

Musical Applications of Digital Synthesis and Processing Techniques Musical Applications of Digital Synthesis and Processing Techniques Musical Applications of Digital Synthesis and Processing Techniques Musical Applications of Digital Synthesis and Processing Techniques

Realisation using Csound and the Phase Vocoder

Rajmil Fischman

April 1991

Preface 2006

Dear Reader

It is more than fifteen years since these pages were written, and, undoubtedly, many
changes and advances have taken place than have had a profound influence in the
development and use of Csound and the frequency domain processing tools (Chapter 11 –
The Phase Vocoder) demonstrated in the text.

Furthermore, when the book was written, the only personal computer (apart from
mainframes and minicomputers) in which CSound was implemented was the Atari ST.

However, although the some of the procedural indications have changed, most of the
syntax of CSound and the Composers’ Desktop Project (CDP) version of the CARL phase
vocoder processes have remained the same. Therefore, except for the interface
commands for running CSound, the orchestras and scores should work as they are given
in the text, and the phase vocoder processes are still achievable using the latest version of
the CDP.

Nevertheless, the following pointers might help you run CSound in a more contemporary
environment and also find further information regarding the Phase Vocoder processes:

1. The command for running CSound given in chapter 1 (page 6 onwards) should be
replaced by that running on an current computer. For instance, on a PC, typical
commands look as follows:

a. To run CSound in real-time, directly to the soundcard

csound -W -o dac

b. To make CSound create an audio file that can be auditioned later

csound -W -o <output name>.wav

where <output name> is the name of the audio file you wish to create.

2. Better still, it is worth using existing available public domain interfaces, such as the
wonderful BLUE, by Steven Yi, which works in any platform and available for free
download at http://www.csounds.com/stevenyi/blue/ .

3. Information on the CDP is found at http://www.composersdesktop.com/.

4. Finally, I have published a relatively more recent article, which develops the issues
covered in chapter 11 to more depth and breath and contains a large number of
additional examples:

Fischman R, 1997. ‘The Phase Vocoder: Theory and Practice’ in Organised Sound
2222(2). Cambridge University Press, Cambridge, UK, pp 127-145.

Audio examples appear in the Organised Sound 2222(3) CD.

Last time I checked, the was available for free download in PDF format at
http://mustech.robodreams.com/ceos/reading/rajmil.pdf

I hope that you find the texts useful

Rajmil Fischman
29/12/06

NotesNotesNotesNotes

(1)Csoundby Barry Vercoe. Massachussets Institute of Technology (MIT). Cambridge.
Massachussets. USA.

(2)Phase Vocoderby Mark Dolson. Computer Audio Research Laboratory (CARL), Centre
for Music Experiment, University of California, San Diego, USA.

ContentsContentsContentsContents

PART I - Introduction to Csound

1.Fundamental Concepts 2
1.1Orchestra and Score 2
1.2Creating a Sound 7
1.3Some Short cuts 10

2.Syntax of the Orchestra 11
2.1The Header 11
2.1.1Sampling Rate (sr) 11
2.1.2Control Rate (kr) 12
2.1.3Samples Skipped (ksmps) 12
2.1.4Number of Channels (nchnls) 13
2.2Instrument Definition 13
2.3General Form of the Orchestra File 14
2.4OSCIL and OUT 14
2.4.1OSCIL 14
2.4.2OUT 16

3.Syntax of the Score 18
3.1Function Statements - GEN Routines 18
3.2Tempo Statement 22
3.3Instrument Statements - Parameter Fields 23
3.4End of Score 24
3.5Sections 25
3.6General Form of the Score File 25
3.7Example - Use of GEN10 26

4.Envelopes 31
4.1Rates 32
4.2Envelope Generators 33
4.2.1LINEN 33
4.2.2LINSEG 34
4.2.3EXPSEG 36
4.2.4Other Means of Producing
Envelopes 37
4.3Example - Three Different Envelopes 38

