atck dec   random freqs. 
;                           freq               minmax 
 
i22     0       .5  5000     70     .1    .1    10      15 
 
i22     1      5    2500    490    4      .5    40      45 
i22     1      5    2500    615    4      .5    40      45 
i22     3.5    7    2500    60      .5   1.5     3      50 
 
e 
 



 
7.6 Example Example Example Example ---- Extension of Risset's Beating Harmonics Principle Extension of Risset's Beating Harmonics Principle Extension of Risset's Beating Harmonics Principle Extension of Risset's Beating Harmonics Principle    
 
In the previous chapter, Risset's beating harmonics were shown as an example of 
ingenuity using additive synthesis. However, once the basic sound was achieved, there 
was little else that could be done to modify it. In fact, the frequencies of the components 
had to be carefully chosen in such a way that very slow envelopes were produced. Also, 
the results were all more or less harmonics of a fundamental drone. 
 
This section will deal with an extension of this principle using subtractive synthesis 
techniques to produce an instrument that affords great flexibility. The main advantages of 
this extended technique are now listed: 
 
1. The beating partials do not have to be harmonics. Any reasonable frequency values 

can be ascribed to the beating partials. 
 
 
2. The frequencies of the beating partials can change in time. 
 
3. The envelopes can have any frequency. 
 
 
4. The envelopes can have any shape. 
 
5. It is possible to filter any sound. Thus, advantage can be taken of gesture and 

morphology of concrete sound sampled into the system. 
 



The first step in order to arrive at this desired instrument will be to explain and emulate the 
beating harmonics of the previous chapter. In it, nine frequencies were chosen as follows: 

110.12  =  110 + 0.12 = 110 + 4 x 0.03 
110.09  =  110 + 0.09 = 110 + 3 x 0.03 
110.06  =  110 + 0.06 = 110 + 2 x 0.03 
110.03 =  110 + 0.03 = 110 + 1 x 0.03 

110.00 hz 
109.97  = 110 - 0.03 = 110 - 1 x 0.03 
109.94  =  110 - 0.06 = 110 - 2 x 0.03 
109.91  =  110 - 0.09 = 110 - 3 x 0.03 
109.88  =  110 - 0.12 = 110 - 4 x 0.03 

 
It can be seen that 4 frequencies were chosen above and 4 below a central value of 110 
hz. Instead of 110 hz a general value ffff could be chosen, with nnnn frequencies above it and nnnn 
frequencies below: a total 2n+12n+12n+12n+1 frequencies. A general increment represented by the letter 
dddd could replace the value of 0.03 hz. The frequencies used can now be represented as 
follows: 
 

f + n x d 
. 
. 
f + 2 x d 
f + 1 x d 

 
f 

 
f - 1 x d 
f - 2 x d 
. 
. 
f - n x d 

  
If sine waves are assumed, then the output could be written as 
 



m(t)  = sin [2 π  ft]   + 
sin [2 π  (f + d)t]   +  sin [2 π  (f - d)t] + 
sin [2 π  (f + 2d)t]  +  sin [2 π  (f - 2d)t] + 
. 
. 
sin [2 π  (f + nd)t]  +  sin [2 π  (f - nd)t] 

 
but it may be remembered that 

                a-b           a+b 
sin(a) + sin(b) = 2 [ cos( ------ ) sin( ------- ) ] 

    2   2 
therefore 

sin[2 π  (f + nd)t] + sin[2 π  (f - nd)t]  =  2 cos[2 π  ft] sin[2 π   (nd)t] 
and 

m(t)  = sin [2 π  ft] + 
 

2 sin[2 π  ft] cos [2 π  dt] + 
 

2 sin[2 π  ft] cos [2 π  (2d)t] + 
. 
. 
2 sin[2 π  ft] cos [2 π  (nd)t] 

 
 

= sin [2 π  ft]  { 1  +  2cos [2 π  dt]  
         +  2cos [2 π  (2d)t] 
           . 
         . 

+  2cos [2 π  (nd)t] } 
 

         n 

m(t) = sin [2 π  ft]  { 1 + 2 Σ cos [2 π  (id)t] }   (7.1) 

        i=1 

 
 



Expression (7.1) can be interpreted as a sine wave of frequency ffff with an envelope that is 
the result of a sum of cosines of frequencies dddd, 2d2d2d2d, 3d3d3d3d ... ndndndnd. In the previous example, the 
value of dddd was 0.03 hz. The envelope in the curly brackets is just a cosine oscillator of 
fundamental frequency dddd, with a DC component (frequency = 0hz) and nnnn harmonics and 
can be easily implemented using GEN9. 
 
f1 0 512 9  0 .5 01 1 901 1 901 1 901 1 90 . . . 
 
Now, if complex signals are used, then the corresponding harmonics will generate similar 
waveforms, the difference being in the values of the frequency ffff and increment dddd. For 
example, if we take the kthkthkthkth harmonic, its frequency will be kfkfkfkf and the increment will be kdkdkdkd. 
We can then write 
       

             n 

mk (t) = sin [2 π  (kf)t]   { 1 + 2 Σ cos [2 π  (ikd)t] }   (7.2) 

           i=1 

 
The envelope in the curly brackets still has the same shape as above, with a different 
fundamental frequency. 
 
In order to generate any harmonic, a very narrow band-pass filter can be imposed on a 
rich pulse. Then the previous envelope can be imposed. The implementation is shown in 
CS18.ORC and CS18.SC. Csound  tape example 18 contains a pulse followed by the 
resulting beating harmonics after it is filtered.  
 
; CS18.ORC 
; Filters the output of BUZZ and gives it an amplitude envelope 
sr = 44100 
kr = 4410 
ksmps = 10 
nchnls = 1 
 



instr 23 
 
;p4 : amplitude factor 
;p5 : fundamental 
;p6 : number of partials 
;p7 : frequency of envelope 
;p8 : envelope function 
;p9 : centre frequency of band-pass filter 
;p10: bandwidth as a percentage of centre frequency 
 
        ibw     =       p8*p7/100       ; % bandwidth to hz 
        kenv    oscil   p4, p7, p8      ; envelope 
        ain     buzz    1, p5, p6, 2    ; pulse generator 
        afilt   reson   ain, p9, p10, 1 ; filter 
                out     kenv*afilt; output 
 
endin 
 
 
; CS18.SC 
;       It uses f1 as an envelope 
 
f1 0 1024 9 0.001 1 0 1 2 90 2 2 90 3 2 90 4 2 90 ; harmonics env 
f2 0 8192 10 1; sine for BUZZ 
 
;            p3   p4      p5    p6     p7   p8   p9      p10 
;inst  start dur  ampl    fund  No of  envl envl centre  bw in   
;                 factor  freq  parts  freq func freq    % of   
;                                                        centre 
 
i23    0     35   .4      20    250    .03  1     100     1 
i23    .     .    .       .     .      .06  .     200     . 
i23    .     .    .       .     .      .09  .     300     . 
i23    .     .    .       .     .      .12  .     400     . 



i23    .     .    .       .     .      .15  .     500     . 
i23    .     .    .       .     .      .18  .     600     . 
i23    .     .    .       .     .      .21  .     700     . 
i23    .     .    .       .     .      .24  .     800     . 
i23    .     .    .       .     .      .27  .     900     . 
i23    .     .    .       .     .      .30  .    1000     . 
 
e 
 
 
There is no reason to limit the source to a pulse generator. In fact, it is possible to process 
an existing soundfile by reading it into an instrument. In order to do this two things are 
necessary: 
 
1.  The soundfile has to be renamed to soundin.nnn, where nnn is a number between 1 

and 999. soundin.1, soundin.33 and soundin.763 are examples of possible names. 
 
2. The instrument has to include the Csound statement SOUNDIN. The general form 

of SOUNDIN is 
 
 
soundin nnn, skip 
 
where 
 
nnn is the number assigned to the soundfile soundin.nnn. 
 
skip is the number of beats that are to be skipped from the beginning of the 

soundfile. 
 
Now it is possible to produce an instrument that has all the features mentioned at the 
beginning of this section in addition to variable bandwidth of the filters. This is instrument 
24, implemented in CS19.ORC. 
 



This orchestra was run with CS19.SC in order to produce one of the basic sounds used in 
the composition of  Los Dados Eternos. This time the beating partials, at 100, 200, 350, 
550, 800, 1100, 1450, 1850, 2300, 2800, 3350 and 3950 hz were clearly not harmonic. 
The envelope repetition frequencies, from 1 to 12 hz were two orders of magnitude faster 
than those in the original Risset sound. The input, soundin.1  was reminiscent of a low cry 
and the result kept the gestural characteristics of the original. These two were 
subsequently spliced together. Csound tape example 19 contains the original sound, 
followed first by the processed result and then  by their splice. 
 
; CS19.ORC  
; Filters soundfile SOUNDIN.NNN and gives it an envelope. 
; The bandwidth of the filter fluctuates according to function 2 
 
sr = 44100 
kr = 4410 
ksmps = 10 
nchnls = 1 
 
instr 24 
 
;p4 : skip 
;p5 : frequency of envelope 
;p6 : envelope function 
;p7 : centre frequency of band-pass filter 
;p8 : minimum bandwidth in % 
;p9 : maximum bandwidth in % 
;p10: scaling of filter 
;p11: input file 
 
     icyc    =       1/p3                    ; one cycle 
     iminbw  =       p8*p7/100               ; min % bw to hz 
     imaxbw  =       p9*p7/100               ; max % bw to hz 
     kenv    oscil   p10, p5, p6             ; envelope 
     kbw     oscil   imaxbw-iminbw, icyc, 2  ; bw fluctuation 



     ain     soundin p11, p4                 ; input soundfile 
     afilt   reson   ain, p7, iminbw+kbw, 1  ; filter 
             out     kenv*afilt; output 
 
endin 
 
 
; CS19.SC 
; This inputs the soundfile SOUNDIN.1 and filters it. 
; It uses f1 as an envelope and f2 as bandwidth fluctuation 
 
f1 0 1024 9 0.001 1 0 1 2 90 2 2 90 3 2 90 4 2 90 
f2 0 1024 5 1 700 0.0001 324 0.0001 
 
;           p3    p4   p5     p6     p7     p8  p9  p10     p11 
;inst start dur   skip envel  envel  ctre  bw in %  scaling input 
;                      freq   func   freq  min  max factor  sfile 
 
i24   0     4.47  0     1     1       100  .5   100 5       4 
i24   .     .     .     2     .       200  .    .   .       . 
i24   .     .     .     3     .       350  .    .   .       . 
i24   .     .     .     4     .       550  .    .   .       . 
i24   .     .     .     5     .       800  .    .   .       . 
i24   .     .     .     6     .      1100  .    .   .       . 
i24   .     .     .     7     .      1450  .    .   .       . 
i24   .     .     .     8     .      1850  .    .   .       . 
i24   .     .     .     9     .      2300  .    .   .       . 
i24   .     .     .    10     .      2800  .    .   .       . 
i24   .     .     .    11     .      3350  .    .   .       . 
i24   .     .     .    12     .      3950  .    .   .       . 
 
e 
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8. Amplitude Modulation (AM)8. Amplitude Modulation (AM)8. Amplitude Modulation (AM)8. Amplitude Modulation (AM)    
 
Amplitude modulation includes all the techniques that produce changes in the spectrum of 
a sound by controlling its amplitude. The effectiveness of these techniques is due to the 
fact that they distort the input signal, changing its shape in such a way that new frequency 
components that were not there in the first place are created: when the shape of a 
waveform is altered, its spectrum changes. 
 
This is different from filtering because of the fact that digital filters are linear: they do not 
distort the signal and, as a consequence, they do not create new frequencies that were not 
previously contained in the input.  On the other hand, effective amplitude modulation must 
be essentially non-linear: it must produce distortion. 
 
Linear procedures process samples in only three possible ways 
 
 
1. By delaying them. 
 
 
2. By scaling, which is equivalent to multiplying a sample by a constant. 
 
3. By adding or subtracting scaled samples. 
 
 
 
Non-linear processes can raise a sample to a power, or multiply it by different coefficients 
depending on its value, etc. 
 
To illustrate the difference, imagine the following linear  
amplifier: 
 
y = Ax 
 
All this does is multiply each sample by the number AAAA. If xxxx varies between -1 and 1, the 



values of yyyy against those of xxxx can be plotted to obtain the following diagram 
 
 
 
Diagram 30 Linear amplifier  y = Ax 
 

 
 
Therefore, if a sampled sine wave of frequency ffff is passed through this amplifier, the input 
sine wave is represented by 
 
X = sin( 2 π  ft ) 
 
 
The output of the amplifier will be 
 
Y=Asin( 2 π  ft ) 
 
 
Thus, the output consists of a sine wave of exactly the same frequency as the input, 
scaled by a factor A. 
 
If, instead, the sine wave is passed through a non-linear device represented by 
 
y = Ax2 

 
then, plotting the values of yyyy against xxxx produces the following curve 



 
 
Diagram 31  Non-linear amplifier y = Ax2 

 
 

 
 
 
Feeding the sine wave to this function will produce 
 
Y=A [ sin( 2 π  ft ) ]2 

 
But, from trigonometry : 
 
    1       1 
sin2x = ---  -  --- cos2x 

 2      2 
 
thus 
 

 A      A 
Y = ---  -  ---  cos( 2(2 π  f)t ) 

 2       2 
 
 

 A      A 
= ---  -  ---  cos( 2 π  (2f)t ) 

    2       2 
 
 



There are now two terms contributing to the components of the output: 
 

a constant which represents a component at 0 hz 
 

a component at twice the frequency of the input. 
 
Therefore, two components that did not exist in the input were created. 
 
The respective outputs of the linear and the non-linear devices are shown next. 
 
 
Diagram 32 Linear Non-Linear 
 
 
  Output       Output 
 

 
Input 
 
These two devices are implemented in CS20.ORC. CS20.SC sends a 440 hz waveform 
first through a linear amplifier and then through the non-linear device. Csound tape 
example 20 contains the results: when the linear amplifier is used, the frequency is 
conserved, but in the case of the non-linear amplifier, the result is an octave higher (twice 
the frequency) as predicted. The DC component is not heard therefore it does not 
contribute to the perceived intensity. As a result, the non-linear output is not as loud.



; CS20.ORC      -       Linear and Non-linear amplifiers 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 25        ;       linear  amplifier y = Ax 
 
;p4  : amplitude 
;p5  : frequency 
;p6  : attack 
;p7  : decay 
;p8  : function 
;p9  : amplitude factor A 
 
 
kenv    linen   1,p6,p3,p7      ; envelope 
     ain     oscil   1,p5,p8         ; oscillator 
 
     aout    =       p4*ain          ; y = Ax 
             out     kenv*aout       ; output 
endin 
 
 
instr 26        ;                                  2 
                ;       non-linear amplifier y = Ax 
 
;p4  : amplitude factor A 
;p5  : frequency 
;p6  : attack 
;p7  : decay 
;p8  : function 
 



     kenv    linen   1,p6,p3,p7      ; envelope 
     ain     oscil   1,p5,p8         ; oscillator 
                                        ;       2 
     aout    =       p4*ain*ain      ; y = Ax 
             out     kenv*aout       ; output 
endin 
 
 
;CS20.SC 
 
f1 0 8192 10 1 
 
;               p3      p4      p5      p6      p7      p8 
;instr  start   dur     amplif  freq    attack  decay   func 
;                       factor                           
 
;linear amplifier 
i25     0        2      25000   440     .3       .3     1 
 
;non-linear amplifier 
i26     3        2      25000   440     .3       .3     1 
 
e  
 
8.1 The Simplest Amplitude ModulatorThe Simplest Amplitude ModulatorThe Simplest Amplitude ModulatorThe Simplest Amplitude Modulator    
 
One of the simplest ways to achieve non-linear amplitude modulation is by multiplying two 
sine waves. 
 
Take two sine waves of frequencies ffffcccc and ffffmmmm. The former will be called the carrier and the 
latter the modulator. If the carrier is multiplied by the modulator, the output will be 
 
 
o(t) = sin(2 π  fct) sin(2 π  fmt) 



 
but from trigonometry 

 1 
sin(a) sin(b) = --- [ cos(a+b) - cos(a-b) ] 

 2 
 
 
therefore 
 
 

 1 
o(t) = --- [cos(2 π  (fc+fm)t) - cos(2 π  (fc-fm)t)] 

 2 
 
 
 
A look at this expression reveals that two components are created. One at the frequency 
ffffcccc+ ffffm m m m and one at  ffffcccc- ffffmmmm. The amplitude of each component is half of the amplitude of the 

overall output. In other words, the resulting spectrum consists of two components, one of 
them ffffmmmm hz below the carrier and the other ffffmmmm hz above it. These components are called 

sidebands.  
Diagram 33 shows an instrument that multiplies two waveforms, illustrating the changes in 
the spectrum as well as displaying snapshots of possible inputs and the output they 
produce. 
 
 
Diagram 33 Side Band AM Modulator 
 



 
Waveforms 

Carrier       Modulator 

 
Output 

 
 

 
 
 
 
 



It is worth discussing the difference frequency  ffffcccc- ffffmmmm: 

 
If the frequency of the carrier and the modulator are very close, ffffcccc- ffffmmmm will be a very small 

number. For values of less than 15 hz, it will not be heard, becoming an envelope.  
If the frequency of the modulator is higher than the frequency of the carrier,  ffffcccc- ffffmmmm will be 

negative. A negative frequency of a cosine wave reflects as a positive frequency of the 
same value and phase because of the identity 
 
cos(a) = cos(-a) 
 
For example, if the frequency of the carrier is 300 hz and the frequency of the modulator is 
500 hz, the resulting frequencies will be 
 
300 + 500 = 800 hz 
 
and 
 
300 - 500 = -200 --> 200 hz. 
 
CS21.ORC contains instr 27, which is the realization of the instrument shown in Diagram 
33. CS21.SC produces examples of a carrier of 300 hz and for different modulators of 15, 
110, 310, and 500 hz. In each example, the carrier and the modulator are first played 
separately using instr 3 followed by the modulation. The resulting frequencies are: 

Carrier(hz) Modulator(hz) Components(hz) 
300  15   315 and 285 
300  110   410 and 190 
300  310   610 and 10 (not heard) 
300  500   800 and 200 

 
The orchestra and score are listed below and the sounds can be heard in Csound tape 
example 21. 
 
; CS21.ORC      -       Amplitude Modulator 
 



sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
 
instr 3         ; Used to play pure sinewaves 
 
     k1      linen   p4, p6, p3, p7  ; envelope 
     a1      oscil   k1, p5, p8      ; oscillator 
             out     a1              ; output 
 
endin 
 
 
 
instr 27        ;       Side bands only 
 
;p4  : amplitude 
;p5  : carrier 
;p6  : attack 
;p7  : decay 
;p8  : modulator 
;p9  : function 
 
     kenv    linen   p4, p6, p3, p7  ; envelope 
 
     acarr   oscil   1, p5, p9       ; carrier 
     amod    oscil   1, p8, p9       ; modulator 
 
     aout    =       kenv*acarr*amod ; modulation 
             out     aout            ; output 
 
endin 



 
 
;CS21.SC 
 
f1 0 8192 10 1 
 
 
 
;SECTION 1      carrier 300 hz, modulator 15 hz 
 
;               p3      p4      p5      p6     p7    p8 
;instr3 start   dur     amp     carr.   attack dec   func 
 i3      0        2      25000   300     .3     .3    1 
i3      3        2      25000    15     .3     .3    1 
 
;               p3      p4      p5      p6     p7    p8   p9 
;inst27 start   dur     amp     carr.   attack dec   mod. func. 
 
i27     6        2      25000   300     .3    .3    15   1 
 
s 
 
 
;SECTION 2      carrier 300 hz, modulator 110 hz 
 
;               p3      p4      p5      p6     p7    p8 
;instr3 start   dur     amp     carr.   attack dec   func 
 
i3      1        2      25000   300     .3     .3    1 
i3      4        2      25000   110     .3     .3    1 
 
;               p3      p4      p5      p6     p7    p8    p9 
;inst27 start   dur     amp     carr.   attack dec   mod.  func. 
 



i27     7        2      25000   300     .3     .3     110  1 
 
s 
 
 
;SECTION 3      carrier 300 hz, modulator 310 hz 
 
;               p3      p4      p5      p6     p7    p8 
;instr3 start   dur     amp     carr.   attack dec   func 
 
i3      1        2      25000   300     .3     .3    1 
i3      4        2      25000   310     .3     .3    1 
 
;               p3      p4      p5      p6     p7    p8    p9 
;inst27 start   dur     amp     carr.   attack dec   mod.  func. 
 
i27     7        2      25000   300     .3     .3    310   1 
 
s 
 
;SECTION 4      carrier 300 hz, modulator 500 hz 
 
;               p3      p4      p5      p6     p7    p8 
;instr3 start   dur     amp     carr.   attack dec   func 
 
i3      1        2      25000   300     .3     .3    1 
i3      4        2      25000   500     .3     .3    1 
 
;               p3      p4      p5      p6     p7    p8    p9 
;inst27 start   dur     amp     carr.   attack dec   mod.  func. 
 
i27     7        2      25000   300     .3     .3    500   1 
 
e 



 
In side band modulation, the frequency of the carrier is lost. Sometimes it is desirable to 
keep some of it. In order to do this, the modulator multiplies only part of the carrier, as 
shown in diagram 34. 
 
CS22.ORC contains an instrument that realizes this: In addition to the carrier and the 
modulator frequencies, it gets from the score the percentage of the waveform that is to be 
modulated. 
 
CS22.SC produces 2 sounds. Both have a carrier of 600 hz and a modulator of 15 hz. In 
the first sound, 90% of the carrier is modulated. In the second only 10%. Csound tape 
example 22 contains the results. It may be noticed that the second sound is actually a sine 
wave with a tremolo. Therefore, tremolo is a special case of amplitude modulation, when 
only a small percentage of a signal is modulated at a frequency that is below the audible 
range. Small amounts of tremolo can add to the liveliness of a sound. Even better effects 
are achieved by using an interpolating random number generator (RANDI) at frequencies 
of arround 15 hz. 
 
Diagram 34 Side Bands and Carrier. 

Only part of carrier is modulated. 
 

 
Waveforms 

 
 
 



modulation of 10% of   modulation of 90% of 
carrier     carrier 

 
 
; CS22.ORC      -       Amplitude Modulator 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
 
instr 28        ;       Side bands and carrier 
 
;p4  : amplitude 
;p5  : carrier 
;p6  : attack 
;p7  : decay 
;p8  : modulator 
;p9  : percentage of carrier to be modulated 
;p10 : generating function of carrier 
;p11 : generating function of modulator 
 
imod    =      p9/100.00             ; modulated part 
     inomod  =     1 - imod              ; unmodulated part 
 
     kenv    linen  p4, p6, p3, p7        ; envelope 
 
     acarr   oscil  1, p5, p10            ; carrier 
     amod    oscil  1, p8, p11            ; modulator 
 



     aoutm   =      acarr*amod*imod       ; modulated signal 
     aoutnm  =      acarr*inomod          ; unmodulated signal 
             out    kenv*( aoutm+aoutnm ) ; output 
 
 
endin 
;CS22.SC 
 
f1 0 8192 10 1 
 
;             p3  p4      p5    p6     p7   p8  p9    p10  p11 
;instr start dur amp     carr.  attack dec  mod mod%  carr mod. 
;    func func 
 
i28     0     2   25000   600   .3     .3   15  90    1    1 
 
i28     3     .   .       .     .      .    .   10    1    1 
 
e 
 
8.2 Ring ModulationRing ModulationRing ModulationRing Modulation    
 
This technique is just a generalisation of the case of two sine waves that are multiplied. 
For example, if a carrier that is not a sine wave, but rather a waveform with component 
frequencies ffffc1c1c1c1, ffffc2c2c2c2, ffffc3c3c3c3, etc. modulating it with a sine wave of frequency ffffmmmm will produce a 

pair of frequencies for each component of the carrier: 
 

fc1+ fm  and fc1- fm 

fc2+ fm  and fc2- fm 

fc3+ fm  and fc3- fm 

. 

. 
etc. 

 



This can be seen in diagram 35. 
 
 
 
 
 
 
 
Diagram 35 

 
 
 
As an example, if a modulator with components at 50, 100 and 150 hz, and a carrier of 
500 hz are given. The resulting frequencies will be 
 
 50 hz modulating 500 hz: 450and550 hz 
100 hz modulating 500 hz: 400and600 hz 
150 hz modulating 500 hz: 350and650 hz 
 
 
Instrument 26 can now be used with a modulator that is a complex waveform. CS23.ORC 
is identical to CS22.ORC and CS23.SC contains 
a complex modulator defined by function 2. A carrier of 300 hz is completely modulated by 



a modulator with a fundamental of 212 hz and components at 424, 636, 848 and 1060 hz. 
 
The resulting frequencies are: 
 
212 hz on 300 hz :  512 and  88. 
424 hz on 300 hz :  724 and -124  -->  724 and 124 hz. 
636 hz on 300 hz :  936 and -336  -->  936 and 336 hz. 
848 hz on 300 hz : 1148 and -548  -->  1148 and 548 hz 
1060 hz on 300 hz: 1360 and -860  -->  1360 and 860 hz 
 
The result can be heard in Csound tape example 23. The score is now listed. 
 
;CS23.SC 
 
f1 0 512 10 1 
f2 0 512 10 1 .8 .7 .6 .5 
 
;           p3   p4      p5    p6     p7    p8   p9    p10   p11 
;inst start dur  amp     carr  attack dec   mod  mod%  carr  mod 
;                                                      func  func 
 
i28   0     2    25000   300   .3     .3    212  100   1     2 
 
e 
 
8.3 Carrier to Modulator RatioCarrier to Modulator RatioCarrier to Modulator RatioCarrier to Modulator Ratio    
 
In the last example, it could be noticed that the resulting sound was not definitely pitched, 
more like a bell. The reason for this is that the the frequency of the carrier is not a multiple 
of the modulator, in other words, the ratio between the frequencies cannot be represented 
as a ratio of integers. 
 
In fact, the ratio between the carrier and the modulator is a very important parameter when 
determining the quality of the resulting spectrum. Therefore in order to have an idea of 



what the output is going to be, it is worthwhile knowing the effects of the carrier to 
modulator ratio on the spectrum. 
 
Since the intention is just to evaluate qualitatively the results rather than to produce a 
rigorous description of all the possible cases, the following assumptions will be adopted: 
 
1. The carrier is a pure sine wave of frequency ffffcccc. 

 
2. The modulator has at least two partials (otherwise this reverts to the simple case of 

the product of two sine waves). Its fundamental is ffffmmmm. 
 
3. The partials are actual harmonics. 
 
4. They are consecutive (there are no harmonics missing between the highest and the 

lowest component). 
 
The following cases can then occur: 
 
8.3.1 c/m = 1 , which means that ffffcccc = ffffmmmm    

In this case, the fundamental of the output is equal to the frequency of the carrier (= 
modulator fundamental). Also, if the modulator has M harmonics, the output will have M+1. 
 
To illustrate this, assume the simplest case, in which the carrier is a sine wave of 
frequency ffffcccc and the modulator has two partials: ffffcccc (= ffffmmmm) and 2f2f2f2fcccc, therefore M = 2. The 
resulting components will be: 
 

fc + fm1 = fc + fc  = 2fc 

fc + fm2 = fc + 2fc = 3fc 

fc - fm1  = fc – fc  = 0 
fc - fm2  = fc - 2fc  = -fc --> fc 

It can be seen that the output has 2 + 1 = 3 harmonics out which ffffcccc is the fundamental. 

 
8.3.2 c/m = 1/N , which means that ffffmmmm = NfNfNfNfcccc    

 



 
Here, the modulator is a multiple of the carrier. This is a generalization of the previous 
case. The fundamental will be  

(N-1) x fc 

 
For example, if the carrier is a sine wave of 100 hz and the modulator consists of two 
partials at 300 and 600 hz, the modulator fundamental is 3 times the frequency of the 
carrier, therefore the fundamental will be 
 

(3-1) x 100=200 hz 
 
This can be corroborated by looking at the resulting components. 
100 + 600 = 700 hz 
100 + 300 = 400 hz 
100 - 300 = -200 hz  -->  200 hz 
100 - 600 = -500 hz  -->  500 hz 
 
The lowest component is 200 hz, as expected. 
 
It can be noticed that there is a gap between the fundamental and the next harmonic of the 
resulting sound. In fact, if the frequency of the modulator becomes higher, the gap 
between the fundamental and the harmonics will grow. In general, this can be associated 
with the production of brighter sounds. 
 
 
 
8.3.3 c/m = N , which means that ffffcccc = NfNfNfNfmmmm    

 
Here, the carrier is a multiple of the modulator. Assuming that the modulator M harmonics, 
there are two possibilities: 
 
1. If N is larger than M, or in other words, if the c/m ratio is larger than the highest 

harmonic, then the fundamental of the output will be 
 



(N - M) x f 
 

For example, if the carrier frequency is 1000 hz, and the modulator consists of the 
three components 200, 400 and 600 hz, the fundamental will be: 

 
(5 - 3) x 200 = 2 x 200 = 400 hz 

 
which is the difference between the carrier and the highest partial,namely 600 hz. 
 
Summarizing: the new fundamental will be the difference between the carrier 
frequency and the highest component of the modulator. 

 
2. If M is larger or equal than N, that is, if the highest harmonic is larger or equal than 

the c/m ratio, the fundamental of the resulting sound will be equal to the fundamental 
of the modulator. 

 
For example, if the carrier frequency is 400 hz, and the modulator consists of the 
three components 200, 400 and 600 hz, the fundamental will be 200 hz. 

 
This can be checked by finding all the frequencies produced. 

 
200 modulating 400 --> 200 and 600 hz 
400 modulating 400 -->    0 and 800 hz 
600 modulating 400 --> -200 and 1000 hz  
The component at 0 hz (DC) is not heard, thus the output is perceived as having a 
fundamental is 200 hz, as expected. 

 
8.3.4  Non-Integer Ratio 
 
In the three previous cases the carrier to modulator ratio could be expressed as the ratio 
between two integers. Next the case in which c/m cannot be expressed as a ratio of 
integers is discussed. 
 
Before we proceed with this case, it should be made clear that in computer terms there is 



no such a thing as an irrational number - (a number that cannot be expressed as a ratio of 
integers) - since computers deal with finite values. For example, the number 3.1415927 
can be expressed as 
 

31'415,927 
--------------- 
10'000,000 

 
 
which is formally a ratio of integers. However, when these integers are large, the practical 
results are identical to the case of irrational numbers. 
 
Back to this case, when the ratio between carrier and modulator starts deviating from the 
(small) integer to integer relationship, the sound will become less and  less pitched. 
 
Values that are close  but are not exactly an integer ratio produce a desirable effect closer 
to the characteristics of real life instruments. Since the partials are almost harmonics but 
not quite, the beating patterns between them produce a livelier sound. 
 
CS24.ORC contains instr 29, which is a modification of instr 28.  
Instead of being given the frequency of the modulator, it  
requires the carrier to modulator ratio (c/m). 
 
 
CS24.SC uses a carrier of 250 hz, a modulator with 5 partials and different c/m ratios to  
produce the four following sounds. 
 
1. The carrier is half of the modulator (c/m = .5). The result will be a pitched sound at 

250 hz. 
 
2. The carrier is twice the modulator (c/m = 2). c/m is smaller than the number of 

partials, which is 5, therefore, according to section 8.3.3, the result will be the 
fundamental of the modulator. Since c/m = 2, the fundamental of the modulator is half 
of that of the carrier, i.e. 125 hz. Thus, the resulting sound will be an octave lower. 



 
3. c/m is close to .5 (q/m = .501). Still a pitched sound of about 250 hz but livelier. 
 
4. c/m is far from .5 (c/m = .35355). The sound is more like a bell. 
 
Csound tape example 24 demonstrates these sounds. The orchestra and the score are 
listed below. 
 
; CS24.ORC      -       Amplitude Modulator 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
 
instr 29        ;       Side bands and carrier 
                ;       carrier and modulator with  
                ;       different generating functions 
 
;p4  : amplitude 
;p5  : carrier 
;p6  : attack 
;p7  : decay 
;p8  : carrier to modulator ratio. Should not be 0. 
;p9  : percentage of carrier to be modulated 
;p10 : carrier function table 
;p11 : modulator table 
 
     imod    =      p9/100.00             ; modulated part 
     inomod  =      1 - imod              ; unmodulated part 
 
     imf     =      p5/p8                 ; modulator frequency 
 



     kenv    linen  p4, p6, p3, p7        ; envelope 
 
     acarr   oscil  1, p5, p10            ; carrier 
     amod    oscil  1, imf, p11           ; modulator 
 
     aoutm   =      acarr*amod*imod       ; modulated signal 
     aoutnm  =      acarr*inomod          ; unmodulated signal 
             out    kenv*(aoutm + aoutnm) ; output 
 
endin 
 
;CS24.SC 
 
f1 0 512 10 .9 1 .78 .07 .24 .53 .09 .46 
f2 0 512 10 1 .46 .56 .87 .35 
 
;            p3   p4      p5    p6     p7  p8     p9    p10  p11 
;instr start dur  amp     carr. attack dec c/m    mod%  carr mod 
;                                                       func func 
 
i29    0     1.5  25000   250   .1     1   .5     95    1    2 
 
i29    2.5   .    .       .     .      .   2      .     .    . 
 
i29    5     .    .       .     .      .   .501   .     .    . 
 
i29    7.5   .    .       .     .      .   .35355 .     .    . 
 
e 
 
8.4 Dynamic Spectrum Dynamic Spectrum Dynamic Spectrum Dynamic Spectrum ---- Examples Examples Examples Examples    
 
As usual, the best situation is one in which a dynamic spectrum can be produced and 
controlled. In order to achieve this, the following parameters can be made to change in 



time: 
 
1. The overall amplitude. 
 
2. The frequency of the carrier. 
 
3. The Carrier to Modulator Ratio (c/m)  
4. The percentage of the carrier that is modulated. 
 
 
Instrument 28, in CS25.ORC is an implementation of a ring modulator in which these four 
parameters change each according to different function tables. This instrument is very 
versatile and can produce the most dissimilar sounds. 
 
CS25.SC uses it to produce the following: 
 
 
8.4.1 Section 1 
 
A short pitched percussive sound, similar to that made by a hollow wood instrument, is 
produced by changing very quickly from a highly inharmonic to a more or less harmonic 
spectrum. 
 
This is done by varying the c/m ratio from 2.0397 to 3  and the modulated percentage from 
1 to 0 at the beginning of the sound in 1/16th of the total duration. The sound has to be 
very short, about .05 seconds or less. Otherwise, the percussive part will be smeared. 
If the duration through which the change from inharmonic to harmonic spectrum takes 
place is made longer, the result is a less pitched sound, and if it is made shorter, a more 
pitched and metallic sound, like a glockenspiel or vibraphone, will be heard. 
 
The pitch of the carrier is left constant and the overall envelope has a very sharp attack 
and a quick decay in two stages. 
 
The shape of the four time varying parameters can be seen in the following diagram. 



 
Diagram 36 Short Percussive Pitched Sound Funtions 

 
 
 
8.4.2 Section 2 
 
A low bouncy sound is followed by a long glissando that fans out when it reaches its 
lowest point. 
 
The bouncy quality is produced just by extending the duration of the percussive sound of 
the previous section. In order to achieve a softer attack the overall amplitude, c/m ratio and 
percentage of modulation change in a more gradual fashion. This can be seen in diagram 
37. 
 



Diagram 37 Low Bouncy Sound Functions 
 

 
 
Diagram 38 describes the function tables of the second sound in this section. It should be 
noticed that there is a sudden increase of overall amplitude after about 2 seconds, that 
coincides more or less with the quickest frequency slide. When the overall amplitude 
becomes more or less stable, the fan out effect is achieved by changing the c/m ratio from 
1 (harmonic) to .7001 (inharmonic). In order to avoid discontinuities, the modulation 
percentage increases gradually at this point giving the impression of a real fan out of 
frequencies. 
 
Finally, it can also be seen that during the first 2 seconds, the percentage of modulation 
goes from 0 to 100% and back to 0, adding life to the pitched glissando sound, that first 
goes slightly up and then begins to descend, following the frequency function table. 
 
8.4.3  Section 3 
 
A bell-like sound is produced. The main characteristic of bell sounds is that they are 
initially very inharmonic and dissolve more or less into a sine wave, while the amplitude 



envelope attacks very quickly (when the bell is hit), decays quickly at the beginning and 
slows its decay as time goes by.  Therefore c/m has to be very inharmonic (1.4142) and 
has to control 100% of the sound at the beginning. The modulated percentage has to 
decrease to 0 in order to turn completely into the carrier: a sine wave. This is shown in 
diagram 39. 
 
Diagram 38 Glissando - Fan Out Functions. 
 

 
 
 
 
Diagram 39  Bell-like Sound Functions 
 



 
 
The orchestra and the score are listed below. The score, CS25.SC, shows a new feature 
of Csound. Whenever it is required to interpolate between two values in the same 
parameter field (in this case p4p4p4p4), the symbol '>>>>' can be used. In the current score, the 
symbol is used to produce a gradual increase in amplitude amounting to a crescendo. 
The sounds produced can be heard in Csound tape example 25. 
 
; CS25.ORC      -       Dynamic Spectrum Ring Modulator 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
 
instr 30        ; Variable parameter amplitude modulation 
                ; instrument. 
                ; The following can change in time : 
                ;overall amplitude, carrier frequency, 
                ;   c/m ratio, percentage of the carrier that  



                ;   is modulated.  
 
;p4  : max amplitude 
;p5  : highest carrier pitch 
;p6  : max carrier to modulator ratio (c/m) 
;p7  : function table controlling amplitude 
;p8  : function table controlling carrier pitch 
;p9  : function table controlling c/m ratio 
;p10 : function table controlling modulation percentage 
 
        ;       one cycle 
 
        ip3     =       1.0/p3 
 
        ;       pitch frequency conversion 
 
        ifr     =       cpspch(p5) 
 
        ; envelopes 
 
        kamp    oscil   p4,ip3,p7       ; amplitude 
        kcar    oscil   ifr,ip3,p8      ; carrier freq 
        kcmr    oscil   p6,ip3,p9       ; c/m 
        kmp     oscil   1,ip3,p10       ; modulation % 
 
        ;oscillators 
 
        acarr   oscil   1, kcar, 10     ; carrier 
        amod    oscil   1, kcar/kcmr,11 ; modulator 
 
        aoutm   =       acarr*amod*kmp  ; modulated signal 
        aoutnm  =       acarr*(1-kmp)   ; unmodulated signal 
 
        ;mix and output 



 
                out     kamp*(aoutm+aoutnm) 
 
endin 
 
 
;CS25.SC 
 
;SECTION 1 
 
t 0 120 4 120 6 140 6 250 8.6 40 8.8 60 
 
;       percussive sound functions 
 
f1  0 512 7 0         32  1       64    .3    384   0 
f2  0 512 7 1        512  1  
f3  0 512 7 0.6799    32  .6799   160   1     384   .9808 
f4  0 512 7 1         32  .1      414   .11 
 
;       carrier and modulator functions 
 
f10 0 8192 10 1                                 ; carrier 
f11 0 8192 10 1 .9 .8 .7 .6 .5 .6 .7 .8         ; modulator 
 
;            p3   p4     p5        p6      p7   p8   p9   p10 
;instr start dur  max    highest   max     amp  carr c/m  mod% 
;                 amp    carr.     c/m     func func func func 
;                        pitch 
 
i30    0     .1    5000    9.03    3       1    2     3   4 
i30     .2   .     1000     .      .       .    .     .   . 
i30     .4   .     >        .      .       .    .     .   . 
i30     .6   .     >        .      .       .    .     .   . 
i30     .8   .     >        .      .       .    .     .   . 



i30    1     .    25000     .      .       .    .     .   . 
i30    2     .     .      10.02    .       .    .     .   . 
 
i30    3.5   .    15000    9.07    .       .    .     .   . 
i30    3.7   .    15000     .      .       .    .     .   . 
i30    3.85  .    15000     .      .       .    .     .   . 
i30    4     .    15000   10.04    .       .    .     .   . 
i30    4.4   .    >        9.10    .       .    .     .   . 
i30    4.8   .    >       10.06    .       .    .     .   . 
i30    5.2   .    >       10.02    .       .    .     .   . 
i30    5.6   .    >       10.08    .       .    .     .   . 
 
i30    6     .    32000   11.01    .       .    .     .   . 
i30    6.2   .    .         .      .       .    .     .   . 
i30    6.4   .    .         .      .       .    .     .   . 
i30    6.6   .    >         .      .       .    .     .   . 
i30    6.8   .    >         .      .       .    .     .   . 
i30    7.0   .    >         .      .       .    .     .   . 
i30    7.2   .09  >         .      .       .    .     .   . 
i30    7.4   .085 >         .      .       .    .     .   . 
i30    7.6   .08  >         .      .       .    .     .   . 
i30    7.8   .075 >         .      .       .    .     .   . 
i30    8.0   .07  >         .      .       .    .     .   . 
i30    8.2   .065 >         .      .       .    .     .   . 
i30    8.4   .06  >         .      .       .    .     .   . 
i30    8.6   .05   8000     .      .       .    .     .   . 
 
s 
 



;SECTION 2 
 
;       low 'bounce' functions 
 
f1  0 1024 7  0        32  1   64  .6    128  .3  800  0 
f2  0 512  7  1       512  1  
f3  0 512  7  .7057    64  .45 64  1     384  .9980 
f4  0 512  7  1        64  .6  64  .3    128  0 
 
;       gliss and fan sound functions 
 
f5  0 512 7 0    128   .2   64  1      32  .8    96 .7 192 0 
f6  0 512 7 1     64  1.02  64 .9      64  .8    64 .6 256 .64  
f7  0 512 7 1    128  1      0 .7001  384  .7 
f8  0 512 7 0     64  1     64 0      192  1     64 .8 128 1 
 
;       carrier and modulator functions 
 
f10 0 8192 10 1                                 ; carrier 
f11 0 8192 10 1 .9 .8 .7 .6 .5 .6               ; modulator 
 
 
;            p3   p4     p5        p6      p7   p8   p9   p10 
;instr start dur  max    highest   max     amp  carr c/m  mod% 
;                 amp    carr.     c/m     func func func func 
;                        freq      pitch 
 
i30    1     1    30000  6.01      1       1    2    3    4 
i30    1.75  9    30000  9.01      1       5    6    7    8 
 
s 
 
; SECTION 3 
 



;      Bell-like sound functions 
 
f1  0 2048 7  0    4  1    128  .6   280  .2   1200  0 
f2  0 512  7  1  512  1  
f3  0 512  7  1  512  1 
f4  0 512  7  1  100  .65  100  .4   312  .05 
 
;       carrier and modulator functions 
 
f10 0 8192 10 1                         ; carrier 
f11 0 8192 10 1 .9 .8 .7 .6             ; modulator 
 
;            p3   p4     p5        p6      p7   p8   p9   p10 
;instr start dur  max    highest   max     amp  carr c/m  mod% 
;                 amp    carr.     c/m     func func func func 
;                        freq      pitch 
 
i30    1     4    30000  8.06      1.4142  1    2    3    4 
 
e 
 
 
    
    
    
    
    
    
    
    
    
    
    
    



    
9. Waveshaping9. Waveshaping9. Waveshaping9. Waveshaping    
 
In the previous chapter, the outputs of a sine wave going through a linear amplifier and a 
non-linear processor that squares it were discussed. Each of these devices was 
characterized by a function that relates the input with the output. The function 
characterizing the linear amplifier was given by 
 
y = Ax 
 
 
and the squaring device was represented by the relation 
 
y = Ax2 

 
These functions were also described graphically in diagrams 30 and 31 above. 
 
In general, every device, linear or non-linear can be described in terms of a mathematical 
relation between the input and the output. This relation is called the transfer function. If the 
input and the transfer function are known, it is possible to predict what the output will be. 
Therefore, the process can now be described as follows: 
 
SIGNAL--->TRANSFER FUNCTION--->OUTPUT 
 
 
The process by which a signal is distorted by a    non-linear transfer function in order to alter 
its spectrum is called waveshaping. Examples of non-linear transfer functions can be 
found in a device that outputs the square of a signal, or a processor that multiplies it by a 
gain factor that depends on the actual value of the signal itself. 
 
Csound tape example 26 contains the outputs obtained by passing a sine wave through 
devices with different transfer functions. These can be seen in the following diagram. 
 
 



 
 
 
Diagram 40 Examples of Transfer Functions 
 
 

 
 
The first is an example of a linear filter, the sine wave is not distorted but rather only 
multiplied by a constant factor. 
 
In the second case, a non-linear function is used. If the value of the sine wave is below .7, 
it will be multiplied by a certain value but if it is larger than .7, it will be multiplied by a 
smaller instead value. The effect is one of compression around an amplitude of .7. 
 
In case 3, the transfer function has abrupt leaps. This means that the value of the output 
signal will change very quickly at some points. But quick changes in amplitude mean high 
frequency components: abrupt leaps or sharp changes in direction of the transfer function 
produce infinite harmonics, exceeding the Nyquist frequency and causing aliasing. 
 



In case 4, the function is symmetrical with respect to the centre. A function that has this 
property is called odd and its output contains only odd harmonics (the fundamental, third 
harmonic, fifth, etc.). 
 
Conversely, when a function is symmetrical with respect to the vertical axis, like in case 5, 
it is called even and only produces even harmonics. For this reason, the frequency of the 
fundamental (first harmonic) will not appear in the output, which sounds an octave above, 
as can be heard in the tape example. 
 
9.1A Waveshaping InstrumentA Waveshaping InstrumentA Waveshaping InstrumentA Waveshaping Instrument    
 
This section, shows how to build a basic waveshaping instrument. The principle is simple: 
the transfer function can be represented by a table that consists of a series of numbers 
representing the values that should multiply the amplitude of the input. Each of this values 
can be addressed by indicating its position in the table, referred as the index. Diagram 41 
shows a function and its representation in a table that has 11 points. 
 
Diagram 41 Waveshaping Function Table 

 
 
 
 
 Index  0 1 2 3 4 5 6 7 8 9 10 
   TABLE 
 Value   -1  -.875  -.75  -.5  -.25  0  .25  .5  .75  .875 1 



 
 
If a sine wave is fed to the input, its value determines an index in the table. The value of 
the function corresponding to that index determines the output. From the diagram, it can 
be seen that when the value of the sine wave is 0, the corresponding multiplier is the 
middle of the table, in this case: the fifth value (index = 5). 
 
When the sine wave is -1, the multiplier is the first number of the table (index = 0). When it 
is 1, the multiplier is the last value of the table (index = 10). 
 
This relationship between the sine wave and the index can be put as follows: 
 
index=(value of sine + 1) x 5 
 
 
If the value is 1 : index = (1+1)x5  = 2x5 = 10 
If the value is 0 : index = (0+1)x5  = 1x5 = 5 
If the value is -1: index = (-1+1)x5 = 0x5 = 0 
 
 
It may be noticed that the size of the table is 10 (= 5x2), thus a generalization of the 
formula can be written for any size: 
 
Index = (value of sine + 1) x (table size/2) 
 
 
For values in between, the result of this formula may not be an integer, therefore it has to 
be rounded down to an integer value. This means that if the table is very small, a large 
error will be introduced when rounding. Therefore, the table has to be quite large (ideally 
65536 for 16 bit resolution but sizes of 8192 may work reasonably well). 
 
The previous formula can be made simpler if instead of changing from 0 to 10, the index 
changed from -5 to 5. Then 
 



index=value of sine x table size/2 
 
If the value is 1  : index =  1x5  =  5 
If the value is 0  : index =  0x5  =  0 
If the value is -1 : index = -1x5  = -5 
 
This is equivalent to starting the table in the middle: if the index is positive the values after 
the middle of the table are referred, and if the index is negative, the reference is to the 
values before the middle. Therefore, it is useful to have an    offset that indicates where to 
start the table. In the previous case the offset is 5 and the index varies from -5 to +5. 
 
Generalizing again, in order to have the middle of the table as a starting point: 
 
1.The offset must be 
 
offset = (table size - 1) / 2 
 
2.The index should vary between +offset and -offset. 
 
 
In the previous example: 
 
 
offset = (11 - 1)/2 = 10/2 = 5 
 
 
and the index varies between -5 and 5. 
 
 
The previous table is easy to handle since it has a middle value, but if instead of having 11 
entries, the table had 12, it would not be possible to find a middle value. Nevertheless, 
Csound allows definition of the size of a function as a power of two less one (2n- 1), which 
will always be odd. 
 



 
Now that indexing of a function table has been explained, it is necessary to examine the 
statement that finds the value corresponding to the index. It is actually called TABLE, and 
its general form is now given 
 
artableindex, func ( , mode, offset, wrap )  
where 
 
ar is the table value corresponding to the index. 
 

Index is exactly what it means. 
func is the function table number (in the score). 
 
mode is an optional facility in Csound that allows normalization, which means that 

the index can be specified as a fraction between 0 and 1, in which case mode  
must be 1 (normalized mode). Otherwise it should be set to 0 (raw mode), its 
default value. 

 
offset is an optional offset from the beginning of the table. Thus, the table can begin 

from any point. This is very useful for inputs that can assume negative values, 
like a sine or a cosine, in which case the index is taken from the middle of the 
table. 

 
For example, if a sine wave that changes between -1 and 1 is waveshaped 
with a table of size tablesize: if the table is read in the raw mode, it can be 
started at the middle by making 

 
offset = int((tablesize-1)/2)  

 
and the index can be made to vary from  -offset to +offset. Alternatively, if the 
table is read in normalized mode, the offset has to be offset = .5 

 
wrap is an option that enables the use of indexes larger than the table size. If an 

index is bigger than the size of the table, and wrap is set to 1, it is 'wrapped 



around' to the beginning. 
 

For example if the size of the table is 33 and the index is 35, the 'wrapped 
index' is 2. Arithmetically, this can be expressed as 

 
wrapped index = 35 modulo 33 = 2 

  The default value is 0, in which case there is no wrap. 
 
 
CS26.ORC contains the implementation of a waveshaping instrument. CS26.SC was used 
to produce the examples of waveshaping functions displayed above (diagram 40). 
 
 
; CS26.ORC      -       Waveshaper 
 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
 
instr 31        ;       Basic Waveshaping instrument 
 
;p4  : amplitude 
;p5  : frequency 
;p6  : attack 
;p7  : decay 
;p8  : oscillator function 
;p9  : waveshaping function 
 
   ioffset =    .499  ; offset 
        k1      linen   p4, p6, p3, p7   ; envelope 
        a1      oscil   ioffset, p5, p8  ; oscillator 



        awsh    table   a1,p9,1,ioffset  ; waveshaping value 
                out     k1*awsh          ; output 
 
endin 
 
;CS26.SC 
 
;       OSCILLATOR 
 
f1 0 8192 10 1 
 
;       WAVESHAPING FUNCTIONS 
 
;linear 
f2 0 8193 7 -1 8193  1 
 
;non-linear 
f3 0 8193 7 -1 2048 -0.7  4097   0.7  2048  1 
 
;leaps 
f4 0 8193 7 -1  2048  -0.5  0  -0.3  2048  0.1  0  0.4  2048  0.5 
 0  0.7  2049  1 
 
;odd function 
f5 0 8193 9  1 1  180   2 .9 180   3 .8 180   4 .7 180   5 .6 180 
 
;even function 
f6 0 8193 9  1 1  90   2 .9  90   3 .8  90   4 .7  90   5 .6 90 
  
;EVENTS 
 
;           p3  p4    p5    p6     p7   p8     p9 
;inst start dur amp   freq  attack dec  osc    wsh 
;                                       func   func 



 
i31   0     1   32000 440   .1    .1    1      2 
i31   1.5   1   .     .     .1    .1    1      3 
i31   3     1   .     .     .1    .1    1      4 
i31   4.5   1   .     .     .1    .1    1      5 
i31   6     1   .     .     .1    .1    1      6 
 
e 
 
9.2 Avoiding aliasingAvoiding aliasingAvoiding aliasingAvoiding aliasing    
 
When examining the examples of transfer functions in diagram 40, a certain difficulty has 
been pointed out: if a transfer function has sharp changes of direction or contains leaps, 
aliasing will take place because an infinite number of harmonics will be produced. 
Therefore, it is necessary to use only well behaved functions. This is ensured by utilizing 
polynomials. 
 
 
In principle, any smooth function can be modelled by a polynomial. Furthermore, there is 
another characteristic that makes polynomials very desirable waveshapers: The highest 
harmonic produced can be predicted. In fact, it can be shown that the highest harmonic 
produced by waveshaping a sine wave through a polynomial transfer function is the one 
corresponding to the the highest power (the order) of that polynomial. 
 