5.Some Useful Devices 43
5.1LINE 43
5.2EXPON 49
5.3Pitch Representation 50
5.3.1PCH Representation 50
5.3.2OCT Representation 51
5.3Pitch Converters 52
5.4Value Converters 54
5.5Example - Fan Out 58

PART II - Linear Synthesis Techniques

6.Additive Synthesis 64
6.1Static Spectrum 64
6.1.1Harmonic Spectrum 65
6.1.2Inharmonic Spectrum 66
6.2Dynamic Spectrum 72
6.3Example - A Dynamic Spectrum Simple

Instrument 73
6.4Example - Risset's Beating Harmonics 77

7.Subtractive Synthesis 80
7.1Input - Sources 80
7.1.1Noise Generators 80
7.1.2Pulse Generators 87
7.2Shaping the Spectrum with Filters 94
7.2.1Low-Pass and High-Pass:

TONE and ATONE 97
7.2.2Band-Pass and Band-Stop:

RESON and ARESON 98
7.3Output: BALANCE 101
7.4Example - Filtered Noise 102
7.5Formants 106
7.6Example - Extension of Risset's Beating
Harmonics Principle 110

PART III - Non-Linear Synthesis Techniques
8.Amplitude Modulation (AM) 119
8.1The Simplest Amplitude Modulator 124
8.2Ring Modulation 132
8.3Carrier to Modulator Ratio 134
8.3.1c/m = 1 135
8.3.2c/m = 1/N 135
8.3.3c/m = N 136
8.3.4Non-Integer Ratio 138
8.4Dynamic Spectrum - Examples 141
8.4.1Section 1 141
8.4.2Section 2 143
8.4.3Section 3 144

9.Waveshaping 150
9.1A Waveshaping Instrument 152
9.2Avoiding Aliasing 158
9.3Chebyshev Polynomials 160
9.4Distortion Index and Dynamic Spectrum 165

10.Frequency Modulation (FM) 171
10.1The Basic Frequency Modulator 171
10.2Distortion Index 175
10.3Reflected Frequencies 180
10.4Carrier to Modulator Ratio (c/m) 182
10.4.1Harmonic Spectrum 185
10.4.2Inharmonic Spectrum 189
10.5FOSCIL 191
10.6 Dynamic Spectrum 192
10.7Examples 195
10.7.1Bell-Like Sounds 195
10.7.2Drum-Like Sounds 197
10.7.3Knock on Wood 198
10.7.4Brass-Like Sounds 202

PART IV Sound Processing

11.The Phase Vocoder 207
11.1Time Domain and Frequency Domain 207
11.2Discrete Fourier Transform 208
11.3Sampling the Frequency Response 210
11.3.1Sampling an Impulse 211
11.3.2Finding the Maximum Frequency 212
11.3.3Finding the Minimum Frequency 212

11.4DFT of a Digital Signal 216
11.5The Filter Bank Approach 216
11.6The Fast Fourier Transform (FFT) 218
11.7The Phase Vocoder 219
11.7.1Direct Filtering 220
11.7.2Transposition 223
11.7.3Changing the Duration of a Sound 224
11.7.4Frequency Shifting and Stretching 225
11.7.5Spectral Interpolation 229
11.7.6Cross-Synthesis 231

Coda233

Appendix Reverberation Instruments 234

Reference and Software236

Prefacio 2006

Querido Lector

Hace ya más de quince años desde que escribí estas páginas, y sin duda, mucho ha
cambiado desde entonces. Estos cambios han afectado el desarrollo y uso de CSound y
de los útiles para procesamiento en el dominio de la frecuencia que este texto demuestra
(Capítulo 11 – El Phase Vocoder).

Es más, cuando el libro estaba siendo escrito, la única computadora personal (fuera de
los mainframes y minicomputadoras) en el cual se había implementado CSound era la
Atari ST.

No obstante, aunque algunas instrucciones para lanzar el programa hayan cambiado, la
mayoría de la sintáctica de CSound y los procesos obtenibles con la versión Composers’
Desktop Project (CDP) del phase vocoder de CARL se han mantenido intactos. Es por
eso que las orquestas y partituras que aparecen en el texto funcionan aún, y los procesos
del phase vocoder se pueden realizar usando las versiones más recientes del CDP.

De todos modos, espero que las sugerencias que aparecen a continuación te ayuden a
procesar en CSound usando equipo moderno y te aporten más información sobre el
phase vocoder:

5. El comando para lanzar a CSound que aparece en el capítulo 1 (a partir de la
página 6) deberá ser sustituido con instrucciones adecuadas para computadores
más recientes. Por ejemplo, en la PC, los comandos típicos serían:

a. Para lanzar CSound en tiempo real, enviando los resultados directamente a
la tarjeta de sonido

csound -W -o dac

b. Para crear un archivo sonoro con CSound:

csound -W -o <nombre del salida>.wav

donde <nombre de salida> es el nombre del archivo que se desee crear.

6. Sería mejor aún usar alguno de los programas gráficos que procesan con CSound,
tal como el maravilloso BLUE, de Steven Yi, que funciona en cualquier plataforma y
puede ser bajado gratuitamente de http://www.csounds.com/stevenyi/blue/ .

7. Puedes obtener información sobre el CDP en la página
http://www.composersdesktop.com/.

8. Finalmente, quisiera informarte que he publicado un artículo que es relativamente
más reciente. Éste ensancha y profundiza los conceptos discutidos en el capítulo
11, y provee ejemplos adicionales:

Fischman R, 1997. ‘The Phase Vocoder: Theory and Practice’ in Organised Sound
2222(2). Cambridge University Press, Cambridge, UK, pp 127-145.

Los ejemplos de audio aparecen en el CD de Organised Sound 2222(3).

La última vez que busqué el artículo, encontré la siguiente página, que permite
bajarlo gratuitamente en formato PDF:
http://mustech.robodreams.com/ceos/reading/rajmil.pdf

Espero que este texto te sea provechoso.

Rajmil Fischman
29/12/06

PrefacePrefacePrefacePreface

It has been said more than once that the advent of computer technology and its application to
music has given the electroacoustic composer command over a vast universe of sound that could
only be the dream of his predecessors.

While, at least in theory, it is reasonable to assume the validity of this statement, it is also important
to bear in mind that the same developments have given rise to new problems confronting anyone
willing to take full advantage of the new developments. For instance, the psychoacoustic effects of
sound perception within a musical context are immediately apparent and much more significant
than when dealing with traditional instruments: A concept like timbre, which is reasonably defined
within the orchestral palette, takes new significance as a time-varying, multidimensional entity, in
which there is no one to one correspondence between the spectrum and timbral identity.

Another well known difficulty is that involved in achieving sounds that are 'alive', rather than of
neutral 'electronic' quality, experienced by anyone that has used a synthesizer, regardless of
whether it is implemented as a piece of hardware or in a software package.

In fact, a typical learning curve includes a threshold, below which the sounds that are produced are
very similar to each other and usually of no great interest. A possible explanation is that while the
various synthesis or processing techniques are reasonably simple, it is very difficult to find a
correlation between these and the resulting sounds. The latter can only be discovered by
experience, either one's own, or that appearing in literature.

At the time of writing, there is still very little literature sharing the results of this type of experience.
It is true that there are publications which contain the principles of various techniques used to
synthesize and process sounds, but few of these go a step beyond, showing what can be done
with the techniques and - not less important - showing their audible results. It is the wish of the
author to share his own limited experience in the hope that it contributes to make the learning
process shorter and more pleasant and that it suggests directions for possible further
experimentation.

For practical purposes, Csound (1) was chosen in order to illustrate the results. This is because of
its flexibility, as well as for being available in several microcomputers, particularly within the
Composers' Desktop Project (CDP) Atari based system. However, alas, flexibility comes at the
expense of simplicity. Therefore, and in view of the fact that Csound''s original manual assumes

previous knowledge of similar computer music systems, the first part of this book consists of a
stepwise approach towards the mastering of the basic tools offered by this package: it can be
skipped by the initiated. It should be clear, though, that this is not a substitute for the manual and
there are no pretensions to exhaustively cover all the possibilities offered by Csound.