For example, the highest harmonic produced by the waveshaping function : 1 + x + 5x2 + 
x4 is the fourth harmonic because the highest power in the polynomial is 4. It is now easy 
to avoid aliasing if the frequency of the input and the order of the transfer function are 
known.  
Csound offers a GEN routine that produces polynomials: GEN3. It is given the coefficients 
(multipliers of the powers of x). Formally, the data is given is as follows: 
 

minin maxin c0 c1 c2 c3 ... 
 
where 



 
minin is the minimum input value expected. Usually sine waves between -1 and 1 

are used. When this is the case, minin is -1. 
 
maxin is the maximum input value expected. If a sine wave between -1 and 1 are 

used. When this is the case, maxin is 1. 
 
c0, c1.. are the coefficients of the polynomial. c0  is a constant, c1  multiplies x, c2  

multiplies x2 ... 
 

For example, in order to produce the polynomial 
 

1 + 2x + 3x2 + 5x3 + x4 

 
assuming an input waveform between -1 and 1, a function can be defined as 
follows: 

 
f1 0 8192 3  -1  1  1  2  3  5  1 

 
 
9.3 Chebyshev PolynomialsChebyshev PolynomialsChebyshev PolynomialsChebyshev Polynomials    
 
It is very helpful to know what the highest harmonic is in order to avoid aliasing. It would be 
even more useful if it were  possible to predict accurately the relative amplitude of each 
harmonic, since this would allow greater control of the spectrum. Fortunately, there is a set 
of polynomials called Chebyshev Polynomials that allow this type of control. 
 
Each Chebyshev Polynomial produces a different harmonic when a sine wave is used as 
an input. Take for example the polynomial that produces the second harmonic (second 
order polynomial): 
 
T2(x) = 2x2 - 1 

 
 



Applying a sine wave to this transfer function and remembering that 
     1     1 
sin2a    =  ---  -  ---  cos(2a) 
     2     2 
 
we obtain 
 
       1    1 
T2(sin(2 π  ft)) = 2 ( --- - --- cos(2(2 π  ft)) ) - 1 
        2    2 
 
 
       = 1 - cos(2(2 π  f)t) - 1 
 
 
       = cos( 2 π  (2f)t) 
 
 
 
This is a cosine of twice the frequency, corresponding to the second harmonic. 
 
The first five Chebyshev polynomials of first kind are: 
 
T0(x) = 1   Produces a DC component 
T1(x) = x   Produces the fundamental 
T2(x) = 1 - 2x2  Produces the second harmonic 
T3(x) = 4x3 - 3x  Produces the third harmonic 
T4(x) = 8x4 - 3x2 + 1 Produces the fourth harmonic 
 
 
It is now possible to control each resulting harmonic when a sine wave is used by 
combining the polynomials with different relative amplitudes. For example, in order to 
obtain a spectrum described below 
 



Harmonic Relative Amplitude 
 

1   1 
2   .3 
3   0 
4   .7 

the following transfer function can be used 
 

y = T1(x) + .3 T2(x) + .7 T4(x) 
 
If GEN3 is used, the each Chebyshev polynomial has to be replaced and then the 
expression has to be simplified. Nevertheless, this is not necessary because Csound 
provides a GEN routine especially designed for use with Chebyshev transfer functions. 
This is GEN13. 
 
 
The data required by GEN13 is 
 

ampin scaling h0 h1 h2 h3 ... 
 
 
where 
 
ampin is the maximum input amplitude expected. Usually sine waves between -1 and 

1 are used. When this is the case, ampin = 1. 
 
scaling is a scaling factor that multiplies the input after it is waveshaped. This is also 

usually 1 because the common way to control the amplitude is by using an 
envelope within the orchestra. 

 
h0, h1.. are the relative amplitudes of the Chebyshev polynomials, or in other words, 

the relative amplitudes of the harmonics. It is worth remembering that h0 
refers to a  DC component, and not to the fundamental (h1). 

 



 
In the next example, instrument 31 is used to produce the first 9 harmonics of a sine wave, 
which can be heard in Csound tape example 27. First, the sine wave is played with 
instrument 3, and then, GEN13 produces a DC component (that will not be heard), 
followed by the fundamental and the harmonics up to the ninth. This is done by setting all 
the relative amplitudes to  zero except the one that represents the desired harmonic. 
 
 
; CS27.ORC 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 3         ;       Simple Oscillator 
 
       k1      linen   p4, p6, p3, p7  ; envelope 
       a1      oscil   k1, p5, p8      ; oscillator 
               out     a1              ; output 
 
endin 
 
 
 
instr 31        ;       Basic Waveshaping instrument 
 
;p4  : amplitude 
;p5  : frequency 
;p6  : attack 
;p7  : decay 
;p8  : oscillator function 
;p9  : waveshaping function 
 



  ioffset =    .5 ; offset 
       k1      linen   p4, p6, p3, p7   ; envelope 
       a1      oscil   ioffset, p5, p8  ; oscillator 
       awsh    table   a1,p9,1,ioffset  ; waveshaping value 
               out     k1*awsh          ; output 
 
endin 
 
;CS27.SC 
; Use of GEN13 to produce a harmonic series out of a sine  
; wave. 
 
f1  0 8192 10 1                     ; sine wave 
 
f2  0 8193 13 1 1 1                   ; DC 
f3  0 8193 13 1 1 0 1                 ; 1 harmonic (fund) 
f4  0 8193 13 1 1 0 0 1               ; 2 harmonic 
f5  0 8193 13 1 1 0 0 0 1             ; 3 harmonic 
f6  0 8193 13 1 1 0 0 0 0 1           ; 4 harmonic 
f7  0 8193 13 1 1 0 0 0 0 0 1         ; 5 harmonic 
f8  0 8193 13 1 1 0 0 0 0 0 0 1       ; 6 harmonic 
f9  0 8193 13 1 1 0 0 0 0 0 0 0 1     ; 7 harmonic 
f10 0 8193 13 1 1 0 0 0 0 0 0 0 0 1   ; 8 harmonic 
f11 0 8193 13 1 1 0 0 0 0 0 0 0 0 0 1 ; 9 harmonic 
 
;       SINE WAVE 
 
;            p3    p4      p5    p6        p7      p8 
;instr start dur   amp     freq  attack    decay   func 
 
i3      0    1     25000   200   .1        .1      1 
 
;       HARMONICS 
 



;           p3  p4    p5    p6     p7   p8     p9 
;inst start dur amp   freq  attack dec  osc    wsh 
;                                       func   func 
 
i31   1     .5  25000 200   .1     .1   1        2 
i31   +     .   .     .     .      .    .        3 
i31   +     .   .     .     .      .    .        4 
i31   +     .   .     .     .      .    .        5 
i31   +     .   .     .     .      .    .        6 
i31   +     .   .     .     .      .    .        7 
i31   +     .   .     .     .      .    .        8 
i31   +     .   .     .     .      .    .        9 
i31   +     .   .     .     .      .    .       10 
i31   +     .   .     .     .      .    .       11 
 
e 
 
9.4 Distortion Index and DynamicDistortion Index and DynamicDistortion Index and DynamicDistortion Index and Dynamic Spectrum Spectrum Spectrum Spectrum    
 
So far, sine waves with amplitude 1 have been considered. The effects of having an 
amplitude different than 1 will now be examined. Take for example the sine wave: 
 
 
A sin(2πft) 
 
 
Suppose this waveform is sent through a device with the following transfer function 
 
y = x + x3 

 
 
The output will be 
 
 



A sin(2 π  ft) + A3 sin3(2 π  ft) 
 
 
After some manipulation, the result is: 
 
 
         3A3           A3 

( A + ----- ) sin3(2 π  ft)  -  --- sin(2 π  (3f)t) 
   4         4 
 
 
It can be noticed that the relative amplitudes of the harmonics produced are dependent on 
the amplitude of the sine wave: 
 
h1 = A + 3A3/4 
h3 = A3/4 

 
Even more more important is the fact that each relative amplitude depends on the 
amplitude of the input in a different way. This means that if the amplitude of the input 
changes, each partial will be affected differently. Therefore, by changing A in time, the 
spectrum of the output will be modified, since the relative amplitudes of the partials will 
change with respect to one another. For this reason, AAAA is called the modulation index. 
 
In general, the higher the partial, the quicker it will grow when AAAA grows or decrease when 
AAAA decreases. 
 
Finally, in order to achieve dynamic spectrum, it is enough to make the modulation index 
change in time. CS28.ORC contains an instrument that implements a waveshaper that 
takes account of the envelope, as shown in diagram 42. 
 
 
Diagram 42 
 



 
; CS28.ORC 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 32        ; Dynamic Waveshaping instrument 
                ; Distortion index changes according to 
                ; function indicated by p11 
 
;p4  : amplitude 
;p5  : frequency 
;p6  : oscillator function 
;p7  : waveshaping function 
;p8  : envelope (distortion index) function 
 
 
        ifr     =     cpspch(p5)         ; pitch to freq 
        ip3     =     1/p3               ; one cycle 
        ioffset =     .5          ; offset 
        k1      oscil 1, ip3, p8         ; envelope (dist idx) 
        a1      oscil offset, ifr, p6    ; oscillator 
        awsh    table k1*a1,p7,1,ioffset ; waveshaping value 



                out   k1*p4*awsh         ; max amp & output 
 
endin 
 
 
 
;CS28.SC 
 
;sine wave 
f1  0 8192  10 1 
 
;waveshaper 
f2  0 8193  13 1 1 0 1 .7 -.8 -.3 .1 .8 -.9 -1 1 
 
envelope (distortion index) 
f3  0  512   7 0 64 1 64 .2 184 .5 152 1 48 0 
 
;            p3   p4     p5    p6    p7    p8 
;instr start dur  amp    pitch osc   wsh   index 
;                              func  func  func 
 
i32    0     1    15000  7.06  1     2     3 
i32    +     0.5  .      8.00  .     .     . 
i32    +     0.25 .      7.01  .     .     . 
i32    +     0.25 .      6.02  .     .     . 
i32    2.5   2.5  20000  5.08  .     .     . 
 
e 
 
Two warnings should be issued about a variable index: 
 
1. In order to achieve effective waveshaping, the changes in envelope must happen in 

the range where the transfer function changes the most. For example, if the function 
has rapid changes for amplitudes between .8 and 1 and is fairly linear for amplitudes 



less than .8, a sine wave with an amplitude of .7 will hardly experience any distortion 
when that specific function. 

 
2. Since waveshaping depends on the amplitude of a signal, it is usually necessary to 

produce wide changes in the envelope in order to get reasonable effects. But this also 
means changes in intensity, which may require balancing the signals after they have 
been waveshaped (using BALANCE, for example). 

 
It is also important to notice that only harmonic spectra is produced when waveshaping. In 
order to achieve an inharmonic spectrum it is necessary to have an inharmonic input or to 
do something to the input before or after it is passed through the waveshaper. For 
example, it could be ring modulated. 
 
Another way of producing a dynamic spectrum is by changing the transfer function in time. 
 
CS29.ORC contains an instrument that simulates this effect by waveshaping the same 
signal through two different waveshapers and then cross-fading the outputs. While the 
output of one of the waveshapers fades out the other fades in. In order to achieve a rich 
spectrum, the input is ring modulated before it is passed through the waveshapers. 
 
CS29.SC contains events that use a sine wave carrier, a more complex modulator with an 
irrational c/m to produce an inharmonic spectrum and a very smooth symmetrical varying 
index. The smooth index function consists of half a sine wave that is achieved by using 
GEN9 with a harmonic number of .5 (half of the fundamental). When the frequency of this 
kind of oscillator is set to 1/p3, it will only produce half a cycle for the whole duration of the 
event. 
 
The sounds produced with CS29.ORC and CS29.SC can be heard in Csound tape 
example 29. The orchestra and score are now listed. 
 
 
; CS29.ORC 
 
sr = 44100 



kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 33        ; Dynamic Waveshaping instrument 
           ; changes linearly between two different 
           ; transfer functions that waveshape the same 
                ; signal 
 
;p4  : amplitude 
;p5  : frequency 
;p6  : oscillator function 
;p7  : beginning waveshaping function 
;p8  : final waveshaping function 
;p9  : index function 
;p10 : c/m ratio  
 
        ip3     =       1/p3               ; one cycle 
 
        icarr   =       cpspch(p5)         ; carrier freq 
        imod    =       icarr*p10          ; modulator freq 
        ioffset =       .5                 ; offset 
        k1      oscil   1, ip3, p9         ; envelope 
        kmix    line    1, p3, 0           ; mix proportions 
        acarr   oscil   ioffset, icarr, 1  ; carrier 
        amod    oscil   1, imod,p6         ; modulator 
 
        a1      =       acarr*amod         ; modulated signal 
 
        awsh1   table   k1*a1,p7,1,ioffset ; 1 waveshaping 
        awsh2   table   k1*a1,p8,1,ioffset ; 2 waveshaping 
 
        ; mix output 
 
                out     k1*p4*( kmix*awsh1 + (1-kmix)*awsh2 ) 
 
endin



;CS29.SC 
 
f1 0 8192 10 1                                ; carrier 
f2 0 8192 10 1 .7 .3 .8 .4                    ; modulator 
 
; waveshaper 1 
f3 0 8193 13 1 1 0 1 -.9 -.8 .7 .6 -.5 -.4 .3 .2  
 
; waveshaper 2 
f4 0 8193 13 1 1 0 .1 .1 .2 1 .3 .2 .1 
 
; envelope (index function) 
f5 0 1024 9 .5 1 0         
 
 
;        p3  p4     p5   p6   p7   p8   p9   p10 
;ins stt dur amp    pch  mod  frst last idx  ring 
;                        func wsh  wsh  func c/m 
;                             func func  
i33  0   5   25000  7.08 2     3   4     5   .35355 
i33  6   2   .      7.06 .     .   .     .   .354 
i33  7   6   .      8.05 .     .   .     .   .35355 
 
e 
 
 
 
 
 
 
 
 
 
 



10. Frequency Modulation (FM)10. Frequency Modulation (FM)10. Frequency Modulation (FM)10. Frequency Modulation (FM)    
 
Frequency modulation is another non-linear technique used in sound synthesis. However, 
while amplitude modulation controls the spectrum of sounds by manipulating their 
amplitude, FM does this by manipulating their frequency. 
 
As a matter of fact, there is a carrier, a modulator and the carrier to modulator ratio also 
plays an important role. There is also an index, related to frequency (rather than to 
amplitude), that can help predict some of the characteristics of the resulting spectrum. 
 
 
 
 
10.1The Basic Frequency ModulatorThe Basic Frequency ModulatorThe Basic Frequency ModulatorThe Basic Frequency Modulator    
 
One of the advantages of frequency modulation is that very simple waveforms can be 
used to produce a very complex spectrum. The basic frequency modulator consists of a 
carrier sine wave that changes its frequency according to another sine wave: the 
modulator. The corresponding mathematical expression is 
 
 f(t) = A sin( 2 π  fct + d sin(2 π  fmt) )          (10.1) 
 
where 
 
 
ffffccccis the carrier frequency. 
ffffmmmm is the modulator frequency. 
AAAAis the amplitude of the carrier (also the amplitude of the output). 
ddddis the modulator amplitude



The basic frequency modulator is shown in diagram 43. 
 
 
Diagram 43 Basic FM Instrument 
 
    

ffffcccc carrier frequency. 
ffffmmmm modulator frequency. 

AAAA  amplitude 
dddd  modulator amplitude 
 
It can be shown that expression (10.1) is equivalent to a sum of simpler sine waves of 
frequencies 
fc 

fc + fm  fc - fm 

fc + 2 x fm fc - 2 x fm 

fc + 3 x fm fc - 3 x fm 

. 

. 
etc. 
 



For example, if the carrier is 1000 hz and the modulator 100 hz, the resulting frequencies 
are: 
 
1000 hz 
1000 + 100 = 1100 hz 1000 - 100 = 900 hz 
1000 + 200 = 1200 hz 1000 - 200 = 800 hz 
1000 + 300 = 1300 hz 1000 - 300 = 700 hz 
 
. 
. 
etc. 
 
Expression (10.1) can be written as follows: 
 
f(t) = A0sin(2 Π  fct ) + 

A1sin(2 Π  (fc+fm)t) + A1sin(2 Π  (fc-fm)t) + 
A2sin(2 Π  (fc+2fm)t) + A2sin(2 Π  (fc-2fm)t) + 
A3sin(2 Π  (fc+3fm)t) + A3sin(2 Π  (fc-3fm)t) + 
A4sin(2 Π  (fc+4fm)t) + A4sin(2 Π  (fc-4fm)t) + 

. 

. 
etc. 
 

= A0 sin(2 Π  fct) + 
A1 x (sin(2 Π  (fc+fm)t)  + sin(2 Π  (fc-fm)t) ) + 
A2 x (sin(2 Π  (fc+2fm)t) + sin(2 Π  (fc-2fm)t)) + 
A3 x (sin(2 Π  (fc+3fm)t) + sin(2 Π  (fc-3fm)t)) + 
A4 x (sin(2 Π  (fc+4fm)t) + sin(2 Π  (fc-4fm)t)) + 

. 

. 
etc.              (10.2) 
or more concisely 

  f(t) =  Σ Ai [sin(2 Π  (fc+ifm)t) + sin(2 Π  (fc-ifm)t)]   (10.3) 
 i 



The physical interpretation of expressions (10.2) and (10.3) is that frequencies are 
produced on both sides of the carrier. These frequencies are appear at intervals of ffffmmmm hz. 
They are also called side bands. Diagram 44 displays the spectrum obtained using a 
carrier ffffcccc and a modulator    ffffmmmm. It may be noticed that the components at both sides of the 
carrier have the same amplitudes. 
 
 
 
Diagram 44 Spectrum Produced by FM 
 

 
 
 
The basic FM oscillator can be implemented in Csound by straightforward realization of 
diagram 43, as shown in instr 34. There is, however, a special FM statement in Csound 
that will be introduced later. For the time being, until some concepts are clarified, instr 34 
will be used. 
 



instr 34        ; Basic FM instrument 
 
;p4  : carrier amplitude 
;p5  : carrier frequency 
;p6  : attack 
;p7  : decay 
;p8  : modulator amplitude 
;p9  : modulator frequency 
;p10 : oscillator function 
 
     kenv linen   p4,p6,p3,p7      ; envelope 
     amod oscil   p8,p9,p10        ; modulator 
     aout oscil   kenv,p5+amod,p10 ; modulated carrier 
     out     aout             ; output 
 
endin 
 
 
10.2Distortion IndexDistortion IndexDistortion IndexDistortion Index    
 
Expression (10.1) and diagram 43 show that the amplitude of the modulator, dddd, is actually 
the maximum possible fluctuation, or peak deviation from the frequency of the carrier. 
Therefore the frequency of the resulting waveform changes between the values 
 

fc – d and fc + d 

 
 
If dddd is very small compared with ffffmmmm, the effect of the modulator on the frequency of the 
overall waveform will be very small, whereas if dddd is relatively large, it will affect the 
waveform drastically. In order to show the effects of dddd, instr 34, is used by CS30.SC to 
produce five sounds with a carrier of 400 hz, a modulator of 440 hz and different values of 
dddd: 0, 10, 100 800 and 1600 hz. 
 
 



The score and orchestra are listed below. The results can be heard in tape example 30: 
 
When dddd = 0 the result is no modulation at all. Thus, a pure sine wave at the frequency of 
the carrier is heard. This is in accordance with the mathematical representation of FM. 
 
 f(t) = A sin( 2 Π  fct + 0 x sin(2 Π  fmt) ) 
 
=A sin(2 Π  fct)  
When dddd = 10 very little distortion is produced. 
When dddd = 100 the distortion begins to be noticeable. 
When dddd = 800 the distortion is more significant. 
 
When dddd = 1600 the sound becomes completely distorted. 
 
 
; CS30.ORC      Basic FM instrument 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 34        ; Basic FM instrument 
 
;p4  : carrier amplitude 
;p5  : carrier frequency 
;p6  : attack 
;p7  : decay 
;p8  : peak deviation 
;p9  : modulator frequency 
;p10 : oscillator function 
 
     kenv    linen   p4,p6,p3,p7          ; envelope 
     amod    oscil   p8,p9,p10            ; modulator 



     aout    oscil   kenv,p5+amod,p10     ; modulated carrier 
             out     aout                 ; output 
 
endin 
 
;CS30.SC        Modulation of a 400 hz sine wave by a  
;               440 hz sine wave and different deviation  
;               values 
 
f1  0 8192 10 1 ; sine wave 
 
;              p3   p4   p5   p6     p7   p8   p9   p10 
;instr startdurampcarrattackdecpeakmodfunc 
;                        freq             dev  freq 
 
i34    0       1.5 15000 400  .1     .1      0 440  1 
i34    2        .   .     .   .      .      10 .    . 
i34    4        .   .     .   .      .     100 .    . 
i34    6        .   .     .   .      .     800 .    . 
i34    8        .   .     .   .      .    1600 .    . 
 
e 
 
 
So far we have seen that when the peak deviation is very small in relation to the 
modulator, the effect it produces is minor, but as it increases its distorting effect is more 
significant. Therefore, it makes sense to device a way of measuring how large the peak 
deviation is in comparison to the modulating frequency. The simplest way of comparing 
two quantities is by finding their ratio. For this reason, the modulation index  IIII is defined as 
follows: 
 
     peak deviation   d 

I = ---------------------------  = --- 
modulator frequency   fm 



 
  
then 
 
 
If dddd is 0, then IIII = 0. 
If d d d d is very small compared to ffffm then IIII is much smaller than 1 (IIII << 1). 
If dddd is equal to ffffmmmm, then IIII = 1. 
If dddd is larger than ffffmmmm, then IIII > 1. 

 
The conclusions drawn from example 30 can now be rephrased: 
 
When  IIII = 0 no distortion is produced.  
When IIII << 1 very little distortion is produced. 
When IIII = 1 the distortion begins to be noticeable. 
When IIII = 2 the distortion grows. 
When  IIII = 4 (I >> 1) the sound becomes completely distorted. 
 
 
It can be proved that the reason for distortion is the fact that when the index grows, the 
amplitudes of the sidebands further away from the carrier also grow, therefore, more 
partials, corresponding to these distant sidebands, can be heard. At the same time, the 
intensity of the carrier decreases with an increasing index. 
 
 
As a rule of thumb, it is useful to consider the number of pairs of sidebands that became 
audible equal to the  index. Thus, in total, the sound will have 
 

2 x I + 1 partials. 
 
 
For example: 
 
If I = 0,there will be only one significant partial: the carrier. 



 
If I = 1,there will be one partial at each side of the carrier. In total 2x1 + 1 = 3 partials, 
corresponding to ffffcccc---- f f f fmmmm, ffffcccc and ffffcccc+ f f f fmmmm. 

 
If I = 2,there will be 2 partials at each side of the carrier. In total 2x2 +1 = 5 partials, etc. 
 
Diagram 45 shows the relative amplitudes of the partials produced by frequency 
modulation for five values of IIII (0, .1, 1, 2, 4). These are not to scale and just give an idea 
of which partials are prominent. 
 
 
Diagram 45 Relative Amplitudes of Partials Produced by Different Values of the Index. 

 
 
 
 
In this section, it has been shown that the modulation index controls the relative 
amplitudes of the partials. In general it can be said that the modulation index determines 
how many partials will be heard. 
 



 
 
10.3 Reflected FrequenciesReflected FrequenciesReflected FrequenciesReflected Frequencies    
 
By now, it should be clear that if the modulation index grows, more and more sidebands 
can be heard. At some point the sidebands produced by the difference between ffffcccc and 
multiples of ffffmmmm will either be zero or negative. 
 
In order to interpret these values it is necessary to look at expressions (10.2) or (10.3) 
which consist of a sum of sine waves. In the case of 0hz 
 
sin(2 Π  (0) t) = sin(0) = 0 
 
 
Therefore, the resulting waveform has no DC component which is usually an advantage 
FM has over waveshaping. 
 
In the case of -200 hz, using the trigonometric identity 
 
sin(a) =   -sin(-a) = sin(a- Π ) 
 
it can be seen that 
 
sin[2 π  (-f)t]  =  -sin[2 π  ft]  =  sin[2 π  ft -  π ] 
 
 
This means that the components with negative frequencies always reflect themselves as 
positive frequencies with negative amplitudes, which is the same as to say that they have 
a phase shift of π (they will lag or be in front by half a cycle). 
 
For example, if we take a carrier of 400 hz and a modulator of 200 hz, the first three pairs 
of sidebands are: 
 
400 + 200 =  600 hz400 - 200 =  200 hz 



400 + 400 =  800 hz400 - 400 =    0 hz 
400 + 600 = 1000 hz400 - 600 = -200 hz ---> 200 hz 
 
Therefore, when the spectrum is viewed, the partial at -200 hz reflects as a partial of 200 
hz with negative amplitude as shown in the following diagram. 
 
Diagram 46 Reflected frequency of -200 hz and final result, when a carrier of 400 hz is 

modulated by a a 200 hz signal 

 
 
It is worth pointing out that in this case the final amplitude of the partial at 200 hz is the 
result of adding the amplitudes of the reflected -200 hz and the original 200 hz sideband. 
 



10.4 Carrier to ModulaCarrier to ModulaCarrier to ModulaCarrier to Modulator Ratio (c/m)tor Ratio (c/m)tor Ratio (c/m)tor Ratio (c/m)    
 
If a 400 hz carrier is modulated by a 200 hz signal. The first few sidebands are: 
 
 200 hz and 600 hz 
   0 hz and 800 hz 
-200hz (which reflects as 200 hz) and 1000 hz 
-400hz (which reflects as 400 hz) and 1200 hz 
 
It can be seen that the resulting partials are: 
 
200, 400, 600, 800, 1000, 1200 hz, etc. 
 
 
Therefore, the fundamental is 200 hz, which is equal to the frequency of the modulator. 
 
 
If, instead, a 200 hz carrier is modulated by a 400 hz signal, the first few sidebands are: 
 
 -200hz (which reflects as 200 hz) and  600 hz 
 -600hz (which reflects as 600 hz) and 1000 hz 
-1000hz (which reflects as 400 hz) and 1400 hz 
-1400hz (which reflects as 400 hz) and 1800 hz 
 
Now, the resulting partials are: 
200, 600, 1000, 1400 hz, etc. 
 
Therefore, the fundamental is 200 hz, which, this time, is the frequency of the carrier. 
 
In both cases, the resulting partials are harmonics (multiples of the fundamental); however, 
in the first example, all the harmonics are present, whereas in the second, only the odd 
harmonics (1, 3, 5, etc.) appear. 
 
If a third case is taken with a carrier of 200 hz and a modulator of 283 hz, the first few 



sidebands are: 
 
- 83 hz (which reflects as 83 hz)  and  483 hz 
-366 hz (which reflects as 366 hz) and  766 hz 
-649 hz (which reflects as 649 hz) and 1049 hz 
 
 
Therefore, the partials are: 
 
83, 200, 366, 483, 649, 766, 1049 hz, etc. 
 
The fundamental is 83 hz this time, which is neither the frequency of the carrier nor of the 
modulator. Furthermore, the spectrum is not harmonic. 
 
The resulting sounds in each case can be heard in Csound tape example 31, which is the 
output produced by using CS31.ORC and CS31.SC . The sounds are the outputs of: 
 
1.Carrier = 400 hz. Modulator = 200 hz. 
2.Carrier = 200 hz. Modulator = 400 hz. 
3.Carrier = 200 hz. Modulator = 283 hz. 
 
In order to preserve the value of the index (IIII = 2) throughout these three cases, the peak 
deviation has to be different for each case. Since 
 
I = d/fm 

 
 
then 
 
 
 d = fm x I  

 
therefore 
 



 
In case 1: d = 200 x 2 = 400 hz. 
In case 2: d = 400 x 2 = 800 hz. 
In case 3: d = 283 x 2 = 566 hz. 
  
 
 
CS31.ORC contains instr 34, already listed above. CS31.SC is shown below. 
 
;CS31.SC        Different carrier-modulator combinations 
 
 
f1  0 8192 10 1 ;sine wave 
 
;              p3   p4   p5   p6     p7   p8   p9   p10 
;instr startdurampcarrattackdecpeakmodfunc 
;                        freq           dev  freq 
 
 
i34    0       1.5 15000 400  .1     .1   400  200  1 
i34    2        .   .    200  .      .    800  400  . 
i34    4        .   .    200  .      .    566  283  . 
 
e 
 
 
 
 
In the previous example, the fundamental and the harmonicity of the spectrum could have 
been predicted because they depend on the ratio between the carrier and the modulator 
c/mc/mc/mc/m. This is similar, but much simpler case of ring modulation and can be summarized in 
as follows: 
 
10.4.1 Harmonic Spectrum (c/m = Ratio of Integers) 



 
Whenever the carrier to modulator ratio can be represented as a ratio of (small) integers, 
the spectrum will be harmonic. This can be expressed as 
 
fc/fm = N1/N2  where N1 and N2 are integers. 

 
 
Furthermore, if this expression can be simplified so that N1 and N2 have no common 
factors then there is more information that can be inferred: 
 
10.4.1.1The fundamental is 
 
fund = fc/N1 = fm/N2 

 
In the first case of the previous example, the carrier to modulator ratio is 
 
400/200 = 2/1 
 
therefore 
 
fund = 400/2 = 200/1 = 200 hz 
 
 
In the second case the carrier to modulator ratio is 
 
200/400 = 1/2 
 
therefore 
 
fund = 200/1=400/2=200 hz 
 
10.4.1.2 The carrier is always the N1 harmonic of the output spectrum. 
 
In the first two cases of the previous example the carrier to modulator ratios are 



respectively 
 
400/200=2/1The carrier is the second harmonic (N1 = 2) 

 
and 
 
200/400=1/2The carrier is the fundamental (N1 = 1) 
 
 
10.4.1.3Different values of N2 
 

If N2 is 1, all the harmonics will appear. This can be corroborated by the first case above. 
 
 
If N2 is even, the spectrum contains only odd harmonics. The second case above 

corroborates this. 
 
If N2 = 3, every third harmonic is missing. 
 
An example is now given: if the carrier is 200 hz and the modulator is 300 hz, then 
 
c/m = 2/3 
 
The sidebands are 
 
 -100 (reflects as 100) and  500 hz 
 -400 (reflects as 400) and  800 hz 
 -700 (reflects as 700) and 1100 hz 
-1000 (reflects as 1000), etc. 
 
The fundamental is then: 100 hz. 
The carrier is the second harmonic: 200 hz. 
The harmonics are: 
 
100, 200, 400, 500, 700, 800, 1000, 1100 hz, etc. 



 
It can be noticed that every third harmonic (300, 600, 900, etc.) is missing. If instead of 
using a modulator of 300 hz, a 100 hz is used, the harmonics appearing in the output will 
be 
100, 200, 300, 400, 500, 600, 700, 800 hz, etc. 
 
 
In this case, no harmonics are missing, but if the same index value of, say, 4 is used, then 
the highest harmonic heard will be 600 hz whereas in the case of a 300 hz modulator, the 
highest harmonic heard will be 800 hz, making the sound brighter (higher harmonic 
content). 
 
As a general rule of thumb, in order to achieve brighter or sounds with the same index, the 
carrier to modulator ratio should be increased, and viceversa. 
 
Csound tape example 32 illustrates this. It contains two sounds, both with a 400 hz carrier. 
The first sound has a 400 hz modulator, and the second a 800 hz modulator. In both 
cases, the modulation index is 3 (the peak deviation is adjusted according to the modulator 
frequency). 
 
It can be noticed that the second sound is brighter and somewhat thinner than the first 
since it contains higher and more spaced harmonics. The harmonic content of each of the 
sounds can now be calculated. 
 
The modulation index is 3, therefore, the number of partials heard is approximately 
 
 
2x3 + 1 = 7 
 
There will be 3 partials above and three partials below the fundamental (negative partials 
will reflect). In the case of the first sound (c/m = 1/1), the fundamental is 400 hz and the 
harmonics are 
 
400, 800, 1200 and 1600 hz 



 
 
In the case of the second sound (c/m = 1/2) therefore, the harmonics of are 
 
400, 1200, 2000 and 2800 hz 
 
 
 
The sounds in example 32 were produced by compiling CS32.ORC and CS32.SC. The 
orchestra uses instr 34. The score is given below. 
 
 
;CS32.SC   Same carrier (400 hz) with two different ;  modulators (400 and 800 hz) 
f1  0 8192 10 1 ;sine wave 
 
;              p3   p4   p5   p6   p7   p8   p9   p10 
;instr startdurampcarratckdecpeakmodfunc 
;                        freq           dev  freq 
 
i34    0       1.5 15000 400  .1   .1   1200 400  1 
i34    2        .   .    .    .    .    2400 800  . 
 
e 
 
 
 
 
10.4.2Inharmonic Spectrum (c/m is not a Ratio of Integers) 
 
When c/m cannot be expressed as a ratio of two small integers, the resulting spectrum will 
be inharmonic. 
 
The third sound in Csound example 31 is an illustration of inharmonic spectrum. The 
carrier is 200 hz and the modulator 283 hz. 



 
200     1 

c/m = ----- ~ ----- 
283   21/2 

 
The closer c/m is to a ratio of integers, the more harmonic the spectrum. A spectrum that 
is almost harmonic has a lively character, as explained in chapter 8, section 8.3.4 
 Csound tape example 33 contains three sounds with a carrier of 300 hz and the following 
carrier to modulator ratios: 1, 1.003 and 1.4142 ( ~ 21/2 ). 
 
The first sound is completely harmonic. 
 
The second is more lively because of its slight inharmonicity, which produces beats 
between the partials. 
 
The third sound is completely inharmonic. 
 
The orchestra uses instr 34. The score is listed below. 
 
 
;CS33.SC        carrier = 300 hz 
;               c/m =   1       (modulator = 300) 
;                       1.003   (modulator = 300.9) 
;                       1.4142  (modulator = 424.26) 
;               index = 2 
 
f1  0 8192 10 1 ;sine wave 
 
;          p3   p4   p5   p6   p7   p8    p9    p10 
;instr stt durampcarratckdecpeak mod func 
;                    freq           dev   freq 
 
i34    0   1.5 15000 300 .1   .3  600    300    1 
i34    2    .   .    .    .    .   601.8  300.9  . 



i34    4    .   .    .    .    .   848.52 424.26 . 
 
e 
In this section, it has been shown how the carrier to modulator ratio determine the values 
of frequencies in spectrum of the output. 
 
10.5555 FOSCIL FOSCIL FOSCIL FOSCIL    
 
Now that the concepts of index and carrier to modulator ratio have been clarified, it is 
possible to discuss a special oscillator offered by Csound: FOSCIL. 
 
The general form of FOSCIL is 
 
  arfoscilamp, freq, carr, mod , index, func, ( , phase )   
where 
 
amp  is the amplitude. 
 
freq  is a common frequency from which the carrier and the modulator can be 

obtained by multiplying respectively by carr and mod. For example, if 
 

Freq = 100 hz 
carr = 1 
mod = 2 

 
the carrier is   100 x 1 = 100 hz 
and the modulator is 100 x 2 = 200 hz  



This makes it easy to see the carrier to modulator ratio. In this example 
 

carr    1 
c/m = ----- = --- 
mod    2 
 

carr is a number that multiplies freq in order to obtain the carrier frequency. It 
does not have to be an integer. 

 
mod is a number that multiplies freq in order to obtain the modulator frequency. It 

does not have to be an integer. 
 
index is the modulation index. 
 
func is the function defining the basic waveform of the carrier and the modulator. 
 
phase is the phase of the waveform. It does not have to be specified, in which 

case it is assumed to be 0. 
 

As in the case of OSCIL, there is a more accurate (but slower) statement 
that has exactly the same parameters as FOSCIL, called FOSCILI. 
However, accuracy can be achieved by using FOSCIL with a large function 
table (8192 samples or more). 

 
10.6 Dynamic SpectrumDynamic SpectrumDynamic SpectrumDynamic Spectrum    
 
The big success of FM in its initial days was  due to the alternative it offered to the 
production of dynamic spectra which did not involve a great number of parameters. 
Obviously, the carrier frequency can be made to vary in time, as well as the carrier to 
modulator ratio (equivalent to varying the value of the modulator). But the parameter that 
produced the real revolution when FM synthesis first appeared was the modulation index. 
 
 
As the index changes in time, different sidebands become more or less prominent 



therefore changing the composition of the spectrum. For example, if we take a 100 hz 
carrier, a 100 hz modulator (c/m = 1) and make the index increase from 0 to 4 during 2 
seconds, the beginning of the sound will be a pure sine wave of 100 hz, and as time goes 
by, the second, third, fourth and fifth harmonics will, respectively, be more prominent. The 
following diagram is a qualitative representation of the resulting dynamic spectrum. 
 
Diagram 47 fc = fm = 100 hz 

Index changes from 0 to 4 in 2 sec 
 

 
This sound can be heard in Csound tape example 34, the orchestra and score of which 
are given next. 
 
 
; CS34.ORC      -       FM synthesis instrument using FOSCIL 
;                       Produces dynamic spectrum by varying 
;                       the modulation index 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
 
instr 35        ;       General FM instrument 



 
;p4  : amplitude 
;p5  : pitch (to be converted to frequency) 
;p6  : carrier/frequency 
;p7  : modulator/frequency 
;p8  : maximum index 
;p9  : oscillator function (usually a sine wave) 
;p10 : index function 
 
icyc    =       1/p3            ; one cycle 
 
     ; envelope with attack = decay = .1 sec 
 
     kenv    linen   p4,.1,p3,.1 
 
     ; index 
 
     kidx    oscil   p8,icyc,p10 
 
     ; FM oscillator 
 
     a1      foscil  kenv,p5,p6,p7,kidx,p9 
 
     ; output 
 
          out     a1 
 
endin 
 
 
 
 
;CS34.SC        dynamic spectrum index changes  
;               from 0 to 4 in 2 seconds 



 
f1 0 8192 10 1          ; oscillator function 
f2 0 512  7 0 512 1     ; index function 
 
;              p3   p4   p5   p6   p7   p8      p9     p10 
;inst startdurampfreqcarrmodmaxfunc 
;                                       index   oscidx 
 
i35   0        2   15000 100  1    1    4       1      2 
 
e 
 
Proper manipulation of the modulation index yields a great diversity of sounds. Some of 
them are shown in the next section. It should be pointed out that the following examples 
only take advantage of a time varying index, and that more variety can be achieved by 
changing the carrier to modulator ratio and the frequency of the carrier, as well as by 
mixing more than one FOSCIL module to obtain, for example, formant regions. 
 
10.7 ExamplesExamplesExamplesExamples    
 
The first three examples are all implemented using CS35.ORC and CS35.SC and can be 
heard in Csound tape example 35. 
 
10.7.1Bell-like Sounds 
 
One of the easiest sounds to produce with FM are bells. As discussed in Chapter 8, 
Section 8.4.3, the main characteristic of bell sounds is that they are initially very 
inharmonic, with very high partials that decay quickly leaving the lower partials to resonate. 
 
This can be translated in terms of c/mc/mc/mc/m and index. 
 
Inharmonic spectrum -> c/m irrational. 1.215 is a good approximation. 
 
high partials dominant ->high index = 6 



 
low partials dominant -> low index = 0.2 
 
High partials that are initially dominant and decay very quickly means that the actual index 
should be initially high and decay rapidly. An exponential decay matches this quite well. 
 
Therefore, the carrier to modulator ratio can be kept constant at 1.215, while the index 
should be a control variable that changes exponentially from 6 to 0.2 through the duration 
of the note. 
 
Finally, the whole amplitude envelope that starts abruptly (when the bell is hit) and decays 
rapidly in the beginning and slowly afterwards, can also be matched by an exponential. 
 
Diagram 48 Amplitude Envelope and Index for a Bell 
 

 
 
10.7.2Drum-like Sounds 
 
In this case a few changes can be made to the bell parameters. The principal change 
consists of shortening the duration of the whole sound to 0.5 seconds. This makes it more 
percussive in comparison with the slow decaying bell. The amplitude and index envelope 
follow exactly the same shape. Finally, the following changes are made: 
 
1.In order to simulate hitting  a membrane, which is more flexible than a metallic bell, the 



envelope does not start abruptly at its highest value but rather starts from 0 and then 
increases for about 0.02 seconds until it reaches its maximum value and then decays 
quickly for 0.025 seconds. This produces a softer attack. 
 
2.After it decays, there is some increase in the amplitude and index which corresponds to 
the membrane still being deformed after it has been hit, thus producing higher harmonics. 
 
3.The highest value of the index is only 2.5, as compared with 6 for the bell, therefore 
lower harmonics are heard, especially after the initial decay.  This produces an overall 
darker sound which is more characteristic of a drum. 
 
4.c/m = 1/2.21, therefore the harmonics are more spaced, producing a slightly hollower 
sound when the index is high.  
 
Diagram 49 Drum-like Sound Amplitude Envelope and Index 
 

 
 
10.7.3Knock on Wood 
 
A knock on wood is characterized by being very short and changing very quickly from very 
high harmonics to almost the fundamental. In order to achieve this sound: 
 
1.The overall duration of the sound is shortened even further to 0.2 seconds. 
 



2.The amplitude envelope is left to be exponential. Due to the short duration the result is a 
very rapid decay. 
 
3.The index falls linearly from 25 to 0 in 0.025 of a second. 
 
Diagram 50 Knock on Wood 
 

 
The orchestra and score are listed below. 
 
 
; CS35.ORC      -   FM synthesis instrument using FOSCIL 
;                   Produces all kinds of percussive sounds 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
 
instr 36  ;    General FM instrument, with envelope changing 
          ;according to function table given by p10 and 
          ;    index changing according to function table given 
          ;    by p11. 
 



;p4  : amplitude 
;p5  : pitch (to be converted to frequency) 
;p6  : carrier/frequency 
;p7  : modulator/frequency 
;p8  : maximum index 
;p9  : oscillator function (usually a sine wave) 
;p10 : amplitude function 
;p11 : index function 
 
     icyc  =       1/p3            ; one cycle 
     ifreq =       cpspch(p5)      ; frequency 
 
     ; envelope 
 
     kenv  oscil   p4,icyc,p10 
 
     ; index 
 
     kidx  oscil   p8,icyc,p11 
 
     ; FM oscillator 
 
     a1    foscil  kenv,ifreq,p6,p7,kidx,p9 
 
     ; output 
 
          out     a1 
 
endin 
 
;CS35.SC  Different Percussive sounds obtained by changing 
;         envelopes, index functions and durations of the sounds 
 
f1 0 8192 10 1          ; oscillator function 



f2 0 512  5 1 512 .0001 ; amplitude function 
f3 0 512  5 1 512 .2    ; index function 
 
;       BELLS 
 
;         p3   p4   p5        p6   p7   p8        p9   p10  p11 
;inst sttduramppitchcarrmodmax        functions 
;                                       indexoscampidx 
 
i36    0  4   15000  7.11   1   1.215 6       1   2   3 
i36    5  .   10000  8.11     .    .    .         .    .   .        
i36    6  .   10000  8.07     .    .    .         .    .   .        
i36    7  .   10000  8.09     .    .    .         .    .   .        
i36    8  .   10000  8.02     .    .    .         .    .   .        
i36   10  .   10000  8.02     .    .    .         .    .   .        
i36   11  .   10000  8.09     .    .    .         .    .   .        
i36   12  .   10000  8.11     .    .    .         .    .   .        
i36   13  .   10000  8.07     .    .    .         .    .   .        
 
s 
 
;       DRUMS 
 
;index and amplitude function 
f2 0 2048 7 0 20 .75 35 .9 35 1 104 .15 64 .1 186 .08 630 .15  
964 0 
 
;         p3   p4   p5        p6   p7   p8        p9   p10  p11 
;inst sttduramppitchcarrmodmax        functions 
;                                       indexoscampidx 
 
i36   0   .5  15000  5.07    1    2.21  2.5     1   2   2 
i36   +   .5  15000  6       .     .     .       .   .   . 
i36   +   .5  15000  6.05    .     .     .       .   .   . 



 
s 
 
;       KNOCK ON WOOD 
 
f2 0 512  5 1 512 .0001         ; amplitude function 
f3 0 512  7 1 64 0 448 0        ; index function 
 
 
;         p3   p4   p5        p6   p7   p8        p9   p10  p11 
;inst sttduramppitchcarrmodmax        functions 
;                                       indexoscampidx 
 
i36   2   .2  15000  6       1  1.4142 25      1   2   3 
i36   2.5 .   >      .       .   .     .       .   .   . 
i36   3   .   25000  .       .   .     .       .   .   . 
 
 
e 
 
 
 
 
10.7.4Brass-like Sounds 
 
A well know characteristic of a brass sound is that the louder it is played, the higher the 
harmonics that will be heard. In fact, the brilliance of the brass is due to higher harmonics 
appearing in the spectrum. This can be easily simulated by making the index follow the 
same shape as the amplitude envelope as can be seen in the following diagram: 
 
 
 
 
 



Diagram 51 Brass-like Tone Amplitude Envelope and Index 

 
 
 
The spectrum should be harmonic and all the harmonics should be  present, therefore c/m 
should be close to 1. In order to give the sounds a slightly livelier characteristic, the 
spectrum can be slightly detuned by making c/m = 1.001 or 1.002, instead of 1. 
 
The maximum index is usually 5 for low to middle register sounds (middle C to  D a ninth 
above). For higher sounds a value of 7 is used to give more brightness. 
 
Finally, the initial blow of the attack is achieved by an  overshoot in the contours of the 
envelope and index. 
 
The instrument used is a modification of the general FM instrument in which the envelope 
and index are adapted to this special case. Softer articulation can be achieved by varying 
the attack time and fade out can be accomplished by increasing the decay. 
 
The result of using CS36.SC can be heard in Csound tape example 36. 
 
 
 
 



; CS36.ORC      -       Brass-like tones instrument 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 37        ;       FM instrument that generates 
                ;       brass-like tones 
;p4  : amplitude 
;p5  : pitch (to be converted to frequency) 
;p6  : attack 
;p7  : decay 
;p8  : carrier/frequency 
;p9  : modulator/frequency 
;p10 : maximum index 
;p11 : oscillator function (usually a sine wave) 
 
     ifreq  =       cpspch(p5)      ; frequency 
     ihatck =       p6*.5           ; half of attack time 
     ist1   =       p4*.75          ; steady state amplitude 1 
     ist2   =       p4*.6           ; steady state amplitude 2 
     istd   =       p3-p6-p7        ; duration of steady state 
 
     ; envelope 
 
     kenv   linseg  0,ihatck,p4,ihatck,ist1,istd,ist2,p7,0 
 
     ; index 
 
     kidx   =       kenv*p10/p4 
 
     ; FM oscillator 
 



     a1     foscil  kenv,ifreq,p8,p9,kidx,p11 
 
     ; output 
 
            out     a1 
endin 
 
;CS36.SC        Brass-like sounds 
 
f1 0 8192 10 1          ; oscillator function 
 
;              p3p4    p5      p6   p7   p8   p9    p10  p11 
;inst stt duramp pitchatckdeccarrmod maxosc 
;                                                        idx  func 
 
i37   0      .1  10000 8.01    .05   .04  1   1.002  5   1 
i37   +      .   >      .      .     .    .    .     .   . 
i37   +      .   >      .      .     .    .    .     .   . 
i37   +      .9  15000  .      .2    .1   .    .     5   . 
i37   +      .1  10000  .      .05   .04  1   1.002  5   1 
i37   +      .   >      .      .     .    .    .     .   . 
i37   +      .   >      .      .     .    .    .     .   . 
i37   +      .9  15000  .      .2    .1   .    .     5   . 
i37   +      .1  10000  .      .05   .04  1   1.002  5   1 
i37   +      .   >      .      .     .    .    .     .   . 
i37   +      .   >      .      .     .    .    .     .   . 
i37   +    1.8  18000 8.04    .2    .4   .    .     5   . 
 
i37   +      .1  12000 8.01    .05   .04  1   1.002  5   1 
i37   +      .   >      .      .     .    .    .     .   . 
i37   +      .   >      .      .     .    .    .     .   . 
i37   +      .9  18000 8.04    .2    .1   .    .     5   . 
i37   +      .1  14000 8.01    .05   .04  1   1.002  5    1 
i37   +      .   >      .      .     .    .    .     .    . 



i37   +      .   >      .      .     .    .    .     .    . 
i37   +      .9  22000 8.04    .2    .1   .    .     5    . 
i37   +      .1  14000 8.01    .05   .04  1   1.002  5    1 
i37   +      .   >     8.04    .     .    .    .     .    . 
i37   +      .   >     8.08    .     .    .    .     .    . 
i37   +    2.1  25000 9.01    .2    .2   .   1.001  5    . 
 
s 
 
i37   .15    .15 22000 8.11     .08   .04  1   1.002  5    1 
i37   +      .8  23000 8.09     .1    .1   .    .     .    .        
i37   +      .15 22000 8.08     .08   .04  .    .     .    . 
i37   +      .8  23000 8.06     .1    .1   .    .     .    . 
i37   +      .15 22000 8.04     .08   .04  .    .     .    . 
i37   +      .8  23000 8.09     .1    .1   .    .     .    . 
i37   +      .15 22000 8.08     .08   .04  .    .     .    . 
i37   +      .8  23000 8.06     .1    .1   .    .     .    . 
i37   +      .15 22000 8.04     .08   .04  .    .     .    . 
i37   +     .25 22000 8.06    .08   .04  .    .     .    . 
i37   +     .25 >     8.09    .08   .04  .    .     .    . 
i37   +     .25 >     9.01    .08   .04  .    .     .    . 
i37   +    1.8  28000 9.04    .2    .1   .   1.001  7    . 
i37   +     .75 >     9.06    .     .    .    .     .    . 
i37   +    3    32000 9.09      .    1.5   .   1.0005 .    . 
 
e 
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11. The Phase Vocoder11. The Phase Vocoder11. The Phase Vocoder11. The Phase Vocoder    
 
Sound processing is one of the most exciting areas of computer music. This is especially 
true because of the possibilities opened by applications of the Fast Fourier Transform 
(FFT) to the analysis and resynthesis of dynamic spectra. 
 
A typical approach consists of analysing a sound, obtaining a numeric description of its 
evolving spectrum, which can  then be processed and finally resynthesized. This is 
schematically described below. 
 
ANALYSIS   --->PROCESSING   --->RESYNTHESIS 
 
 
One of the most powerful tools that enable musicians to do precisely this is the Phase 
Vocoder. This chapter will discuss its use and some of applications, but in order to do this, 
it is worth spending some time on the principles governing the Fast Fourier Transform. 
This subject will be treated, as much as it is possible, in a qualitative way in order to avoid 
the mathematical complications usually associated with Fourier Analysis, which are not 
always fruitful to those interested in making music and for which there is already an 
extensive bibliography. 
 
 
11.1Time Domain and Frequency DomainTime Domain and Frequency DomainTime Domain and Frequency DomainTime Domain and Frequency Domain    
 
There are two ways of describing a digital filter. One is by representing its behaviour after 
a very loud and extremely short signal - an impulse - is applied to it. The filter will react to 
this signal and will exhibit one and only one characteristic output as time goes by. This 
type of representation is called the impulse response, which describes the behaviour of the 
filter through time. Therefore, when the impulse response is used, the filter is said to be 
characterized in the    time domain. An example of this is the famous bullet test, used to 
measure the reverberation of a room: in principle, a gunshot is fired and then the 
reverberating sound is recorded and measured. The room is considered to be a filter to 
which an impulse (the gunshot) is applied. 
 



The second way of representing a filter is by describing how it attenuates or amplifies each 
possible frequency. In other words, a diagram is plotted showing the amplitude of the 
output when pure sine waves of different frequencies are used separately as inputs. This 
is its frequency response and, in this case, the filter is characterized in the frequency 
domain. Examples of frequency responses were given when describing the behaviour of 
the low-pass, high-pass, band-pass and band-stop basic filters in Chapter 7, Section 7.2. 
 
 
 
11.2Discrete Fourier TransformDiscrete Fourier TransformDiscrete Fourier TransformDiscrete Fourier Transform    
 
 
In the analogue world, an impulse can be visualized as a very quick spike in a voltage 
source. A digital impulse would be the sampling of this signal as shown in the diagram 52. 
 
But the analogue impulse has a very particular characteristic: Its spectrum contains all the 
frequencies. This means that when the Fourier method is applied to the analogue impulse 
in order to find its partials, the result will tell us that it has partials at all possible 
frequencies and that the coefficients of those are all 1. 
 
Diagram 52  Analogue and Digital Impulses 
 

 
Diagram 53 Fourier Components of Analogue Impulse 
 



 
The immediate conclusion is that applying an analogue impulse to an analogue filter is 
equivalent to applying all possible frequencies simultaneously. However, the frequency 
response is the behaviour of the filter at all possible frequencies when they are applied 
one at the time. Therefore, in the end, the two representations are equivalent. The link 
between them is provided by the Fourier decomposition into partials, or, in other words, by 
using the Fourier Transform. 
 