The second part deals with the principles of linear techniques: additive and subtractive synthesis,
and the third with non-linear methods: amplitude modulation, waveshaping and frequency
modulation. In the fourth part, devoted to processing, the principles and some applications of the
Phase Vocoder (2) are discussed.

Finally, an appendix containing time-varying reverberation instruments for both mono and stereo
soundfiles is presented.

All the examples were recorded to a cassette tape hereby included, and the code for these is
available in floppy disk.

The author would like to express his deepest gratitude to those that helped directly and indirectly in
this research. Special thanks to Richard Orton, who first introduced him to MUSIC 11, and in
general to computer music. Also thanks to Trevor Wishart, Tom Endrich and Andrew Bentley for all
he was able to learn from their experience and for being responsible, together with Richard Orton,
for the Composers' Desktop Project. To John Paynter, who, in spite of not being directly involved in
electroacoustic music, provided, as a musician and composer, invaluable input from the aesthetic
point of view which reverted back into the use of computer music techniques. Thanks to David
Malham and Martin Atkins for being instrumental in the realisation of the CDP. Finally, but not
least, special thanks to his colleagues at Keele University Music Department for their
encouragement in a stimulating environment and for their constructive feedback.

Rajmil Fischman
Keele, April 1991.

PART IPART IPART IPART I

Introduction to Introduction to Introduction to Introduction to CsoundCsoundCsoundCsound

1. Fundamental Concepts1. Fundamental Concepts1. Fundamental Concepts1. Fundamental Concepts
Csound is a high level computer synthesis and processing language that serves the
musician as a tool to create and manipulate samples representing sounds, by means of a
variety of techniques. It is implemented in the CDP system and the results can be stored in
magnetic media (usually a hard disk or DAT tape). Therefore, the sampled sounds can be
played through loudspeakers. It is also possible to display them graphically as waveforms.

Sampled sound is stored in a computer as a file, more specifically as a soundfile. At this
point, it is worth noticing the difference between MIDI (Music Instrument Digital Interface)
information and soundfile information. The former contains messages that activate
synthesizers and other hardware, it does not contain actual sounds. The latter, on the
other hand, consists of actual sampled sound.

1.1Orchestra and ScoreOrchestra and ScoreOrchestra and ScoreOrchestra and Score

The basic concept behind the implementation of Csound resembles the way sounds were
initially produced in analogue synthesizers. Modules known as oscillators were patched
together to create more complex units. These oscillators produce basic types of
waveforms like sines, square and triangular waves, sawtooth, white noise, etc.

In order to illustrate this principle, take for example a pure sine tone : a sine oscillator can
be connected directly to the output. Both the frequency and amplitude of the sine wave
depend on the data fed to the oscillator by means of control knobs. This data can be
variable (it can assume several values according to the position of the knobs). Diagram 1
shows a graphical representation of this setting. P3P3P3P3 represents the variable amplitude and
P4P4P4P4 the variable frequency.

Diagram 1 Pure sine tone oscillator

 amp freq

If, instead of a sine wave, a square wave is needed, a different oscillator can be used. The
setting, though, would remain similar, as shown in diagram 2.

Diagram 2 Square wave oscillator

 amp freq

If some tremolo - (small sub-audio amplitude fluctuation) - is desired so that the sound is
more realistic, then, instead of controlling the amplitude only through the knob; another
oscillator with small amplitude and slower frequency could be added. This can be seen in
diagram 3. P6P6P6P6 and P7P7P7P7 represent the amplitude and frequency of the second oscillator. The
amplitude of the first oscillator fluctuates between P4P4P4P4 - P6P6P6P6 and P4P4P4P4 + P6P6P6P6. The rate at which
the fluctuation repeats itself is P7P7P7P7.