Since the digital impulse can be seen as a sampled analogue impulse and the digital 
frequency response can be obtained by applying sampled sine waves at all frequencies, 
the digital impulse and frequency responses are obtained by using samples of the same 
signals that produced their analogue counterparts and it makes sense to find a digital 
version of the Fourier Transform that will link between them. It can be formally 
demonstrated that there is such a transform. It is called the Discrete Fourier Transform 
(DFT), which can be viewed as a sampled version of the analogue transform that turns the 
digital impulse response into the digital frequency response. 
 
In order to convert the frequency response into the impulse response a reverse of the DFT 
called the Inverse Discrete Fourier Tranmsform (IDFT) is used. 
 
 
11.3Sampling the Frequency ResponseSampling the Frequency ResponseSampling the Frequency ResponseSampling the Frequency Response    
 
If the digital responses are conceived as being obtained by means of using sampled 
versions of corresponding analogue signals, and the DFT is viewed as a sampled version 
of the analogue Fourier Transform, then the digital impulse and time responses 
themselves can be visualized as a sampled versions of their analogue  counterparts. 
 
Each sampled point of the frequency response is produced by calculating the DFT for a 



certain frequency value. This means computer time and power used for each calculation, 
therefore in order to avoid wasting this time and power the response should not be 
oversampled. In other words, a minimum number of samples should be taken such that 
information is not lost. 
 
In order to find this minimum, we will imagine a digital impulse applied  to a non-recursive 
filter. We would like to be able to isolate each component in the output and find out its 
amplitude and phase. This will be done by sampling an analogue impulse using a limited 
number of samples, then finding what are the maximum and minimum frequencies that 
can be represented with that number of samples. The minimum frequency will give the 
distance between the values of two adjacent sampled components. As with all sampling, 
no information can be gathered between two samples which applies to any frequency 
laying in between the values of those sampled components. Consequently, there is no 
extra benefit obtainable from trying to gather information to an accuracy of less of the 
minimum frequency that can be sampled. 
 
 
The minimum number of samples of the frequency domain is therefore 
 
 
 

maximum freq 
Number of sampled frequencies = --------------------  (11.1) 

minimum freq 
 
 
 
11.3.1 Sampling an Impulse 
 
 
In practice, when we want to use a computer to calculate the DFT it is impossible to 
sample the impulse to infinity. In any case, there is no need to do so because we are 
dealing with non recursive filters, which do not feed back their output, therefore after a 
while the impulse response becomes zero. It is enough to take as many samples are 



necessary to include all the non-zero outputs of the filter. In order to simplify we will 
assume a filter that requires only 5 samples, shown in diagram 54, and a sampling rate of 
20 samps/sec. 
 
 
 
 
 
 
 
 
Diagram 54 Filter with 5 sample Impulse Response 
 

 
 
11.3.2Finding the Maximum Frequency 
 
 
Since it was assumed that the input is the sampled version of a real impulse, all the 
frequencies should be contained. However, in order to avoid aliasing, only frequencies up 
to the Nyquist component (= sampling rate/2) can be sampled. This makes the maximum 
frequency equal to 10 hz. 
 
 
11.3.3Finding the Minimum Frequency 
 
 
Our main purpose is to be able to find the amplitude and phase of as many partials as we 
can. Our limitation is the number of samples of the impulse response, in this case: 5. 
 



If the filter could only let through one frequency out of the whole spectrum the output would 
be a sine wave. Now, in order to obtain the information (amplitude and phase), we must be 
sure that the number of samples taken contains at least half a cycle of that sine wave (the 
other half can be constructed out of the first one because the shape of a sine wave is 
known). 
 
In the present example, it is necessary that the 5 samples represent half a cycle. 
Therefore, 10 samples portray a whole cycle and since the sampling rate is 20 samps/sec, 
there will be two cycles in one second, that is a frequency of 2 hz. 
 
If we try to identify frequencies smaller than 2 hz, it will not be feasible to produce a 
complete half cycle, so there is no point in detecting frequencies of less than 2 hz, since 
they will not render enough information. This can be seen in diagram 55. 
 
Diagram 55 
 

 
 Enough Information         Not Enough Information 
 
Two conclusions can now be drawn: 
 
 
1.The minimum frequency that can be made a sampled point and still give useful 
information is 2 hz. Thus, it is enough to space the sampling points every 2 hz up to 10 hz. 
And from here, the sampled points of the frequency response will be 2, 4, 6, and 8 hz. 
 
2.The number of frequency samples excluding 0 hz is 5 (2, 4, 6, 8 and 10hz), and is equal 
to the number of points taken from the impulse response. This is in accordance with 
expression (11.1) and should be expected since both, frequency and time domain 



representations are equivalent. 
 
If a resolution of 2 hz is not enough, the only way of improving this is by using a filter that 
needs more points in order to represent its impulse response. For example, if 10 samples 
had been taken, then these 10 could be used to portray half a cycle of a sine wave, 20 
samples would portray the whole cycle, and at a sampling rate of 20 samples/sec, this 
would mean a frequency of 1 hz. Therefore doubling the length of the impulse response 
halves the minimum frequency. 
 
 
A quick way of finding the minimum frequency is by dividing the Nyquist frequency by the 
length in number of samples that are taken at the output of the filter in order to find the 
DFT. In general if the filter's impulse response is NNNN samples long, we only need to sample 
its frequency response at the following frequency values. 
 
 Nyq 2Nyq 3Nyq   (N-1)Nyq   
0, ------, -------,  ------- ,   . . .   -------------   and  Nyq 

N     N     N         N 
 
 
where Nyq is the Nyquist frequency = sampling rate/2 
 
 
 
The final conclusion is that for a filter of length NNNN, we only need to take NNNN sampled points 
of the frequency response in order to obtain enough information. We will also obtain NNNN 
sampled frequencies. In other words, the whole frequency range up to Nyquist is divided 
into NNNN equal parts. More sampled points are unnecessary since they do not render any 
extra information. Diagram 56 shows the actual frequency response of a 5 point impulse 
response filter and the sampled frequency response. 
 
Diagram 56 
 



 
 
11.4 DFT of a Digital SignalDFT of a Digital SignalDFT of a Digital SignalDFT of a Digital Signal    
 
The DFT was seen to be very useful when going back and forth between the time and 
frequency domain. But there is more to it than just representing filters. 
 
If we examine the procedure we used to arrive at the frequency response by means of the 
DFT, it can be noticed that the impulse response of the output of a filter was taken and 
used to calculate the sampled points of the frequency response of the filters, and that this 
was the same as finding the frequency components of that output. 
 
So, for any arbitrary signal, its frequency components can be calculated by imagining it is 
the output of a filter. If NNNN samples of that signal are taken, a filter of length NNNN (its impulse 
response has NNNN terms before it turns into 0) can be assumed. 
 
 
11.5 The Filter Bank ApproachThe Filter Bank ApproachThe Filter Bank ApproachThe Filter Bank Approach    
 
The previous approach for visualizing the DFT of an arbitrary signal was useful in order to 
find out how to optimize the calculations in a computer. 
 
Sometimes, it is easier to visualize the DFT of an arbitrary signal as the output of a bank of 
band-pass filters that have that signal for an input. This is similar to a graphic equalizer 
with centre frequencies at the sampled points and bandwidth at half way between them. If 
NNNN points of a signal are taken in order to obtain the DFT, this can be seen as feeding the 
signal to a bank of NNNN filters, since this would mean N N N N sampled frequencies. 



 
Diagram 57 shows a filter bank equivalent to a 5 point DFT. 
 
Diagram 57  5 Point DFT Filter Bank Equivalent 
 

 
 
It may be noticed that the first channel looks like a low-pass filter and the last like a high-
pass, making the total number add up to 6 filters. While theoretical considerations prove 
that these two represent only one filter that wraps around, for practical purposes these can 
be viewed as being independent. In other words, if NNNN points are taken then N + 1N + 1N + 1N + 1 filters will 
be produced: a low-pass, N N N N ---- 1 1 1 1 band-pass and a high-pass. 
 
If a signal has components within a certain bandwidth, these will show in the output of the 
respective filter. Each of those filters is usually called a channel. 
 
Obviously, if there are more filters, the bandwidth will be narrower and the analysis will be 
more accurate. But it was seen above  that in order to get NNNN meaningful divisions of the 
frequency range, it is necessary to analyse a signal that is NNNN samples long. Therefore, in 
order to improve the accuracy of the DFT more samples of a signal need to be analysed. 
 
It is worth remembering that a non-ideal filter has ripples and a transition region. This 
condition can be improved (but not completely eradicated) when the length of the filter is 
increased. Thus, when the DFT produces a bank of filters the neighbouring frequencies 
will not be completely filtered out and they will overlap with the results of the other filters. 
This is known as spectral leakage and it is shown in diagram 58. 
 
Diagram 58 Spectral Leakage 
 



 
11.6 The Fast Fourier Transform (FFT)The Fast Fourier Transform (FFT)The Fast Fourier Transform (FFT)The Fast Fourier Transform (FFT)    
 
As stated above, the accuracy of spectral analysis depends on the number of samples that 
are analysed. For musical purposes, for example, a 1024 point DFT is a reasonable 
compromise. 
 
But a 1024 point requires 1'049,600 additions and sums done by a computer. This means 
long computation times even by the quickest machines and DSP processors. 
 
For this reason, computer scientists found it necessary to produce an algorithm that 
reduces dramatically the number of operations done, by avoiding redundancy in the 
calculation of the DFT. For obvious reasons, this algorithm is called the Fast Fourier 
Transform (FFT). 
 
As a comparison, an implementation of a 1024 FFT requires 'only' 10,240 additions and 
multiplications: It is 1000 times faster than the ordinary DFT. As the number of points 
increases, the FFT becomes more and more efficient in comparison with the DFT. 
 
It must be stressed that the FFT is not an approximation of the DFT but rather the real 
thing. The only constraint it presents is that the number of points NNNN must be a power of 2. 
 
11.7The Phase VocoderThe Phase VocoderThe Phase VocoderThe Phase Vocoder    
 
The Phase Vocoder is one of the most striking musical applications of FFT. The principle 
behind it is quite simple: since the Fourier components of sounds with dynamic spectrum 
change as time goes by, the spectrum is analysed at successive instants, rather like 
snapshots of its state, or like frames from which a moving picture is composed. The 
numerical results of the analysis of each frame are stored in the computer as pairs of 



amplitude-frequency, corresponding to each channel in the filter bank, which can then be 
processed and used for resynthesis. 
 
The reader may ask why is it necessary to store frequency if the centre of each channel 
can be easily determined. The answer is that although the centre is known, the frequency 
fluctuates above or below this value due to the fact that the phase of each component is 
not constant but also changes in time: a sine wave that changes its phase also has to 
change its frequency in order to be able to lag behind or leap ahead the normal 
development of its cycle. In some cases a channel may even have a frequency value that 
is lower than the one preceding it. 
 
The fact that changes in frequency are taken into account in order to describe phase 
fluctuations is what makes the Phase Vocoder more accurate in its analysis than its 
predecessor, the Channel Vocoder, which only depicts changes in the amplitude of each 
component. 
 
 
11.7.1 Direct Filtering 
 
 
One of the most straightforward applications of the the Phase Vocoder is its use as a very 
sharp filter, by omitting some of the channels in the filter bank when resynthesizing. This is 
done with options ----iiii and ----jjjj. The resynthesized sound will only contain the channels starting 
at the value indicated by ----iiii and ending at the value indicated by ----jjjj. 
 
PVoc example 1 contains an oboe low C (~261.6 hz) sampled at 44100 samps/sec, 
followed by three resynthesized versions: 
1.obclow. Only the fundamental was allowed to pass, by implementing a low-pass filter 
with ~270 hz cut-off. 
 
2.obcmid. Frequencies between ~270 hz and ~860 hz (second and third harmonics) were 
allowed to pass by implementing a band-pass filter. 
 
3.obchigh. Frequencies between ~860 hz and 22050 (Nyquist) -  from the fourth harmonic 



onwards -  were allowed to pass by implementing a high-pass filter of ~860 hz cut-off. 
 
 
The oboe sound was analysed using 2048 channels, in which case the option ----NNNN, which 
indicates twice the number of channels, must be 4096. 
 
In order to calculate the values of the channels corresponding to the frequency values a 
formula can be deduced. If 2048 
channels are used then it is possible to imagine a bank of 2049 filters, of which one is a 
low-pass filter and one is a high-pass (see Section 11.5, diagram 57). 
 
 
Assuming ideal filters, the bandwidth of each will be  
 

Nyquist  22050 
Bw = ----------- = ---------    (11.2) 

Channels    2048 
 
 
The low-pass (channel 0) begins at 0 hz and ends at bw/2. 
 
The first band-pass filter (channel 1) has its centre frequency at 
 
cf1 = end of lowpass  + bw/2 
 

= bw/2 + bw/2 = bw 
 
The second band-pass (channel 2) at 
 
 
cf2 = end of first band-pass + bw/2 
 

= 2 x bw 
 



 
The third band-pass (channel 3) at 
 
 
cf3 = 3 x bw 
 
 
The kthkthkthkth band-pass (channel k) at 
 
 
cfk = k x bw 
 
 
 
Therefore, if a frequency ffff is desired as the centre frequency of a channel, then 
 
 
k x bw/2 = f(11.3) 
 
therefore 
 

 f 
k = ----        (11.4) 

bw 
 
 
 
Replacing (11.2) in (11.4) we obtain 
 
 

f x channelsf x channelsf x channelsf x channels    
kkkk    ====    ----------------------------------------------------------------                            (11.5)(11.5)(11.5)(11.5)    
                                NyquistNyquistNyquistNyquist    
 



 
In this particular case 
 
 
1. For 0 hz, k = 0. 
 
 
     270 x 2048 
2. For 270 hz, k =  --------------- ~ 25     

    22050 
 

860 x 2048 
3. For 860 hz, k = --------------- ~ 80 
          22050 
 
In order to process these sounds a batchfile containing the following commands was used: 
# analysis 
sfpvoc -N4096 -A obc obc.dat 
# 
# synthesis 
sfpvoc -N4096 -S -i0 -j24 obc.dat obclow 
sfpvoc -N4096 -S -i25 -j80 obc.dat obcmid 
sfpvoc -N4096 -S -i81 -j2048 obc.dat obchigh 
 
 
11.7.2Transposition 
 
In several samplers, transposition is achieved by either skipping samples if a sound is to 
be transposed upwards or by 
interpolating between samples to lower a sound. 
 
This however has the same effect as playing a tape at different speeds, thus affecting the 
duration of a sound and is particularly problematic, for example, when willing to mix a 
pitched sound and its transpositions to create chords, because the higher transpositions 



will have shorter durations. 
 
The Phase Vocoder transposes in the frequency domain by multiplying the fundamental 
and all the partials by the same factor before resynthesizing the sound, leaving the original 
duration unaltered. There are also options that allow to keep formant regions unchanged. 
 
 
Pvoc example 2 contains a mlflute, a sampled flute tone, which is followed by a 
transposition by a factor of 2.1, first using the Phase Vocoder to produce  the soundfile 
mflute.tr and then by means of skipping samples using ftrans from the GROUCHO 
package to produce the soundfile mflute.ftr. The batchfile used is now listed. 
 
# Pvoc Transposition 
sfpvoc -N2048 -P2.1 mflute mflute.tr 
# Ftrans 
ftrans mflute mflute.ftr 
 
 
The transposition produced by skipping samples shortened the sound considerably. 
 
 
 
11.7.3Changing the Duration of a Sound 
 
 
For the reasons mentioned above, if the duration of a sound is altered by skipping or by 
interpolating samples its pitch will be affected. On the other hand, the Phase Vocoder 
interpolates frames of the spectrum evolution, causing it to evolve at a slower or faster rate 
while preserving its contents. 
 
PVoc example  3 contains 
 
 
1.ahh. A recorded cackle. 



 
 
2.ahhx4. Time stretch of ahh by a factor of 4. 
 
 
3.ahhx16. Time stretch of ahhx4 by a factor of 4 (16 times the original duration). 
 
 
It may be noticed that when the sound is stretched drastically, new artifacts appear, that 
the original did not seem to have. However, these are not always undesirable, as may be 
gathered from the previous examples. The batchfile used is now listed: 
 
sfpvoc -N4096 -T4.0 ahh ahhx4 
sfpvoc -N4096 -T4.0 ahhx4 ahhx16 
 
 
The Phase Vocoder cannot produce dynamic changes in the duration of a sound 
(acceleration or slowing down). However, there is a program written by Trevor Wishart: 
specstr, which - given a list of breakpoints containing each a time from the beginning of the 
sound and a stretching factor - can be applied to the analysis file of that sound to achieve 
this. An example will be given below. 
 
 
11.7.4Frequency Shifting and Stretching 
 
Two more programs written by Wishart, enable the user to shift some or all of the 
components of a sound. This process multiplies some of the frequencies in the spectrum 
by the same factor, thus keeping their original ratio. 
 
For example, if a signal of frequencies 100, 200, 300, 400 and 500 hz has its last three 
partials (ratio 3:4:5) shifted by a factor of 1.5 (the partials at 100 and 200 hz will remain 
untouched), the resulting signal will have components at 
 
 



100 hz (unchanged) 
200 hz (unchanged) 
 
1.5 x 300 = 450 hz 
 
1.5 x 400 = 600 hz 
 
1.5 x 500 = 750 hz 
 
 
The ratio between the shifted frequencies 450, 600 and 750 is still 3:4:5. 
 
Alternatively, the frequencies could be stretched,  which is a process that multiplies 
successive components by a factor that increases or decreases with frequency. Therefore 
, the components do not preserve their original ratio. 
 
In the previous example, if the last three partials are stretched by a factor of which is 
initially 1.3 and increases by 0.3 every 100 hz, the result will be: 
 
100 hz (unchanged) 
 
200 hz (unchanged) 
 
300 x 1.3 = 390 hz 
 
400 x 1.6 = 640 hz 
 
500 x 1.9 = 1800 hz 
 
The ratio between the three stretched frequencies is now  39:64:180 and not 3:4:5. 
 
specsh and spece are used to respectively shift and stretch sounds, by applying them to 
the analysis data produced by the Phase Vocoder. Both of these programs allow a time 
variable factor. 



 
 
Pvoc example 4 contains the sound inh4, the end of which is first shifted in 3 different 
ways. This is followed by the same end of the file but this time stretched in 3 different 
ways. 
 
The process involves the following steps: 
 
1.Cut of beginning and end of inh4, saved respectively as inh4b and inh4e. 
 
2.Analysis of inh4e, saved as inh4e.dat. 
 
3.Shift of spectrum applying specsh to inh4e.dat  producing three different versions of data 
files: inh4she1.dat, inh4she2.dat, inh4she3.dat. The parameters used correspond to the 
following cases: 
 
a.Shift frequencies above channel 15 with a factor that is initially 1 for .1 seconds, then 
increases to a maximum of 1.9 for .1 seconds and remains like that. 
b.The same but with a maximum factor of 2.4. 
 
c. The same but with a maximum factor of 3.45. 
 
 
4.Stretch of spectrum applying spece to inh4e.dat  producing three different versions of 
data files: inh4ste1.dat, inh4ste2.dat, inh4ste3.dat. The parameters used correspond to the 
following cases: 
 
a.Stretch frequencies above channel 15 with a factor that is initially 1 for .06 seconds, then 
increases for .1 seconds to a value between 1 (for channel 15) to 1.9 (at Nyquist). 
It then remains like that. 
 
b.The same but with a maximum factor of 2.4. 
 
c.The same but stretching from channel 4, with a maximum factor of 4.6 at Nyquist. 



 
5.Synthesis of inh4sh1e, inh4sh2e, inh4sh3e, inh4st1e, inh4st2e, inh4st3e, from the 
respective analysis files created above. 
 
6.Splice of these endings with inh4b to create inh4sh1, inh4sh2, inh4sh3, inh4st1, inh4st2 
and inh4st3. 
 
The batchfile used is shown below: 
 
 
#       cut 
cut inh4 inh4b 0 2.3 
cut inh4 inh4e 2.3 2.7 
#       analysis 
sfpvoc -N2048 -A inh4e inh4e.dat 
#       shift 
specsh inh4e.dat inh4she1.dat 1 15 1.9 .1 .1 0 0 
specsh inh4e.dat inh4she2.dat 1 15 2.4 .1 .1 0 0 
specsh inh4e.dat inh4she3.dat 1 15 3.45 .1 .1 0 0 
#       stretch 
spece inh4e.dat inh4ste1.dat 0  15 1.9 .06 .1 0 0 .5 
spece inh4e.dat inh4ste2.dat 0  15 2.4 .06 .1 0 0 .5 
spece inh4e.dat inh4ste3.dat 0  4 4.6 .06 .1 0 0 .5 
#       resynthesis 
sfpvoc -N2048 -S inh4she1.dat inh4she1 
sfpvoc -N2048 -S inh4she2.dat inh4she2 
sfpvoc -N2048 -S inh4she3.dat inh4she3 
sfpvoc -N2048 -S inh4ste1.dat inh4ste1 
sfpvoc -N2048 -S inh4ste2.dat inh4ste2 
sfpvoc -N2048 -S inh4ste3.dat inh4ste3 
#       splice 
splice -w0 inh4sh1 inh4b inh4she1 
splice -w0 inh4sh2 inh4b inh4she2 
splice -w0 inh4sh3 inh4b inh4she3 



splice -w0 inh4st1 inh4b inh4ste1 
splice -w0 inh4st2 inh4b inh4ste2 
splice -w0 inh4st3 inh4b inh4ste3 
 
 
11.7.5 Spectral Interpolation 
 
Vocinte is another program by Wishart that interpolates between the spectrum of one 
sound and another sound, which, if used judiciously can  produce a convincing 
transformation of one sound into the other. 
 
For instance, Pvoc example 5 shows a transformation of an oboe sound into a cry used in 
Los Dados Eternos. First, the oboe sound is played, then the cry, and finally the 
transformation. 
 
The process is simple and consists of cutting the transition sections of each of sounds, 
then each section is analysed and a new analysis is produced by using the analysed 
sections as inputs. Then the interpolated analysis is synthesized. Finally, the latter sound 
is splice with the beginning of the first sound and the end of the second. 
 
In this particular case, the soundfiles are obD and alhmix4 and the transition takes 2 
seconds. The batchfile used is now listed: 
 
#cuts 
cut obD obDs 0 1.2 
cut obD obDe 1.2 3.34 
cut alhmix4 alhmix4s 0 2.011 
cut alhmix4 alhmix4s 2.011 3.75 
#analysis 
sfpvoc -N4096 -A obDs obDs.dat 
sfpvoc -N4096 -A alhmix4s alhmix4s.dat 
#interpolation 
vocinte obDs.dat alhmix4s.dat otg1m.dat .01 2 .01 2 2 2 
#synthesis 



sfpvoc -N4096 -S otg1m.dat otg1m 
#splices 
splice -w0 otg1s obDs otg1m 
splice otg1 otg1s alhmix4s  
 
Spectral interpolation does not  guarantee perceptually convincing transformations. Care is 
needed in order to achieve these. Sometimes a simple solution can solve certain 
problems. The next example consists of a double transformation from a high oboe note to 
a squeaking door to a revolving sound, also used in Los Dados Eternos. 
 
oboe--> squeaking door --> revolving sound 
The initial result was unsuccessful in the first (oboe to door) transformation because of a 
region where neither one nor the other sound could be identified. In order to correct this, 
this region was cut off with a simple digital cut and splice program, which solved the 
problem. 
 
The sounds can be heard in PVoc example 6: First comes the oboe note, then the door, 
then the revolving sound. This is followed by the first (unsuccessful) version. The corrected 
version is then heard. 
 
A final example of a simultaneous double transformation uses the sounds given in Pvoc 
example 7. A mix of the fundamental and the high harmonics of the oboe low C is 
converted into one sound while the mid harmonics are converted into another sound. Each 
of these transformations is then put into a different stereo channel, and both are played 
together. Because of the characteristics of our auditory perception, left and right channels 
are added together, so that an oboe sound is heard ... until different harmonics convert 
into different sounds giving the impression of splitting the oboe into these, each on a 
different speaker. 
 
PVoc example 7 contains the following sounds: 
 
 
1.Left channel: Oboe fundamental and high harmonics, followed by second sound, 
followed by the transformation of one into the other. 



 
2.Right channel: Oboe mid frequencies, followed by another sound followed by the 
transformation of one into the other. 
 
 
3.Left and right channel played together. It is worth hearing this while changing the 
balance between the speakers. 
 
 
11.7.6Cross-Synthesis 
 
 
The last example in this chapter uses a technique by which the formants of one sound are 
applied to the spectrum of another. For instance, formants of speech could be imposed on 
white noise. a rich sound. Again, a program produced by Wishart, this time called 
speccros,  can be used to achieve this. 
 
 
In the current example, from Los Dados Eternos, cross-synthesis, aided by variable time 
stretch using specstr, was used in order to produce a voiced sound that sounds like a 
small devil distorting the words 'Dominus Deus'. 
 
The process consisted of the following steps: 
 
1.Cross-synthesis of 'Dominus Deus' with a previously processed sampled guiro. 
 
2.Transposition by resampling in order to raise the pitch. 
 
3.Variable time stretch not only to slow down the sound without changing pitch but also in 
order to give it more gestural edge. 
 
PVoc example 8 contains the following sounds: 'Dominus Deus', processed guiro, cross-
synthesis of the first sound applied to the second, transposition by resampling, variable 
timestretch. 



CodaCodaCodaCoda    
 
 
 
Computer technology is changing at an increasing pace and its musical applications are 
no exception. Most of the techniques covered here were produced in a non-real-time 
system. However signs are that the realisation in a real-time system, enabling their use in 
performance, is only a few steps away. 
 
New DSP chips are constantly being developed, improving on the previous versions. At 
the same time, new computer environments, more friendly and powerful, are making it 
possible to get closer, for the first time, to a system  in which the composer does not have 
to be computer literate to the extent of a programmer or system analyst, unless by choice. 
 
There is one thing, however, that computer technology can do nothing about, and that is 
our perception, with its limitations. It is up to the musician to take this into account. 
Mathematical principles can be realised by means of sound, but that does not give them 
automatically musical sense. 
 
It is the belief  of the author that our limitations, far from being a curse, are the most 
wonderful devices: because of them, illusions can be created, and what is music without 
illusion? 
 
 
 
 
 
 
 
 
 
 
 
 



AppendixAppendixAppendixAppendix    
    
Reverberation InstrumentsReverberation InstrumentsReverberation InstrumentsReverberation Instruments    
The following two instruments are implementations of Csound that use the REVERB 
statement in order to implement instruments that  produce dynamic reverberation. In other 
words, the reverberation time can be controlled by a function table, thus changing the 
characteristics of the environment. instr 37 does this to a mono file, while instr 38 works on 
stereo files, with an independent function table controlling each channel. 
 
;       REVERBM.ORC     Reverberates soundfile in MONO 
 
sr = 44100 
kr = 4410 
ksmps = 10 
nchnls = 1 
 
instr 37         ;       for MONO files 
 
;p4 : amplitude SCALING FACTOR 
;p5 : input file number 
;p6 : skip 
;p7 : maximum reverberation time 
;p8 : reverberation function 
 
        nchnls  = 1                     ; set channels 
 
        icyc    =       1/p3            ; one cycle 
 
        krtime  oscil   p7,icyc,p8      ; variable reverb time 
        ain     soundin p5,p6           ; input file 
        arev    reverb  ain,krtime,0    ; reverberate 
                out     p4*(ain+arev)   ; output original + reverb 
 
endin 



;       REVERBS.ORC     Reverberates soundfile in STEREO 
 
sr = 44100 
kr = 4410 
ksmps = 10 
nchnls = 2  
 
 
instr 38         ;       STEREO files 
 
;p4 : amplitude SCALING FACTOR 
;p5 : input file number 
;p6 : skip 
;p7 : reverberation time, left channel 
;p8 : reverberation function left channel 
;p9 : reverberation time, right channel 
;p10: reverberation function left channel 
 
        nchnls = 2                      ; set channels 
         
        icyc    =       1/p3            ; one cycle 
 
        krtimel oscil   p7,icyc,p8      ; variable left reverb time 
        krtimer oscil   p9,icyc,p10     ; variable left reverb time 
 
        air,ail soundin p5,p6           ; input file 
        arevl   reverb  ail,krtimel     ; reverberate left 
        arevr   reverb  air,krtimer     ; reverberate right 
 
        ; output original + reverb 
 
                outs    p4*(ail+arevl),p4*(air+arevr) 
 
endin 



; This is a comment, Csound will ignore it 
; CS1.ORC       -       Simple Oscillator 
 
; NOTE :        Clicks will be heard since 
;               there is no envelope. 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 1 
 
        a1      oscil   p4, p5, 1       ; oscillator 
                out     a1              ; output 
 
endin 
 
 
 
; This is a comment, Csound will ignore it 
; CS1.SC 
 
f1 0 512 10 1 
 
i1 0 2 8000 440 
 
e 
 
 
Assignment :Produce a soundfile called CS1.OUT using the orchestra and the score in this 
example. 
 
 



; CS2.ORC       Simple Oscillator 
;               Uses table defined by f1 
 
; NOTE :        Clicks will be heard since 
;               there is no envelope. 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 1 
 
        a1      oscil   p4, p5, 1       ; oscillator 
                out     a1              ; output 
endin 
 
 
; CS2.SC 
 
f1 0 512 10 1 
 
 
;               p3      p4      p5 
;instr  start   dur     amp     freq 
 
i1      0        5      8000    261.625 
i1      1        4      .       329.627 
i1      2        3      .       391.995 
i1      3        2      .       466.163 
i1      5        1      0       0 
 
s 
 



f1 0 512 10 1 0 .5 0 .7 0 .9 0 2 
 
;               p3      p4      p5 
;instr  start   dur     amp     freq 
 
i1      0        5      8000    261.625 
i1      1        4      .       329.627 
i1      2        3      .       391.995 
i1      3        2      .       466.163 
i1      5        1      0       0 
 
s 
 
f1 0 512 10 1 .5 .7 .9 .2 .87 .76 
 
;               p3      p4      p5 
;instr  start   dur     amp     freq 
 
i1      0        5      8000    261.625 
i1      1        4      .       329.627 
i1      2        3      .       391.995 
i1      3        2      .       466.163 
 
e



; CS3.ORC       -       Simple Oscillator 
;               Uses table defined by function number 
;               indicated in p6. 
 
; NOTE :        Clicks will be heard since 
;               there is no envelope. 
 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 2 
 
        a1      oscil   p4, p5, p6      ; oscillator 
                out     a1              ; output 
 
endin 
 
 
; CS3.SC 
 
f1 0 512 10 1 0 .5 0 .7 0 .9 0 2 
f2 0 512 10 1 .5 .7 .9 .2 .87 .76 
f3 0 512 10 1 .7 0 .9 0 .87 0 .76 
f4 0 512 10 1 
 
t 0 120 
 
;               p3      p4      p5      p6 
;instr  start   dur     amp     freq    func no. 
 
i2      0       10      8000    261.625 1 



i2      2        8      .       329.627 2 
i2      4        6      .       391.995 3 
i2      6        4      .       466.163 4 
 
e 
 
Assignment :Use the previous instrument with an envelope table generated by GEN7. 



4.4.4.4.    EnvelopesEnvelopesEnvelopesEnvelopes    
 
; CS4.ORC       -       Simple Oscillators 
;                       with envelopes 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 4 
 
; p4: amplitude 
; p5: frequency 
; p6: attack 
; p7: decay 
; p8: function table 
 
        k1      linen   p4, p6, p3, p7  ; envelope 
        a1      oscil   k1, p5, p8      ; oscillator 
                out     a1              ; output 
 
endin 
 
 
instr 5 
 
; p4: amplitude 
; p5: frequency 
; p6: function table 
 
     i1    =       .05*p3                          ;dur1 
     i2    =       .15*p3                          ;dur2 
     i3    =       .3*p3                           ;dur3 



     i4    =       .5*p3                           ;dur4 
     k1    linseg  0,i1,p4,i2,.3*p4,i3,.75*p4,i4,0 ; envelope 
     a1    oscil   k1, p5, p6                      ; oscillator 
           out     a1                              ; output 
endin 
 
 
 
instr 6 
 
; p4: amplitude 
; p5: frequency 
; p6: function table 
 
     i1   =       .05*p3                          ;dur1 
     i2   =       .15*p3                          ;dur2 
     i3   =       .3*p3                           ;dur3 
     i4   =       .5*p3                           ;dur4 
     k1   expseg  .0001,i1,p4,i2,.3*p4,i3,.75*p4,i4,.0001 ; envelope 
     a1   oscil   k1, p5, p6                      ; oscillator 
          out     a1                              ; output 
endin



; CS4.SC 
 
f5 0 512 10 1 .5 .7 .9 .2 .87 .76 
 
;               p3      p4      p5      p6      p7      p8 
;instr  start   dur     amp     freq    rise    decay   func 
 
i4      0        2      30000   120     .05     1       5 
 
s 
 
;               p3      p4      p5      p6 
;instr  start   dur     amp     freq    func 
 
i5      1        2      30000   120     5 
 
s 
 
;               p3      p4      p5      p6 
;instr  start   dur     amp     freq    func 
 
i6      1        2      30000   120     5 
 
e 
 
 
 
Assignment :Produce a musical phrase that has more than one voice. 
 



5.Some Useful Devices5.Some Useful Devices5.Some Useful Devices5.Some Useful Devices    
 
 
; CS5.ORC       -       Oscillator with variable width 
;                       vibrato and swell. 
 
;p4     amplitude 
;p5     frequency 
;p6     attack 
;p7     decay 
;p8     function table 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 7 
 
        i1      =       1/5                     ; max swell 
        i2      =       p5/100                  ; max vib width 
        i3      =       p3/2                    ; half a cycle 
        k1      linen   p4,p6,p3,p7             ; envelope 
        k2      line    0, p3, i1               ; swell 
        k3      linseg  0, i3, i2, i3, 0        ; vib width 
        k4      oscil   k3, 5, 1                ; vibrato 
        a1      oscil   k1*(1+k2), p5+k4, p8    ; oscillator 
                out     a1                      ; output 
 
endin 
 
 
; CS5.SC 
; First two Kyrie Eleison from Palestrina's Missa Papae Marcelli 



 
f1 0 8192 10 1 
 
;       SOPRANO 
;               p3      p4      p5      p6      p7      p8 
;instr  start   dur     amp     freq    attack  decay   func 
 
i7      1       1.5     4000    587.329 .05     .05     1    ; D 
i7      +       0.5     .       .       .       .       .    ; D 
i7      +       1       .       .       .       .       .    ; D 
i7      +       0.75    .       783.991 .       .       .    ; G 
i7      +       0.25    .       698.456 .       .       .    ; F 
i7      +        .      .       659.255 .       .       .    ; E 
i7      +        .      .       587.329 .       .       .    ; D 
i7      +        .      .       523.251 .       .       .    ; C 
i7      +        .      .       493.883 .       .       .    ; B 
i7      +        .      .       440     .       .       .    ; A 
i7      +        .      .       391.995 .       .       .    ; G 
i7      +       1       .       .       .       .       .    ; G 
i7      +       0.5     .       369.994 .       .       .    ; F# 
i7      +       1       .       391.995 .       .       .    ; G 
 
; second phrase 
i7      +        .      .       587.329 .       .       .    ; D 
i7      +       0.75    .       493.883 .       .       .    ; B 
i7      +       0.25    .       440     .       .       .    ; A 
i7      +        .      .       493.883 .       .       .    ; B 
i7      +        .      .       523.251 .       .       .    ; C 
i7      +       0.5     .       587.329 .       .       .    ; D 
i7      +       0.75    .       659.255 .       .       .    ; E 
i7      +       0.25    .       587.329 .       .       .    ; D 
i7      +        .      .       523.251 .       .       .    ; C 
i7      +        .      .       440     .       .       .    ; A 
i7      +       0.75    .       587.329 .       .       .    ; D 



i7      +       0.25    .       523.251 .       .       .    ; C 
i7      +       1       .       523.251 .       .       .    ; C 
i7      +       0.5     .       493.883 .       .       .    ; B 
i7      +       2       .       523.251 .       .       .    ; C 
 
;       ALTO 
;               p3      p4      p5      p6      p7      p8 
;instr  start   dur     amp     freq    attack  decay   func 
 
i7      3       1.5     .       391.995 .       .       .    ; G 
i7      +       0.5     .       .       .       .       .    ; G 
i7      +       1       .       .       .       .       .    ; G 
i7      +       2       .       523.251 .       .       .    ; C 
i7      +        .      .       493.883 .       .       .    ; B 
; second phrase 
i7      10.5    1       .       391.995 .       .       .    ; G 
i7      +       0.5     .       .       .       .       .    ; G 
i7      +       1       .       .       .       .       .    ; G 
i7      +       0.5     .       440     .       .       .    ; A 
i7      +       1       .       391.995 .       .       .    ; G 
i7      +       0.5     .       349.228 .       .       .    ; F 
i7      +       1       .       391.995 .       .       .    ; G 
i7      +       2       .       329.627 .       .       .    ; E 
 
;       TENOR 1 
;               p3      p4      p5      p6      p7      p8 
;instr  start   dur     amp     freq    attack  decay   func 
 
i7      0       1.5     4000    293.664 .05     .05     1    ; D 
i7      +       0.5     .       .       .       .       .    ; D 
i7      +       1       .       .       .       .       .    ; D 
i7      +       0.75    .       391.995 .       .       .    ; G 
i7      +       0.25    .       349.228 .       .       .    ; F 
i7      +       0.5     .       329.627 .       .       .    ; E 



i7      +        .      .       293.664 .       .       .    ; D 
i7      +       1.5     .       329.627 .       .       .    ; E 
i7      +       0.5     .       293.664 .       .       .    ; D 
i7      +       1       .       261.625 .       .       .    ; C 
; second phrase 
i7      +       1       .       293.664 .       .       .    ; D 
i7      +       0.5     .       246.941 .       .       .    ; B 
i7      +        .      .       195.997 .       .       .    ; G 
i7      +       0.75    .       391.995 .       .       .    ; G 
i7      +       0.25    .       349.228 .       .       .    ; F 
i7      +       0.5     .       329.627 .       .       .    ; E 
i7      +        .      .       293.664 .       .       .    ; D 
i7      +       0.5     .       261.625 .       .       .    ; C 
i7      +       1       .       329.627 .       .       .    ; E 
i7      +       0.5     .       293.664 .       .       .    ; D 
i7      +       0.5     .       329.627 .       .       .    ; E 
i7      +       0.25    .       293.664 .       .       .    ; D 
i7      +        .      .       261.625 .       .       .    ; C 
i7      +       1       .       293.664 .       .       .    ; D 
i7      +       2       .       261.625 .       .       .    ; C 
 
 
;       TENOR 2 
;               p3      p4      p5      p6      p7      p8 
;instr  start   dur     amp     freq    attack  decay   func 
 
i7      8       1.5     4000    293.664 .05     .05     1    ; D 
i7      +       0.5     .       .       .       .       .    ; D 
i7      +       1       .       .       .       .       .    ; D 
i7      +       0.75    .       391.995 .       .       .    ; G 
i7      +       0.25    .       349.228 .       .       .    ; F 
i7      +        .      .       329.627 .       .       .    ; E 
i7      +        .      .       293.664 .       .       .    ; D 
i7      +        .      .       261.625 .       .       .    ; C 



i7      +        .      .       246.941 .       .       .    ; B 
i7      +       0.5     .       220     .       .       .    ; A 
i7      +       0.5     .       246.941 .       .       .    ; B 
i7      +       1       .       261.625 .       .       .    ; C 
 
 
;       BASS 1 
;               p3      p4      p5      p6      p7      p8 
;instr  start   dur     amp     freq    attack  decay   func 
 
i7      2       1.5     4000    195.997 .05     .05     1    ; G 
i7      +       0.5     .       .       .       .       .    ; G 
i7      +       1       .       .       .       .       .    ; G 
i7      +       1.5     .       261.625 .       .       .    ; C 
i7      +       0.5     .       246.941 .       .       .    ; B 
i7      +       1       .       220     .       .       .    ; A 
i7      +       2       .       195.997 .       .       .    ; G 
 
; last chord 
i7      16      2       .       130.812 .       .       .    ; C 
 
;       BASS 2 
;               p3      p4      p5      p6      p7      p8 
;instr  start   dur     amp     freq    attack  decay   func 
 
i7      9       1.5     4000    195.997 .05     .05     1    ; G 
i7      +       0.5     .       .       .       .       .    ; G 
i7      +       1       .       .       .       .       .    ; G 
i7      +       1.5     .       261.625 .       .       .    ; C 
i7      +       0.5     .       246.941 .       .       .    ; B 
i7      +       1       .       220     .       .       .    ; A 
i7      +       3       .       195.997 .       .       .    ; G 
 
e 



; CS6.ORC       -       Oscillator with variable width 
;                       vibrato and swell. 
;                       Accepts pitch and converts to frequency. 
 
;p4     amplitude 
;p5     frequency 
;p6     attack 
;p7     decay 
;p8     function table 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 9 
        i0      =       cpspch(p5)              ; pitch to freq 
        i1      =       1/5                     ; max swell 
        i2      =       i0/100                  ; max vib width 
        i4      =       p3/2                    ; half a cycle 
        k1      linen   p4,p6,p3,p7             ; envelope 
        k2      line    0, p3, i1               ; swell 
        k3      linseg  0, i3, i2, i3, 0        ; vib width 
        k4      oscil   k3, 3, 1                ; vibrato 
        a1      oscil   k1*(1+k2), i0+k4, p8    ; oscillator 
                out     a1                      ; output 
 
endin 
 
 
; CS6.SC 
; First two Kyrie Eleison from Palestrina's Missa Papae Marcelli 
 
f1 0 8192 10 1 



 
;       SOPRANO 
;               p3      p4      p5      p6      p7      p8 
;instr  start   dur     amp     PCH     attack  decay   func 
 
i9      1       1.5     4000    9.02    .05     .05     1   ; D 
i9      +       0.5     .       .       .       .       .   ; D 
i9      +       1       .       .       .       .       .   ; D 
i9      +       0.75    .       9.07    .       .       .   ; G 
i9      +       0.25    .       9.05    .       .       .   ; F 
i9      +        .      .       9.04    .       .       .   ; E 
i9      +        .      .       9.02    .       .       .   ; D 
i9      +        .      .       9.00    .       .       .   ; C 
i9      +        .      .       8.11    .       .       .   ; B 
i9      +        .      .       8.09    .       .       .   ; A 
i9      +        .      .       8.07    .       .       .   ; G 
i9      +       1       .       .       .       .       .   ; G 
i9      +       0.5     .       8.06    .       .       .   ; F# 
i9      +       1       .       8.07    .       .       .   ; G 
; second phrase 
i9      +        .      .       9.02    .       .       .   ; D 
i9      +       0.75    .       8.11    .       .       .   ; B 
i9      +       0.25    .       8.09    .       .       .   ; A 
i9      +        .      .       8.11    .       .       .   ; B 
i9      +        .      .       9.00    .       .       .   ; C 
i9      +       0.5     .       9.02    .       .       .   ; D 
i9      +       0.75    .       9.04    .       .       .   ; E 
i9      +       0.25    .       9.02    .       .       .   ; D 
i9      +        .      .       9.00    .       .       .   ; C 
i9      +        .      .       8.09    .       .       .   ; A 
i9      +       0.75    .       9.02    .       .       .   ; D 
i9      +       0.25    .       9.00    .       .       .   ; C 
i9      +       1       .       9.00    .       .       .   ; C 
i9      +       0.5     .       8.11    .       .       .   ; B 



i9      +       2       .       9.00    .       .       .   ; C 
 
;       ALTO 
;               p3      p4      p5      p6      p7      p8 
;instr  start   dur     amp     PCH     attack  decay   func 
 
i9      3       1.5     .       8.07    .       .       .   ; G 
i9      +       0.5     .       .       .       .       .   ; G 
i9      +       1       .       .       .       .       .   ; G 
i9      +       2       .       9.00    .       .       .   ; C 
i9      +        .      .       8.11    .       .       .   ; B 
; second phrase 
i9      10.5    1       .       8.07    .       .       .   ; G 
i9      +       0.5     .       .       .       .       .   ; G 
i9      +       1       .       .       .       .       .   ; G 
i9      +       0.5     .       8.09    .       .       .   ; A 
i9      +       1       .       8.07    .       .       .   ; G 
i9      +       0.5     .       8.05    .       .       .   ; F 
i9      +       1       .       8.07    .       .       .   ; G 
i9      +       2       .       8.04    .       .       .   ; E 
 
;       TENOR 1 
;               p3      p4      p5      p6      p7      p8 
;instr  start   dur     amp     PCH     attack  decay   func 
 
i9      0       1.5     4000    8.02    .05     .05     1   ; D 
i9      +       0.5     .       .       .       .       .   ; D 
i9      +       1       .       .       .       .       .   ; D 
i9      +       0.75    .       8.07    .       .       .   ; G 
i9      +       0.25    .       8.05    .       .       .   ; F 
i9      +       0.5     .       8.04    .       .       .   ; E 
i9      +        .      .       8.02    .       .       .   ; D 
i9      +       1.5     .       8.04    .       .       .   ; E 
i9      +       0.5     .       8.02    .       .       .   ; D 



i9      +       1       .       8.00    .       .       .   ; C 
; second phrase 
i9      +       1       .       8.02    .       .       .   ; D 
i9      +       0.5     .       7.11    .       .       .   ; B 
i9      +        .      .       7.07    .       .       .   ; G 
i9      +       0.75    .       8.07    .       .       .   ; G 
i9      +       0.25    .       8.05    .       .       .   ; F 
i9      +       0.5     .       8.04    .       .       .   ; E 
i9      +        .      .       8.02    .       .       .   ; D 
i9      +       0.5     .       8.00    .       .       .   ; C 
i9      +       1       .       8.04    .       .       .   ; E 
i9      +       0.5     .       8.02    .       .       .   ; D 
i9      +       0.5     .       8.04    .       .       .   ; E 
i9      +       0.25    .       8.02    .       .       .   ; D 
i9      +        .      .       8.00    .       .       .   ; C 
i9      +       1       .       8.02    .       .       .   ; D 
i9      +       2       .       8.00    .       .       .   ; C 
 
 
;       TENOR 2 
;               p3      p4      p5      p6      p7      p8 
;instr  start   dur     amp     PCH     attack  decay   func 
 
i9      8       1.5     4000    8.02    .05     .05     1   ; D 
i9      +       0.5     .       .       .       .       .   ; D 
i9      +       1       .       .       .       .       .   ; D 
i9      +       0.75    .       8.07    .       .       .   ; G 
i9      +       0.25    .       8.05    .       .       .   ; F 
i9      +        .      .       8.04    .       .       .   ; E 
i9      +        .      .       8.02    .       .       .   ; D 
i9      +        .      .       8.00    .       .       .   ; C 
i9      +        .      .       7.11    .       .       .   ; B 
i9      +       0.5     .       7.09    .       .       .   ; A 
i9      +       0.5     .       7.11    .       .       .   ; B 



i9      +       1       .       8.00    .       .       .   ; C 
 
 
;       BASS 1 
;               p3      p4      p5      p6      p7      p8 
;instr  start   dur     amp     PCH     attack  decay   func 
 
i9      2       1.5     4000    7.07    .05     .05     1   ; G 
i9      +       0.5     .       .       .       .       .   ; G 
i9      +       1       .       .       .       .       .   ; G 
i9      +       1.5     .       8.00    .       .       .   ; C 
i9      +       0.5     .       7.11    .       .       .   ; B 
i9      +       1       .       7.09    .       .       .   ; A 
i9      +       2       .       7.07    .       .       .   ; G 
; last chord 
i9      16      2       .       7.00    .       .       .   ; C 
 
;       BASS 2 
;               p3      p4      p5      p6      p7      p8 
;instr  start   dur     amp     PCH     attack  decay   func 
 
i9      9       1.5     4000    7.07    .05     .05     1   ; G 
i9      +       0.5     .       .       .       .       .   ; G 
i9      +       1       .       .       .       .       .   ; G 
i9      +       1.5     .       8.00    .       .       .   ; C 
i9      +       0.5     .       7.11    .       .       .   ; B 
i9      +       1       .       7.09    .       .       .   ; A 
i9      +       3       .       7.07    .       .       .   ; G 
 
e



; CS7.ORC       -       Oscillator with variable width 
;                       vibrato and swell. 
;                       Accepts pitch and converts to frequency. 
;                       and squeezes or expands the octave above ;                       and below 
middle C 
 
;p4     amplitude 
;p5     frequency 
;p6     attack 
;p7     decay 
;p8     function table 
;p9     squeeze/expansion factor 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 10 
 
        ist     =       int(p5)*12 + frac(p5)*100 - 96                                                 ; semitones 
above                                                 ; middle C 
        itot    =       96 + ist*p9             ; total semitones 
        ioc     =       int(itot/12)                    ; octave 
        ist     =       itot - ioc*12           ; semitones above 
                                                ; middle C 
        i0      =       ioc+ist/100             ; to PCH notation 
        i0      =       cpspch(i0)              ; PCH to freq 
        i1      =       1/5                     ; max swell 
        i2      =       i0/100                  ; max vib width 
        i3      =       p3/2                    ; half a cycle 
        k1      linen   p4,p6,p3,p7             ; envelope 
        k2      line    0, p3, i1               ; swell 
        k3      linseg  0, i3, i2, i3, 0        ; vib width 



        k4      oscil   k3, 3, 1                ; vibrato 
        a1      oscil   k1*(1+k2), i0+k4, p8    ; oscillator 
                out     a1                      ; output 
 
endin 
 
 
 
 
; CS8.ORC       -       Oscillator with variable width 
;                       vibrato and swell. 
;                       Accepts pitch and converts to frequency. 
;                       and squeezes or expands the octave above and 
;                       below a centre pitch given by p10 
 
;p4     amplitude 
;p5     frequency 
;p6     attack 
;p7     decay 
;p8     function table 
;p9     squeeze/expansion factor 
;p10    centre pitch 
 



sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 11 
 
        icst    =       int(p10)*12 + frac(p10)*100 
                                                ; semitones of 
                                                ; centre pitch 
        ist     =       int(p5)*12 + frac(p5)*100 - icst                                                 ; semitones 
above                                                 ; middle C 
        itot    =       icst + ist*p9           ; total semitones 
        ioc     =       int(itot/12)                    ; octave 
        ist     =       itot - ioc*12           ; semitones above 
                                                ; middle C 
        i0      =       ioc+ist/100             ; to PCH notation 
        i0      =       cpspch(i0)              ; PCH to freq 
        i1      =       1/5                     ; max swell 
        i2      =       i0/100                  ; max vib width 
        i3      =       p3/2                    ; half a cycle 
        k1      linen   p4,p6,p3,p7             ; envelope 
        k2      line    0, p3, i1               ; swell 
        k3      linseg  0, i3, i2, i3, 0        ; vib width 
        k4      oscil   k3, 3, 1                ; vibrato 
        a1      oscil   k1*(1+k2), i0+k4, p8    ; oscillator 
                out     a1                      ; output 
 
endin 
 
Assignment : 
1.Produce a score for instrument 11 in which a short musical phrase is played without 
squeezing/stretching the intervals and then the same phrase with different 
squeezing/stretching factors.(1 week from now) 



 
2.Produce an instrument that, given a frequency 'fans out' for half of its duration and then 
'fans in' for the other half using 3 upper and 3 lower glissandi to frequencies determined by 
a factor given in the score. (2 weeks from now) 
 
For example, if 400 hz and a factor of .1 are given, the upper glissandi will 'fan' to  
440 hz x 1.1 =484    hz 
484 hz x 1.1 =532.4  hz 
532.4 hz x 1.1  =585.64 hz 
 
and the lower will 'fan' to 
484 hz / 1.1 =400    hz 
400 hz / 1.1    =363.64 hz 
363.64 hz / 1.1 =330.58 hz 
 
Produce a short musical passage using this instrument.



5.Additive Synthesis5.Additive Synthesis5.Additive Synthesis5.Additive Synthesis    
 
; CS10.ORC 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 3         ;       Simple Oscillator 
                ;       Uses table defined by function number 
                ;       indicated in p8. 
 
        k1      linen   p4, p6, p3, p7  ; envelope 
        a1      oscil   k1, p5, p8      ; oscillator 
                out     a1              ; output 
endin 
 
 
instr 14        ;       Inharmonic oscillator. Up to 7 partials. 
 