Diagram 3 Tremolo

 amp frq amp frq

All the previous examples have two common features:

1. A constant configuration: the schematic connections are always the same.

2. A set of variables: amplitude and frequency values could be changed.

A further analogy can be drawn to a musician playing an instrument. In this case, the
constant configuration consists of the morphology of instrument and the musician's own
anatomy. When required to play, the performer is given a score which consists of a
chronological list of musical events describing them in terms of specific pitches to play,
durations, dynamics, etc. All these are values given to variables that determine the actual
sounds that are consequently produced with the existing configuration.

Csound's approach is based, at least in principle, on the concept of a more or less
constant configuration of instruments, called the orchestra; and a chronological list of
events, called the score. Each event invokes an instrument and specifies a set of values
given to its corresponding variables.

In order to make it possible to use different scores with the same orchestra the orchestra
and the score are stored in the computer as separate text (ASCII) files. This resembles
even more the situation of a musician who can play different pieces on his instrument.

It should be pointed out that the orchestra-score paradigm is not always the best approach
to sonic composition. For example, sometimes it is desirable to have a so called
'instrument' that itself creates a series of events. Furthermore, there is a preconception
regarding the traditional approach to timbre, by which a given instrument will always have
a recognisable timbral identity, which, of course, is not true of a Csound instrument. This
will become obvious in later examples.

1.2 Creating a SoundCreating a SoundCreating a SoundCreating a Sound
As mentioned above, the orchestra and the score are stored as text files in a computer.
These are created using a text editor and subsequently, have to be translated to computer
language, that is, they have to be compiled. In this case the equivalent of the compiler is
the actual program called Csound.

However, there is a difference between Csound and a real compiler like those used in C or
PASCAL. Csound does not only translate the score and orchestra into computer language
commands, but also causes the computer to carry out these. Therefore, in the end, the
computer directly produces a soundfile when Csound code is compiled.

Before entering into details on how to compile, there is one more issue that has to be
clarified : Csound allows the user to specify events in any chronological order within a
section. This means that it assumes the responsibility of ordering events chronologically.
For this reason, there is a program called CSORT.PRG that sorts the events creating a
new version of the score in a file called SCORE.SRT . It is this file, and not the original
score that is used in conjunction with the orchestra when compiling.

In order to show how a sound is produced once the orchestra and score are created, it will
be assumed that these exist and are respectively called CS1.ORC and CS1.SC and that
the soundfile produced after running Csound is called CS1.OUT .

There are two steps to be followed in order to create the soundfile:

1. Sort the score chronologically.

2. Compile using a given orchestra.

The following commands will do exactly that

csort cs1.sc

csound -Ncs1.out cs1.orc

The first command is quite obvious. The second command contains the flag -N, which tells
the compiler that the following letters represent the name of the soundfile to be created. If
the name of the output is not specified, the default name CSOUND.OUT will be given to
the soundfile. The name of the orchestra is then specified. It is not necessary to specify
the name of score because Csound will always use the sorted version contained in the file
SCORE.SRT .

An example orchestra and score are given below, that can be compiled in order to create a
soundfile. The meaning of their contents will become clearer in the following chapters.

The orchestra is called CS1.ORC and represents an instrument with the configuration
given in diagram 4.

Diagram 4 CS1.ORC

 amp freq

; This is a comment, Csound will ignore it
; CS1.ORC

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 1

a1 oscil p4, p5, 1; oscillator
 out a1; output

endin

The score file is called CS1.SC. It instructs this instrument to produce a sine wave of
frequency 440 hz.

; This is a comment, Csound will ignore it
; CS1.SC

f1 0 512 10 1

t 0 60

i1 0 2 32000 440

e

Csound tape example 1 contains the admittedly not very exciting 440 hz sine wave.

1.3 Some ShortcSome ShortcSome ShortcSome Shortcutsutsutsuts
It is quite tedious to repeatedly type two commands with as much wording as CSORT and
CSOUND need. In fact, if Csound is used from a command line environment like the
COMMAND.TOS program, a batch-file can be written. A batch-file is a text file that
contains a list of commands. When the computer is told to run a batch-file, it reads the
commands one by one and performs them as if they were successively typed in via the
keyboard by the user.