;p4: overall amplitude 
;p5: fundamental frequency 
;p6, p8, p10, p12, p14, p16, p18: relative amplitudes of partials 
;p7, p9, p11, p13, p15, p17, p19: relative frequencies of partials 
                                i1      =       p5*p7           ; 1 partial freq 
        i2      =       p5*p9           ; 2 partial freq 
        i3      =       p5*p11          ; 3 partial freq 
        i4      =       p5*p13          ; 4 partial freq 
        i5      =       p5*p15          ; 5 partial freq 
        i6      =       p5*p17          ; 6 partial freq 
        i7      =       p5*p19          ; 7 partial freq 
        k1      linen   p4, .1, p3, .1  ; envelope 
        a1      oscil   p6, i1, 1       ; 1 partial 
        a2      oscil   p8, i2, 1       ; 2 partial 



        a3      oscil   p10, i3, 1      ; 3 partial 
        a4      oscil   p12, i4, 1      ; 4 partial 
        a5      oscil   p14, i5, 1      ; 5 partial 
        a6      oscil   p16, i6, 1      ; 6 partial 
        a7      oscil   p18, i7, 1      ; 7 partial 
 
        ; mix and output 
 
                out     k1*(a1+a2+a3+a4+a5+a6+a7)/7 endin 
 
 
;CS10.SC 
 
f1 0 4096 10 1 
f2 0 4096 9 1 1 0    1.41 .8 0    1.89 .9 0   2.3 .7 0   2.6 .65 0               3.2 .93 0   3.5 .94 0 
 
;               p3      p4      p5      p6      p7      p8 
;instr  start   dur     amp     freq    rise    decay   func 
 
i3      0        2      20000   300     .1      .1      2 
s 
 



;              p3      p4      p5     p6,p8... p18   p7,p9... p19 
;instr  start  dur     amp     fund   relative       relative 
;                       overall freq   amplitudes     frequencies 
 
i14     2       2      20000   300     1               1 
                                       .8              1.41 
                                       .9              1.89 
                                       .7              2.3 
                                       .65             2.6 
                                       .93             3.2 
                                       .94             3.5 
 
 
e 
 
 
 
 
; CS11.ORC 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 15        ;   Inharmonic oscillator. Up to 7 partials with                 ;   vibrato shape 
determined by function 2 
 
;p4 : overall amplitude 
;p5 : fundamental frequency 
;p6, p8, p10, p12, p14, p16, p18: relative amplitudes of partials 
;p7, p9, p11, p13, p15, p17, p19: relative frequencies of partials 
;p20 : envelope shaper 
;p21 : function table 



                                i1      =       p5*p7           ; 1 partial freq 
        i2      =       p5*p9           ; 2 partial freq 
        i3      =       p5*p11          ; 3 partial freq 
        i4      =       p5*p13          ; 4 partial freq 
        i5      =       p5*p15          ; 5 partial freq 
        i6      =       p5*p17          ; 6 partial freq 
        i7      =       p5*p19          ; 7 partial freq 
        ifrq1   =       1/p3            ; freq = 1/dur  
        ; overall envelope 
        k1      linseg  0,p3-.7*p20,p4/4,.3*p20,p4,.4*p20,0  
        ; frequency vibrato envelope 
        k2      line    1, p3, 0 
        k3      oscil   k2*p5/10, 10, 2 ; frequency change 
 
        a1      oscil   p6, i1+k3, p21  ; 1 partial 
        a2      oscil   p8, i2+k3, p21  ; 2 partial 
        a3      oscil   p10, i3+k3, p21 ; 3 partial 
        a4      oscil   p12, i4+k3, p21 ; 4 partial 
        a5      oscil   p14, i5+k3, p21 ; 5 partial 
        a6      oscil   p16, i6+k3, p21 ; 6 partial 
        a7      oscil   p18, i7+k3, p21 ; 7 partial 
 
        ; mix and output 
                out     k1*(a1+a2+a3+a4+a5+a6+a7)/7 endin 
 
 
;CS11.SC 
 
f1 0 4096 10 1 
f2 0 4096 10 1 
f3 0 4096 10 1 .5 .6 .9 1 .3 .4 .2 
 
t 0 80 
 



;             p3      p4      p5      p6..p18 p7..p19 p20     p21 
;instr  start dur     amp     fund    relat.  relat.  env     func 
;                     overall freq    amps    freqs   shaper 
 
i15     0      .5     10000   300     1       1                                                     .8      1.41 
                                      .9      1.89 
                                      .7      2.3 
                                      .65     2.6 
                                      .93     3.2 
                                      .94     3.5     .15     1 
 
i15     1.3    .7     10000   300     1       1                                             .8      1.41 
                                      .9      1.89 
                                      .7      2.3 
                                      .65     2.6 
                                      .93     3.2 
                                      .94     3.5     .15     1 
 
i15     1.8    .5     15000   900     1       1                                             .8      1.41 
                                      .9      1.89 
                                      .7      2.3 
                                      .65     2.6 
                                      .93     3.2 
                                      .94     3.5     .15     1 
 
i15     1.9   3       19000   40      1       1                                             .8      1.41 
                                      .9      1.89 
                                      .7      2.3 
                                      .65     2.6 
                                      .93     3.2 
                                      .94     3.5     .8      1 
 
i15     4.4    2      19000   600     1       1                                             .8      1.41 
                                      .9      1.89 



                                      .7      2.3 
                                      .65     2.6 
                                      .93     3.2 
                                      .94     3.5     1       3 
 
e 
 
;CS12.ORC       This produces a simple oscillator with an 
;               envelope needed to produce RISSET'S beating 
;               harmonics  
sr = 44100 
kr = 4410 
ksmps = 10 
nchnls = 1 
 
instr 3 
 
;p4 : amplitude 
;p5 : fundamental 
 
 
        k1      linen p4, .5, p3, .5    ; envelope 
        a1      oscil   k1, p5, 1       ; oscillator 
                out     a1 
endin 
 
 
 
;       ORRISS.SC 
;       This produces the original Risset gliding harmonics 
 
f1 0 8192 10 1 1 1 1 1 1 1 1 1 1 1 1 
 
;               p3      p4      p5 



;instr  start   dur     amp     fund 
 
i3      0       35      3500    110 
i3      .       .       .       110.03 
i3      .       .       .       110.06 
i3      .       .       .       110.09 
i3      .       .       .       110.12 
i3      .       .       .       109.97 
i3      .       .       .       109.94 
i3      .       .       .       109.91 
i3      .       .       .       109.88 
 
e



6.Subtractive Synthesis6.Subtractive Synthesis6.Subtractive Synthesis6.Subtractive Synthesis    
 
; CS13.ORC      -       Use of RAND, RANDH, RANDI 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
 
instr 16                ;       uses RAND 
 
;p4  : amplitude 
;p5  : not used 
;p6  : attack 
;p7  : decay 
 
        k1      linen   p4, p6, p3, p7  ; envelope 
        a1      rand    k1              ; noise source 
                out     a1              ; output 
endin 
 
 
instr 17        ;       uses RANDH 
 
;p4  : amplitude 
;p5  : random oscillator frequency 
;p6  : attack 
;p7  : decay 
 
        k1      linen   p4, p6, p3, p7  ; envelope 
        a1      randh   k1,p5           ; noise source 
                out     a1              ; output 
endin 



 
 
instr 18        ;       uses RANDI 
 
;p4  : amplitude 
;p5  : random oscillator frequency 
;p6  : attack 
;p7  : decay 
 
        k1      linen   p4, p6, p3, p7  ; envelope 
        a1      randi   k1,p5           ; noise source 
                out     a1              ; output 
endin 
 
 



;CS13.SC        Noise Generators 
 
;               p3      p4      p5      p6      p7      ;instr  start   dur     amp     freq    attack  decay   ;                                                       
;       RAND 
i16     0        2      10000   0       .1      .1 
 
;       RANDH   400 hz 
i17     3        2      10000   400     .1      .1 
 
;       RANDI   400 hz 
i18     6        2      10000   400     .1      .1 
 
e 
 
 
 
 
; CS14.ORC      -       Use of BUZZ 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 19 
 
;p4  : amplitude 
;p5  : fundamental 
;p6  : attack 
;p7  : decay 
;p8  : number of partials 
 
        k1      linen   p4, p6, p3, p7          ; envelope 
        a1      buzz    k1, p5, p8, 1           ; oscillator 



                out     a1                      ; output 
endin 
 
 
; CS14.SC 
 
f1 0 8192 10 1 
 
 
;               p3      p4      p5      p6      p7      p8 
;instr  start   dur     amp     freq    attack  decay   No. of 
;                                                       parts 
 
i19     0        2      30000   40      .1      .1      5 
i19     3        2      .       40      .1      .1      15 
i19     6        2      .       40      .1      .1      45 
 
e 
 
 
Assignment :Produce a pulse with inharmonic spectrum using BUZZ. 
 



; CS15.ORC      -       Use of GBUZZ 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 20 
 
;p4  : amplitude 
;p5  : fundamental 
;p6  : attack 
;p7  : decay 
;p8  : lowest amplitude multiplier 
;p9  : highest amplitude multiplier 
;p10 : lowest partial number 
;p11 : total number of partials 
 
     k2      line    p8, p3, p9            ; changing multiplier      k1      linen   p4, p6, p3, p7        ; 
envelope 
     a1      gbuzz   k1, p5, k2, p10,p11,1 ; oscillator 
             out     a1                    ; output 
endin 
 
 
 
;CS15.SC 
 
f1 0 8192 9 1 1 90 
 
 
;          p3  p4    p5    p6   p7    p8   p9    p10     p11 
;ins start dur amp   freq  atck decay min  max   lowest  partls 
;                                     fact fact  part 



 
i20  0     4   25000 30    .1   .5    .7   1.7   5       30 
 
e 
 
 
; CS16.ORC      -       FILTERED NOISE 
;               White noise is passed through a band-pass filter 
;               with varying centre frequency and bandwidth. 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 21 
 
;p4  : amplitude 
;p5  : attack 
;p6  : decay 
;p7  : minimum centre frequency 
;p8  : maximum centre frequency 
;p9  : minimum bandwidth in % 
;p10 : maximum bandwidth in % 
 
     i1   =       1/p3                    ; one cycle 
     i2   =       p9*p7/100               ; minimum bandwidth 
     i3   =       p10*p8/100              ; maximum bandwidth 
     k1   linen   p4, p5, p3, p6          ; envelope 
     k2   oscil   p8-p7, i1, 1            ; varying centre freq 
     k3   oscil   i3-i2, i1, 2            ; varying bandwidth      a1   rand    1                       ; random 
numbers 
     a2   reson   a1, p7+k2, i2+k3, 4     ; filter 
     a2   balance a2,a1                   ; power balance 



                out     k1*a2                   ; output 
endin 
 
 
 
;CS16.SC 
 
;       FROM PITCH TO NOISE SLIDING UP 
 
f1 0 1024 7 0 512 .3 512 1 
f2 0 1024 5 .001 512 1 512 .4 
 
;           p3   p4     p5    p6     p7      p8      p9      p10 
;ins start  dur  amp    atck  decay  min     max     min     max 
;                                    centre  centre  BW      BW 
;                                    freq    freq    in %    in % 
 
i21  0      2   10000   .5     .7    260     650     .1      20 
i21  2.9    .1  0       .      .     .       .       .       . 
 
s 
 
;       FROM NOISE TO PITCH SLIDING DOWN 
 
f1 0 1024 7 1 512 .3 512 0 
f2 0 1024 5 .4 512 1 512 .001 
 
i21  0      2   10000   .7     .5    260     650     .1      20 
 
e



; CS17.ORC      -       FILTERED PULSE WITH FORMANTS 
;A pulse is passed through 4 parallel bandpass ;filters with varying centre frequency and 
;bandwidth. 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 22 
 
;p4  : amplitude 
;p5  : fundamental 
;p6  : attack 
;p7  : decay 
;p8  : minimum frequency of RANDI 
;p9  : maximum frequency of RANDI 
 
     ip3  =   1/p3                ; one cycle 
     ipfl =   p5/5                ; pitch fluctuation 
     iffl =   p9-p8               ; freq fluctuation of RANDI 
     inh  =   int(sr/2/(p5+ipfl)) ; maximum harmonics 
 
     kenv     linen p4,p6,p3,p7         ; envelope 
 
     krand    oscil .5, ip3, 2       ; oscil between -.5 and .5 
     krand    =     krand + .5       ; correct between 0 and 1 
 
     kfrnd    =     p8+iffl*krand    ; actual frequency of RANDI 
     kprnd    =     p5+ipfl*krand    ; variable pitch 
 
     a1       buzz  1,kprnd,inh,1    ; pulse 
     abal     oscil 1,p5,1           ; balancing sine wave 
 
     k1       randi 1,kfrnd,.12      ; random generator      k2       randi 1,kfrnd,.23      ; for each 



filter 
     k3       randi 1,kfrnd,.34      ; each with a      k4       randi 1,kfrnd,.45      ; different seed 
     k5       randi 1,kfrnd,.56      ;  
     a2 reson a1, 500+k1*100, 30*(1+k1), 0   ; 500 hz bandpass 
     a3 reson a1, 1000+k2*200, 40*(1+k2), 0  ; 1000 hz bandpass 
     a4 reson a1, 2000+k3*300, 80*(1+k3), 0  ; 2000 hz bandpass 
     a5 reson a1, 3500+k4*500, 200*(1+k4), 0 ; 3500 hz bandpass 
     a6 reson a1, 4800+k5*800, 400*(1+k5), 0 ; 4800 hz bandpass 
 
     a7   =       a2+a3+a4+a5+a6  ; mix 
     a7   balance a7,abal           ; balance intensity 
          out kenv*a7               ; output 
endin 
 
 
;CS17.SC 
 
f1 0 4096 10 1 
f2 0 512 7 0 50 .6 50 .8 50 .3 50 .7 50 .9 50 .4 50 .1 50 .01 62 .2 
 
;            p3      p4      p5      p6      p7      p8      p9 
;ins start   dur     amp     fund.   attack  decay   min     max 
;                            freq                    random freqs. 
 
i22  0        .5     5000    70      .1       .1     10      15 
 
i22  1        5      2500    490     4        .5     40      45 
i22  1        5      2500    615     4        .5     40      45 
i22  3.5      7      2500    60       .5     1.5      3      50 
 
e 
 
 
 



 
 
; CS18.ORC 
; Filters the output of BUZZ and gives it an  amplitude envelope 
 
sr = 44100 
kr = 4410 
ksmps = 10 
nchnls = 1 
 
instr 23 
 
;p4 : amplitude factor 
;p5 : fundamental 
;p6 : number of partials 
;p7 : frequency of envelope 
;p8 : envelope function 
;p9 : centre frequency of band-pass filter 
;p10: bandwidth as a percentage of centre frequency 
 
        ibw     =       p8*p7/100       ; % bandwidth to hz 
        kenv    oscil   p4, p7, p8      ; envelope 
        ain     buzz    20000, p5, p6, 2; pulse generator 
        afilt   reson   ain, p9, p10, 1 ; filter 
                out     kenv*afilt 
endin 
 
 



; CS18.SC-Uses f1 as an envelope 
 
f1 0 1024 9 0.001 1 0 1 2 90 2 2 90 3 2 90 4 2 90 
;f2 0 8192 10 1 
f2 0 512 10 1 
 
;           p3   p4     p5     p6     p7     p8    p9      p10 
;ins  start dur  ampl   fund   No of  envel  envel centre  bw in  ;                factor freq   part   
freq   func  freq    % of  ;                                                          centre 
 
i23   0     35   100    20     250    .03    1      100     1 
i23   .     .    .      .      .      .06    .      200     . 
i23   .     .    .      .      .      .09    .      300     . 
i23   .     .    .      .      .      .12    .      400     . 
i23   .     .    .      .      .      .15    .      500     . 
i23   .     .    .      .      .      .18    .      600     . 
i23   .     .    .      .      .      .21    .      700     . 
i23   .     .    .      .      .      .24    .      800     . 
i23   .     .    .      .      .      .27    .      900     . 
i23   .     .    .      .      .      .30    .     1000     . 
e 
 
 
 
 
 
; CS19.ORC      ; Filter soundfile SOUNDIN.NNN and gives it an envelope. 
; The bandwidth of the filter fluctuates according to function 2 
 
sr = 44100 
kr = 4410 
ksmps = 10 
nchnls = 1 
 



instr 24 
 
;p4 : skip 
;p5 : frequency of envelope 
;p6 : envelope function 
;p7 : centre frequency of band-pass filter 
;p8 : minimum bandwidth 
;p9 : maximum bandwidth 
;p10: scaling of filter 
;p11: input file 
 
     icyc   =       1/p3                   ; one cycle 
     iminbw =       p8*p7/100              ; min % bandwidth to hz 
     imaxbw =       p9*p7/100              ; max % bandwidth to hz 
     kenv   oscil   p10, p5, p6            ; envelope 
     kbw    oscil   imaxbw-iminbw, icyc, 2 ; bandwidth fluctuation 
     ain    soundin p11, p4                ; input soundfile 
     afilt  reson   ain, p7, iminbw+kbw, 1 ; filter 
            out     kenv*afilt 
 
endin



8.Amplitude Modulation (AM)8.Amplitude Modulation (AM)8.Amplitude Modulation (AM)8.Amplitude Modulation (AM)    
 
 
; CS20.ORC      -       Linear and Non-linear amplifiers 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 25        ;       linear  amplifier y = Ax 
 
;p4  : amplitude 
;p5  : frequency 
;p6  : attack 
;p7  : decay 
;p8  : function 
;p9  : amplitude factor A 
 
        kenv    linen   1,p6,p3,p7      ; envelope 
        ain     oscil   1,p5,p8         ; oscillator 
        aout    =       p4*ain          ; y = Ax 
                out     kenv*aout       ; output 
endin 
 
 
instr 26        ;                                  2 
                ;       non-linear amplifier y = Ax 
 
;p4  : amplitude factor A 
;p5  : frequency 
;p6  : attack 
;p7  : decay 
;p8  : function 



 
        kenv    linen   1,p6,p3,p7      ; envelope 
        ain     oscil   1,p5,p8         ; oscillator 
                                        ;   2 
        aout    =       p4*ain*ain      ; y = Ax 
                out     kenv*aout       ; output 
endin 
 
 
;CS20.SC 
 
f1 0 8192 10 1 
 
;               p3      p4      p5      p6      p7      p8 
;instr  start   dur     amplif  freq    attack  decay   func 
;                       factor                           
;linear amplifier 
i25     0        2      25000   440     .3       .3     1 
 
;non-linear amplifier 
i26     3        2      25000   440     .3       .3     1 
 
e



; CS21.ORC      -       Amplitude Modulator 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 3         ; Used to play pure sinewaves 
 
        k1      linen   p4, p6, p3, p7  ; envelope 
        a1      oscil   k1, p5, p8      ; oscillator 
                out     a1              ; output 
endin 
 
 
instr 27        ;       Side bands only 
 
;p4  : amplitude 
;p5  : carrier 
;p6  : attack 
;p7  : decay 
;p8  : modulator 
;p9  : function 
 
        kenv    linen   p4, p6, p3, p7  ; envelope 
        acarr   oscil   1, p5, p9       ; carrier 
        amod    oscil   1, p8, p9       ; modulator 
        aout    =       kenv*acarr*amod ; modulation 
                out     aout            ; output 
endin 
 
 
 
 



; CS21.SC 
 
f1 0 4096 10 1 
 
 
;SECTION 1      carrier 300 hz, modulator 15 hz 
 
;               p3      p4      p5      p6      p7      p8 
;instr  start   dur     amp     carr.   attack  decay   func 
 
i3      0        2      25000   300     .3       .3     1 
i3      3        2      25000    15     .3       .3     1 
 
;            p3   p4      p5      p6      p7      p8      p9 
;instr start dur  amp     carr.   attack  decay   mod.    func. 
 
i27    6     2    25000   300     .3       .3      15     1 
s 
 
 



;SECTION 2      carrier 300 hz, modulator 110 hz 
 
;               p3      p4      p5      p6      p7      p8 
;instr  start   dur     amp     carr.   attack  decay   func 
 
i3      1        2      25000   300     .3       .3     1 
i3      4        2      25000   110     .3       .3     1 
 
;            p3   p4      p5      p6      p7      p8      p9 
;instr start dur  amp     carr.   attack  decay   mod.    func. 
 
i27    7     2    25000   300     .3       .3     110     1 
s 
 
 
;SECTION 3      carrier 300 hz, modulator 310 hz 
 
;               p3      p4      p5      p6      p7      p8 
;instr  start   dur     amp     carr.   attack  decay   func 
 
i3      1        2      25000   300     .3       .3     1 
i3      4        2      25000   310     .3       .3     1 
 
;            p3   p4      p5      p6      p7      p8      p9 
;instr start dur  amp     carr.   attack  decay   mod.    func. 
 
i27    7     2    25000   300     .3       .3     310     1 
s 
 
 
;SECTION 4      carrier 300 hz, modulator 500 hz 
 
;               p3      p4      p5      p6      p7      p8 
;instr  start   dur     amp     carr.   attack  decay   func 



 
i3      1        2      25000   300     .3       .3     1 
i3      4        2      25000   500     .3       .3     1 
 
;            p3   p4      p5      p6      p7      p8      p9 
;instr start dur  amp     carr.   attack  decay   mod.    func. 
 
i27    7     2    25000   300     .3       .3     500     1 
 
e 
 
 
 
 
; CS22.ORC      -       Amplitude Modulator 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
 
instr 28        ;       Side bands and carrier 
                ;       carrier and modulator with                 ;       different generating functions 
 
;p4  : amplitude 
;p5  : carrier 
;p6  : attack 
;p7  : decay 
;p8  : modulator frequency 
;p9  : percentage of carrier to be modulated 
;p10 : carrier function table 
;p11 : modulator table 
 



     imod   =     p9/100.00             ; modulated percentage 
     inomod =     1 - imod              ; unmodulated percentage 
 
     kenv   linen p4, p6, p3, p7        ; envelope 
 
     acarr  oscil 1, p5, p10            ; carrier 
     amod   oscil 1, p8, p11            ; modulator 
 
     aoutm  =     acarr*amod*imod       ; modulated signal 
     aoutnm =     acarr*inomod          ; unmodulated signal 
             out   kenv*(aoutm + aoutnm) ; output 
endin 
 
 
 
; CS22.SC 
 
f1 0 4096 10 1 
 
 
;           p3  p4     p5    p6   p7    p8    p9     p10     p11 
;ins  start dur amp    carr. atck decay mod   mod %  carr    mod 
;                                                    func    func 
 
i28   0     2   25000  600   .3   .3    15    90     1       1 
i28   3     .   .      .     .    .     .     10     1       1 
 
e 
 
 



;CS23.SC 
 
f1 0 4096 10 1 
f2 0 4096 10 1 .8 .7 .6 .5 
 
;           p3  p4     p5    p6   p7    p8    p9     p10     p11 
;ins  start dur amp    carr. atck decay mod   mod %  carr    mod 
;                                                    func    func 
 
i28   0     2   25000  300   .3   .3    212   100    1       2 
 
e 
 
 
 
 
; CS24.ORC      -       Amplitude Modulator 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 29        ;       Side bands and carrier 
                ;       carrier and modulator with                 ;       different generating functions 
;p4  : amplitude 
;p5  : carrier 
;p6  : attack 
;p7  : decay 
;p8  : carrier to modulator ratio. Should not be 0. 
;p9  : percentage of carrier to be modulated 
;p10 : carrier function table 
;p11 : modulator table 
 



     imod   =     p9/100.00             ; modulated percentage 
     inomod =     1 - imod              ; unmodulated percentage 
 
     imf    =     p5/p8                 ; modulator frequency 
 
     kenv   linen p4, p6, p3, p7        ; envelope 
 
     acarr  oscil 1, p5, p10            ; carrier 
     amod   oscil 1, imf, p11           ; modulator 
 
     aoutm  =     acarr*amod*imod       ; modulated signal 
     aoutnm =     acarr*inomod          ; unmodulated signal 
            out   kenv*(aoutm + aoutnm) ; output 
endin 
 
 
;CS24.SC 
 
f1 0 4096 10 .9 1 .78 .07 .24 .53 .09 .46 
f2 0 4096 10 1 .46 .56 .87 .35 
 
;          p3   p4     p5    p6   p7  p8     p9      p10    p11 
;ins start dur  amp    carr. atck dec c/m    mod %   carr   mod 
;                                                    func   func 
 
i29  0     1.5  25000  250   .1   1    .5     95      1       2 
i29  2.5   .    .      .     .    .   2       .       .       . 
i29  5     .    .      .     .    .    .501   .       .       . 
i29  7.5   .    .      .     .    .    .35355 .       .       . 
 
e 
 
 
 



; CS25.ORC      -       Ring Modulator 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 30        ;    Variable parameter amplitude modulation 
                ;       instrument. 
                ;    The following can be made to change in time: 
                ;      overall amplitude, carrier frequency, 
                ;      c/m ratio, percentage of the carrier to                 ;      be modulated. ;p4  : 
max amplitude 
;p5  : highest carrier pitch 
;p6  : max carrier to modulator ratio (c/m) 
;p7  : function table controlling amplitude 
;p8  : function table controlling carrier pitch 
;p9  : function table controlling c/m ratio 
;p10 : function table controlling modulation percentage 
 
        ;       one cycle 
        ip3     =       1.0/p3 
 
        ;       pitch frequency convertion 
        ifr     =       cpspch(p5) 
 
        ; envelopes 
        kamp    oscil   p4,ip3,p7       ; amplitude 
        kcar    oscil   ifr,ip3,p8      ; carrier freq 
        kcmr    oscil   p6,ip3,p9       ; c/m 
        kmp     oscil   1,ip3,p10       ; modulation percentage 
 
        acarr   oscil   1, kcar, 10     ; carrier 
        amod    oscil   1, kcar/kcmr,11 ; modulator 



        aoutm   =       acarr*amod*kmp  ; modulated signal 
        aoutnm  =       acarr*(1-kmp)   ; unmodulated signal 
 
        ;       mix and output 
                out     kamp*(aoutm+aoutnm) 
endin 
 
 
; CS25.SC 
 
;SECTION 1 
 
t 0 120 4 120 6 140 6 250 8.6 40 8.8 60 
 
;       percussive sound functions 
 
f1  0 512 7 0    32     1       64      .3      384     0 
f2  0 512 7 1   512     1 f3  0 512 7 0.6799    32      .6799  160     1     384    .9808 
f4  0 512 7 1    32     .1      414     .11 
 
;       carrier and modulator functions 
 
f10 0 4096 10 1                                 ; carrier 
f11 0 4096 10 1 .9 .8 .7 .6 .5 .6 .7 .8         ; modulator 
 
;          p3   p4     p5      p6      p7    p8    p9    p10 
;ins start dur  max    highest max     amp   carr  c/m   mod % 
;               amp    carr.   c/m     func  func  func  func 
;                      pitch 
 
i30  0     .1   5000   9.03    3       1     2     3     4 
i30   .2   .    1000    .      3       .     .     .     . 
i30   .4   .    >       .      3       .     .     .     . 
i30   .6   .    >       .      3       .     .     .     . 



i30   .8   .    >       .      3       .     .     .     . 
 
i30  1     .    25000   .      3       .     .     .     . 
 
i30  2     .    .     10.02    3       .     .     .     . 
 
i30  3.5   .    15000  9.07    3       .     .     .     . 
i30  3.7   .    15000   .      3       .     .     .     . 
i30  3.85  .    15000   .      3       .     .     .     . 
 
i30  4     .    15000 10.04    3       .     .     .     . 
i30  4.4   .    >      9.10    3       .     .     .     . 
i30  4.8   .    >     10.06    3       .     .     .     . 
i30  5.2   .    >     10.02    3       .     .     .     . 
i30  5.6   .    >     10.08    3       .     .     .     . 
 
i30  6     .    32000 11.01    3       .     .     .     . 
i30  6.2   .    .       .      3       .     .     .     . 
i30  6.4   .    .       .      3       .     .     .     . 
i30  6.6   .    >       .      3       .     .     .     . 
i30  6.8   .    >       .      3       .     .     .     . 
i30  7.0   .    >       .      3       .     .     .     . 
i30  7.2   .09  >       .      3       .     .     .     . 
i30  7.4   .085 >       .      3       .     .     .     . 
i30  7.6   .08  >       .      3       .     .     .     . 
i30  7.8   .075 >       .      3       .     .     .     . 
i30  8.0   .07  >       .      3       .     .     .     . 
i30  8.2   .065 >       .      3       .     .     .     . 
i30  8.4   .06  >       .      3       .     .     .     . 
i30  8.6   .05  8000    .      3       .     .     .     . 
 
s



;SECTION 2 
 
;       low 'bounce' functions 
 
f1  0 1024 7    0      32  1      64   .6   128  .3    800   0 
f2  0 512 7     1     512  1 f3  0 512 7     .7057  64  .8982  64   1    384  .9980 
f4  0 512 7     1      64  .6     64   .3   128  0 
 
;       gliss and fan sound functions 
 
f5  0 512 7 0  128  0.2   64  1       32  0.8 96  0.7  192  0 
f6  0 512 7 1   64  1.02  64  .95     64  0.8 64  0.6  256  0.64 f7  0 512 7 1  128  1      0  
0.7001 384  0.7 
f8  0 512 7 0   64  1     64  0      192  1   64  0.8  128  1 
 
;       carrier and modulator functions 
 
f10 0 4096 10 1                                 ; carrier 
f11 0 4096 10 1 .9 .8 .7 .6 .5 .6               ; modulator 
 
;          p3   p4     p5      p6      p7    p8    p9    p10 
;ins start dur  max    highest max     amp   carr  c/m   mod % 
;               amp    carr.   c/m     func  func  func  func 
;                      pitch 
 
i30  1     1    30000  6.01    1       1     2     3     4 
i30  1.75  9    30000  9.01    1       5     6     7     8 
 
s 
 
; SECTION 3 
 
f1  0 2048 7    0    4 1    128  .6  280  .2  1200  0 
f2  0 512 7     1  512 1 f3  0 512 7     1  512 1 



f4  0 512 7     1  100 .65  100  .4  312  .05 
 
;       carrier and modulator functions 
 
f10 0 4096 10 1                         ; carrier 
f11 0 4096 10 1 .9 .8 .7 .6             ; modulator 
 
;          p3   p4     p5      p6      p7    p8    p9    p10 
;ins start dur  max    highest max     amp   carr  c/m   mod % 
;               amp    carr.   c/m     func  func  func  func 
;                      pitch 
 
i30  1     4    30000  8.06    1.4142  1     2     3     4 
 
e



9.9.9.9.    WaveshapingWaveshapingWaveshapingWaveshaping    
 
 
; CS26.ORC      -       Waveshaper 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 31        ;       Basic Waveshaping instrument 
 
;p4 : amplitude 
;p5 : frequency 
;p6 : attack 
;p7 : decay 
;p8 : oscillator function 
;p9 : waveshaping function 
 
        ioffset =       .499             ; offset 
        k1      linen   p4, p6, p3, p7   ; envelope 
        a1      oscil   ioffset, p5, p8  ; oscillator 
        awsh    table   a1,p9,1,ioffset  ; waveshaping value 
                out     k1*awsh          ; output 
endin 
 
 
 
; CS26.SC 
 
;       oscillator 
 
f1 0 8192 10 1 
 



;       waveshaping functions 
 
f2 0 8193 7 -1 8193  1 
f3 0 8193 7 -1 2048 -0.7  4097   0.7  2048  1 
f4 0 8193 7 -1 2048 -0.5     0  -0.3  2048  0.1 0 0.4 2048 0.5 0 0.7 2049  1 
f5 0 8193 9  1 1 180  2 .9 180   3 .8 180   4 .7 180   5 .6 180 
f6 0 8193 9  1 1 90   2 .9  90   3 .8  90   4 .7  90   5 .6 90 
 ;           p3      p4      p5      p6      p7      p8      p9 
;ins  start dur     amp     freq    attack  decay   osc     wsh 
;                                                   func    func 
 
i31   0     1      32000    440    .1      .1      1       2 
i31   1.5   1      .        .      .1      .1      1       3 
i31   3     1      .        .      .1      .1      1       4 
i31   4.5   1      .        .      .1      .1      1       5 
i31   6     1      .        .      .1      .1      1       6 
 
e 
 
 



; CS27.ORC 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 3         ;       Simple Oscillator 
 
        k1      linen   p4, p6, p3, p7  ; envelope 
        a1      oscil   k1, p5, p8      ; oscillator 
                out     a1              ; output 
endin 
 
 
instr 31        ;       Basic Waveshaping instrument 
 
;p4 : amplitude 
;p5 : frequency 
;p6 : attack 
;p7 : decay 
;p8 : oscillator function 
;p9 : waveshaping function 
 
        ioffset =       .5               ; offset 
        k1      linen   p4, p6, p3, p7   ; envelope 
        a1      oscil   ioffset, p5, p8  ; oscillator 
        awsh    table   a1,p9,1,ioffset  ; waveshaping value 
                out     k1*awsh          ; output 
endin 
 
 
 
; CS27.SC 



; Use of GEN13 to produce a harmonic series out of a sine wave 
 
f1  0 8192 10 1                       ; sine wave 
 
f2  0 8193 13 1 1 1                   ; DC 
f3  0 8193 13 1 1 0 1                 ; 1 harmonic (fund) 
f4  0 8193 13 1 1 0 0 1               ; 2 harmonic 
f5  0 8193 13 1 1 0 0 0 1             ; 3 harmonic 
f6  0 8193 13 1 1 0 0 0 0 1           ; 4 harmonic 
f7  0 8193 13 1 1 0 0 0 0 0 1         ; 5 harmonic 
f8  0 8193 13 1 1 0 0 0 0 0 0 1       ; 6 harmonic 
f9  0 8193 13 1 1 0 0 0 0 0 0 0 1     ; 7 harmonic 
f10 0 8193 13 1 1 0 0 0 0 0 0 0 0 1   ; 8 harmonic 
f11 0 8193 13 1 1 0 0 0 0 0 0 0 0 0 1 ; 9 harmonic 
 
;       SINE WAVE 
 
;               p3      p4      p5      p6      p7      p8 
;instr  start   dur     amp     first   attack  decay   func 
;                               freq 
 
i3      0        1      25000    200    .1      .1      1 
 
 



;       HARMONICS 
 
;           p3      p4      p5      p6      p7      p8      p9 
;ins  start dur     amp     freq    attack  decay   osc     wsh 
;                                                   func    func 
 
i31   1     .5     25000    200    .1      .1      1        2 
i31   +     .      .        .      .       .       .        3 
i31   +     .      .        .      .       .       .        4 
i31   +     .      .        .      .       .       .        5 
i31   +     .      .        .      .       .       .        6 
i31   +     .      .        .      .       .       .        7 
i31   +     .      .        .      .       .       .        8 
i31   +     .      .        .      .       .       .        9 
i31   +     .      .        .      .       .       .       10 
i31   +     .      .        .      .       .       .       11 
 
e 
 
 
 
 
 
; CS28.ORC 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 32        ;       Dynamic Waveshaping instrument 
                ;       Distortion index changes according to 
                ;       function indicated by p11 
;p4 : amplitude 



;p5 : frequency 
;p6 : oscillator function 
;p7 : waveshaping function 
;p8 : envelope (distortion index) function 
 
     ifr     =       cpspch(p5)         ; pitch to freq 
     ip3     =       1/p3               ; one cycle 
     ioffset =       .5                 ; offset 
     k1      oscil   1, ip3, p8         ; envelope (dist index) 
     a1      oscil   ioffset, ifr, p6   ; oscillator 
     awsh    table   k1*a1,p7,1,ioffset ; waveshaping value 
             out     k1*p4*awsh         ; max amp & output 
endin 
 
 
; CS28.SC 
 
f1  0 8192  10 1                                 ; sine wave 
f2  0 8193  13 1 1 0 1 .7 -.8 -.3 .1 .8 -.9 -1 1 ; waveshaper 
f3  0  512   7 0 64 1 64 .2 184 .5 152 1 48 0    ; dist idx env 
 
;               p3      p4      p5      p6      p7      p8 
;instr  start   dur     amp     pitch   osc     wsh     index 
;                                       func    func    func 
 
i32     0       1       15000   7.06    1       2       3 
i32     +       0.5     .       8.00    .       .       . 
i32     +       0.25    .       7.01    .       .       . 
i32     +       0.25    .       6.02    .       .       . 
i32     2.5     2.5     20000   5.08    .       .       . 
 
e 
 
 



 
; CS29.ORC 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 33        ;    Dynamic Waveshaping instrument 
                ;    changes linearly between two different 
                ;    transfer functions that waveshape the same 
                ;    signal 
 
;p4  : amplitude 
;p5  : frequency 
;p6  : oscillator function 
;p7  : beginning waveshaping function 
;p8  : final waveshaping function 
;p9  : index function 
;p10 : c/m ratio  
     ip3     =       1/p3                 ; one cycle 
     icarr   =       cpspch(p5)           ; carrier freq 
     imod    =       icarr*p10            ; modulator freq 
     ioffset =       .5                   ; offset 
 
     k1      oscil   1, ip3, p9           ; envelope 
     kmix    line    1, p3, 0             ; mix proportions 
 
     acarr   oscil   .5, icarr, 1         ; carrier 
     amod    oscil   1, imod,p6           ; modulator 
     a1      =       acarr*amod           ; modulated signal 
 
     awsh1   table   k1*a1,p7,1,ioffset   ; 1 waveshaping value 
     awsh2   table   k1*a1,p8,1,ioffset   ; 2 waveshaping value 



 
     ; mix output 
             out     k1*p4*( kmix*awsh1 + (1-kmix)*awsh2 ) 
endin 
 
; CS29.SC 
 
f1 0 8192 10 1                                   ; carrier 
f2 0 8192 10 1 .7 .3 .8 .4                       ; modulator 
 
f3 0 8193 13 1 1 0 1 -.9 -.8 .7 .6 -.5 -.4 .3 .2 ; waveshaper 1 
f4 0 8193 13 1 1 0 .1 .1 .2 1 .3 .2 .1           ; waveshaper 2 
 
f5 0 1024 9 .5 1 0                               ; envelope 
 
;         p3  p4      p5      p6      p7      p8    p9    p10 
;ins strt dur amp     pitch   mod     first   last  index ring 
;                             func    wsh     wsh   func  c/m 
;                                     func    func  (env) 
 
i33  0    5   25000   7.08    2       3       4     5     .35355 
i33  6    2   .       7.06    .       .       .     .     .354 
i33  7    6   .       8.05    .       .       .     .     .35355 
e



10.10.10.10.    Frequency ModulationFrequency ModulationFrequency ModulationFrequency Modulation    
 
 
; CS30.ORC      Basic FM instrument 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 34        ; Basic FM instrument 
 
;p4  : carrier amplitude 
;p5  : carrier frequency 
;p6  : attack 
;p7  : decay 
;p8  : peak deviation 
;p9  : modulator frequency 
;p10 : oscillator function 
 
        kenv    linen   p4,p6,p3,p7         ; envelope 
        amod    oscil   p8,p9,p10           ; modulator 
        aout    oscil   kenv,p5+amod,p10    ; modulated carrier 
                out     aout                ; output 
endin 
 
 
; CS30.SC       Modulation of a 400 hz sine wave by a ;               440 hz sinewave and 
different deviation ;               values 
 
f1  0 8192 10 1 ;sine wave 
 
;           p3   p4     p5    p6    p7      p8      p9      p10 
;ins  start dur  amp    carr  atck  decay   max     mod     func 



;                       freq                dev     freq 
 
i34   0     1.5  15000  400   .1    .1         0    440     1 
i34   2      .   .      .     .     .         10    .       . 
i34   4      .   .      .     .     .        100    .       . 
i34   6      .   .      .     .     .        800    .       . 
i34   8      .   .      .     .     .       1600    .       . 
e 
 
 
 
; CS31.SC       Different carrier-modulator combinations 
 
f1  0 8192 10 1 ;sine wave 
 
;           p3   p4     p5    p6    p7      p8      p9      p10 
;ins  start dur  amp    carr  atck  decay   max     mod     func 
;                       freq                dev     freq 
 
i34   0     1.5  15000  400   .1    .1      400     200     1 
i34   2      .   .      200   .     .       800     400     . 
i34   4      .   .      200   .     .       566     283     . 
e



; CS32.SC       Same carrier (400 hz) with two different 
;               modulators (400 and 800 hz) 
 
 
f1  0 8192 10 1 ;sine wave 
 
;           p3   p4     p5    p6    p7      p8      p9      p10 
;ins  start dur  amp    carr  atck  decay   max     mod     func 
;                       freq                dev     freq 
 
i34   0     1.5  15000  400   .1    .1      1200    400     1 
i34   2      .   .      .     .     .       2400    800     . 
e 
 
 
 
 
; CS33.SC       carrier = 300 hz 
;               c/m =   1       (modulator = 300) 
;                       1.003   (modulator = 300.9) 
;                       1.4142  (modulator = 424.26) 
;               index = 2 
 
f1  0 8192 10 1 ;sine wave 
 
;           p3   p4     p5    p6    p7      p8      p9      p10 
;ins  start dur  amp    carr  atck  decay   max     mod     func 
;                       freq                dev     freq 
 
i34   0     1.5  15000  300   .1    .3      600     300     1 
i34   2      .   .      .     .     .       601.8   300.9   . 
i34   4      .   .      .     .     .       848.52  424.26  . 
 
e 



; CS34.ORC      -       FM synthesis instrument using FOSCIL 
;                       Produces dynamic spectrum by varying 
;                       the modulation index 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 35        ;       General FM instrument 
 
;p4  : amplitude 
;p5  : pitch (to be converted to frequency) 
;p6  : carrier/frequency 
;p7  : modulator/frequency 
;p8  : maximum index 
;p9  : oscillator function (usually a sine wave) 
;p10 : index function 
 
        icyc    =       1/p3            ; one cycle 
 
        ; envelope with attack = decay = .1 sec 
        kenv    linen   p4,.1,p3,.1 
 
        ; index 
        kidx    oscil   p8,icyc,p10 
 
        ; FM oscillator 
        a1      foscil  kenv,p5,p6,p7,kidx,p9 
 
        ; output 
                out     a1 
endin 
 



 
 
; CS34.SC       dynamic spectrum index changes ;               from 0 to 4 in 2 sec 
 
f1 0 8192 10 1          ; oscillator function 
f2 0 512  7 0 512 1     ; index function 
 
;          p3   p4      p5      p6      p7      p8    p9    p10 
;ins start dur  amp     freq    carr    mod     max   functions 
;                                               idx   osc   idx 
 
i35  0     2    15000   100     1       1       4     1     2 
 
e 
 
; CS35.ORC      -       FM synthesis instrument using FOSCIL 
;                       Produces all kinds of percussive sounds 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 36        ;  General FM instrument, with envelope changing 
                ;  according to function table given by p10 and 
                ;  index changing according to function table given 
                ;  by p11. 
;p4  : amplitude 
;p5  : pitch (to be converted to frequency) 
;p6  : carrier/frequency 
;p7  : modulator/frequency 
;p8  : maximum index 
;p9  : oscillator function (usually a sine wave) 
;p10 : amplitude function 



;p11 : index function 
 
        icyc    =       1/p3            ; one cycle 
        ifreq   =       cpspch(p5)      ; frequency 
 
        ; envelope 
        kenv    oscil   p4,icyc,p10 
 
        ; index 
        kidx    oscil   p8,icyc,p11 
 
        ; FM oscillator 
        a1      foscil  kenv,ifreq,p6,p7,kidx,p9 
 
        ; output 
                out     a1 
endin 
 
; CS35.SC       Different Percussive sounds obtained by changing 
;               envelopes, index functions and durations of the ; sounds 
 
f1 0 8192 10 1          ; oscillator function 
f2 0 512  5 1 512 .0001 ; amplitude function 
f3 0 512  5 1 512 .2    ; index function 
 
;       BELLS 
 
;          p3   p4      p5      p6      p7      p8   p9  p10 p11 
;ins start dur  amp     pitch   carr    mod     max  functions 
;                                               idx  osc amp idx 
 
i36   0    4    15000   7.11    1       1.215   6    1   2   3 
 
i36   5    .    10000   8.11    .        .      .    .   .   .       i36   6    .    10000   8.07    .        .      .    



.   .   .       i36   7    .    10000   8.09    .        .      .    .   .   .       i36   8    .    10000   8.02    .        

.      .    .   .   .       i36  10    .    10000   8.02    .        .      .    .   .   .       i36  11    .    10000   
8.09    .        .      .    .   .   .       i36  12    .    10000   8.11    .        .      .    .   .   .       i36  13    
.    10000   8.07    .        .      .    .   .   .        
s 
 
;       DRUMS 
 
;index and amplitude function 
f2 0 2048 7 0 20 .75 35 .9 35 1 104 .15 64 .1 186 .08 630 .15 964 0 
 
;          p3   p4      p5      p6      p7      p8   p9  p10 p11 
;ins start dur  amp     pitch   carr    mod     max  functions 
;                                               idx  osc amp idx 
 
i36  0     .5   15000   5.07    1       2.21    2.5  1   2   2 
i36  +     .5   15000   6       .       .       .    .   .   . 
i36  +     .5   15000   6.05    .       .       .    .   .   . 
s 
 
;       KNOCK ON WOOD 
 
f2 0 512  5 1 512 .0001         ; amplitude function 
f3 0 512  7 1 64 0 448 0        ; index function 
 
;          p3   p4      p5      p6      p7      p8   p9  p10 p11 
;ins start dur  amp     pitch   carr    mod     max  functions 
;                                               idx  osc amp idx 
 
i36  2     .2   15000   6       1       1.4142  25   1   2   3 
i36  2.5   .    >       .       .        .      .    .   .   . 
i36  3     .    25000   .       .        .      .    .   .   . 
 
e 



 
; CS36.ORC      -       Brass-like tones instrument 
 
sr = 44100 
kr =  4410 
ksmps = 10 
nchnls = 1 
 
instr 37        ;       General FM instrument, generates 
                ;       brass-like tones 
;p4  : amplitude 
;p5  : pitch (to be converted to frequency) 
;p6  : attack 
;p7  : decay 
;p8  : carrier/frequency 
;p9  : modulator/frequency 
;p10 : maximum index 
;p11 : oscillator function (usually a sine wave) 
 
     ifreq   =       cpspch(p5)      ; frequency 
     ihrise  =       p6*.5           ; half of rise time 
     ist1    =       p4*.75          ; steady state amplitude 1 
     ist2    =       p4*.6           ; steady state amplitude 2 
     istd    =       p3-p6-p7        ; duration of steady state 
 
     ; envelope 
     kenv    linseg  0,ihrise,p4,ihrise,ist1,istd,ist2,p7,0 
 
     ; index 
     kidx    =       kenv*p10/p4 
 
     ; FM oscillator 
     a1      foscil  kenv,ifreq,p8,p9,kidx,p11 
 



     ; output 
             out     a1 
endin 
 
 
 
; CS36.SC       Brass-like sounds 
 
f1 0 8192 10 1          ; oscillator function 
 
;         p3  p4      p5      p6    p7   p8    p9      p10  p11 
;ins stt  dur amp     pitch   atck  dec  carr  mod     max  osc 
;                                                      idx  func 
 
i37  0    .1  10000   8.01    .05   .04   1    1.002   5     1 
i37  +    .   >        .      .     .     .     .      .     . 
i37  +    .   >        .      .     .     .     .      .     . 
i37  +    .9  15000    .      .2    .1    .     .      5     . 
 
i37  +    .1  10000    .      .05   .04   1    1.002   5     1 
i37  +    .   >        .      .     .     .     .      .     . 
i37  +    .   >        .      .     .     .     .      .     . 
i37  +    .9  15000    .      .2    .1    .     .      5     . 
 
i37  +    .1  10000    .      .05   .04   1    1.002   5     1 
i37  +    .   >        .      .     .     .     .      .     . 
i37  +    .   >        .      .     .     .     .      .     . 
i37  +   1.8  18000   8.04    .2    .4    .     .      5     . 
 
i37  +    .1  12000   8.01    .05   .04   1    1.002   5     1 
i37  +    .   >        .      .     .     .     .      .     . 
i37  +    .   >        .      .     .     .     .      .     . 
i37  +    .9  18000   8.04    .2    .1    .     .      5     . 
 



i37  +    .1  14000   8.01    .05   .04   1    1.002   5     1 
i37  +    .   >        .      .     .     .     .      .     . 
i37  +    .   >        .      .     .     .     .      .     . 
i37  +    .9  22000   8.04    .2    .1    .     .      5     . 
 
i37  +    .1  14000   8.01    .05   .04   1    1.002   5     1 
i37  +    .   >       8.04    .     .     .     .      .     . 
i37  +    .   >       8.08    .     .     .     .      .     . 
i37  +   2.1  25000   9.01    .2    .2    .    1.001   5     . 
 
s 
 
i37  .15  .15 22000   8.11    .08   .04   1    1.002   5     1 
i37  +    .8  23000   8.09    .1    .1    .     .      .     .       i37  +    .15 22000   8.08    .08   .04   .     
.      .     . 
i37  +    .8  23000   8.06    .1    .1    .     .      .     . 
i37  +    .15 22000   8.04    .08   .04   .     .      .     . 
i37  +    .8  23000   8.09    .1    .1    .     .      .     . 
i37  +    .15 22000   8.08    .08   .04   .     .      .     . 
i37  +    .8  23000   8.06    .1    .1    .     .      .     . 
i37  +    .15 22000   8.04    .08   .04   .     .      .     . 
 
i37  +    .25 22000   8.06    .08   .04   .     .      .     . 
i37  +    .25 >       8.09    .08   .04   .     .      .     . 
i37  +    .25 >       9.01    .08   .04   .     .      .     . 
 
i37  +   1.8  28000   9.04    .2    .1    .    1.001   7     . 
i37  +    .75 >       9.06    .     .     .     .      .     . 
i37  +   3    32000   9.09    .     1.5   .    1.0005  .     . 
 
e 
 
 
 



 
Assignment :Produce an FM instrument with the following characteristics: 
 
1.The amplitude is controlled by a function table. 
 
2.The index is controlled by a function table. 
 
3.The instrument has two formants at 1300 and 2500 hz. 
 
Produce a short nmuxical fragment in which this instrument is used to play brass-like tones 
and also non-pitched sounds.



11.The Phase Vocoder11.The Phase Vocoder11.The Phase Vocoder11.The Phase Vocoder    
 
 
Pvoc 1 
 
# analysis 
sfpvoc -N4096 -A obc obc.dat 
# 
# synthesis 
sfpvoc -N4096 -S -i0 -j24 obc.dat obclow 
sfpvoc -N4096 -S -i25 -j80 obc.dat obcmid 
sfpvoc -N4096 -S -i81 -j2048 obc.dat obchigh 
 
 
Pvoc 2 
 
 
# Pvoc Transposition 
sfpvoc -N2048 -P2.1 mflute mflute.tr 
# Ftrans 
ftrans mflute mflute.ftr 
 
Pvoc 3 
 
sfpvoc -N4096 -T4.0 ahh ahhx4 
sfpvoc -N4096 -T4.0 ahhx4 ahhx16 
 
 
Pvoc 4 
 
#       cut 
cut inh4 inh4b 0 2.3 
cut inh4 inh4e 2.3 2.7 
#       analysis 



sfpvoc -N2048 -A inh4e inh4e.dat 
#       shift 
specsh inh4e.dat inh4she1.dat 1 15 1.9 .1 .1 0 0 
specsh inh4e.dat inh4she2.dat 1 15 2.4 .1 .1 0 0 
specsh inh4e.dat inh4she3.dat 1 15 3.45 .1 .1 0 0 
#       stretch 
spece inh4e.dat inh4ste1.dat 0  15 1.9 .06 .1 0 0 .5 
spece inh4e.dat inh4ste2.dat 0  15 2.4 .06 .1 0 0 .5 
spece inh4e.dat inh4ste3.dat 0  4 4.6 .06 .1 0 0 .5 
#       resynthesis 
sfpvoc -N2048 -S inh4she1.dat inh4she1 
sfpvoc -N2048 -S inh4she2.dat inh4she2 
sfpvoc -N2048 -S inh4she3.dat inh4she3 
sfpvoc -N2048 -S inh4ste1.dat inh4ste1 
sfpvoc -N2048 -S inh4ste2.dat inh4ste2 
sfpvoc -N2048 -S inh4ste3.dat inh4ste3 
#       splice 
splice -w0 inh4sh1 inh4b inh4she1 
splice -w0 inh4sh2 inh4b inh4she2 
splice -w0 inh4sh3 inh4b inh4she3 
splice -w0 inh4st1 inh4b inh4ste1 
splice -w0 inh4st2 inh4b inh4ste2 
splice -w0 inh4st3 inh4b inh4ste3 
 
 
 
 
 
 
 
 
 
 
 



Pvoc 5 
 
#cuts 
cut obD obDs 0 1.2 
cut obD obDe 1.2 3.34 
cut alhmix4 alhmix4s 0 2.011 
cut alhmix4 alhmix4s 2.011 3.75 
#analysis 
sfpvoc -N4096 -A obDs obDs.dat 
sfpvoc -N4096 -A alhmix4s alhmix4s.dat 
#interpolation 
vocinte obDs.dat alhmix4s.dat otg1m.dat .01 2 .01 2 2 2 
#synthesis 
sfpvoc -N4096 -S otg1m.dat otg1m 
#splices 
splice -w0 otg1s obDs otg1m 
splice otg1 otg1s alhmix4s  
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