For example a batch-file called PERF.BAT can be written that gets the name of the
orchestra and the name of the score and creates a file called CSOUND.OUT:

csort %1

csound %2

%1 and %2 mean respectively the first and second name typed after the name of the
batch-file.

In our previous example the line

perf cs1.sc cs1.orc

will sort the score and create the soundfile called CSOUND.OUT .

Another possibility suitable to the case in which the orchestra and the score have the
same name (like in the previous case: CS1), is to create the following batch-file

csort %1.sc

csound -N%1.out %1.orc

which will produce a soundfile with the extension .OUT .

2. Syntax of the Orc2. Syntax of the Orc2. Syntax of the Orc2. Syntax of the Orchestrahestrahestrahestra

As with any other computer language, there is a set of syntactic rules that has to be
observed when creating a Csound orchestra and score.

A look at CS1.ORC in the previous chapter gives an idea of how an orchestra file should
look. In the first place, it is possible to include comments giving explanatory remarks or
other information which are ignored by Csound but, at the same time, very useful to the
user. Comments are always preceded by semicolons ';;;;' . Anything contained between a
semicolon and the end of a line is ignored.

The rest of the orchestra consists of different parts which are described in the following
sections.

2.1 The HeaderThe HeaderThe HeaderThe Header

The first four lines that are not comments constitute the header. This is used to define
quantities that are needed in order to produce sampled sound. These are:

2.1.1 Sampling Rate (sr)
The first line defines the sampling rate. In the case of CS1.ORC, it is 44100
samples/second.

2.1.2 Control Rate (kr)
Lets consider the oscillator producing a tremolo effect discussed in the previous chapter
(see diagram 3). A reasonably fast tremolo would have a frequency of about 15 hz.
Therefore, sampling this oscillator at 44100 hz can be unnecessarily wasteful with regard
to computational power and time. It is for this reason that an alternative slower sampling
rate called control rate is defined. Its name stems from the fact that it is not used for
oscillators that produce sound but for modules that control other oscillators.

Another common example of control rate use can be found in the generation of amplitude
envelopes.

2.1.3 Samples Skipped (ksmps)
Using the slower control rate is equivalent to skipping samples at the actual sampling rate.
ksmps indicates how many samples are skipped. Therefore

 sr
ksmps = -----

 kr

NOTE: The sampling rate has to be a multiple of the control rate.

2.1.4 Number of channels (nchnls)
This states how many audio channels are being used. There can be 1 channel (mono), 2
(stereo) and 4 (quad).

2.2 Instrument DefinitionInstrument DefinitionInstrument DefinitionInstrument Definition
Next after the header is the statement instr 1 . This tells the computer that an instrument
will be defined by the subsequent lines. In this case it is instrument number 1. A number
has to be given because there may be more than one instrument in the orchestra.

Then, the statements defining the instrument follow. Statements contain variables,
constants or arithmetic expressions using variables and constants. In the case of
CS1.ORC, there are two statements. As will be seen below, the first one defines the
oscillator and the second the output.

Finally, endin is used to signal that this is the end of the definition of instrument 1.

2.3 General Form of the Orchestra FileGeneral Form of the Orchestra FileGeneral Form of the Orchestra FileGeneral Form of the Orchestra File
It is now possible to define the general form of an orchestra file defining nnnn instruments.

Header (sr, kr, ksmps, nchnls, etc.)

instr 1 statements ...
endin

instr 2 statements ...
endin
.
.
instr n statements ...
endin

2.4 OSCIL and OUTOSCIL and OUTOSCIL and OUTOSCIL and OUT
So far no attempt has been made to explain the statements defining instrument 1. In fact,
both statements are perhaps the most popular and useful in Csound. We will now proceed
to describe them.

2.4.1 OSCIL
This represents the simplest oscillator. The basic waveform can be a sine, a square wave,
triangular, sawtooth and virtually anything else.

Its general form is

ar oscil amp, freq, func (, phase)

where

ar is used to name the output of the oscillator.

amp is the amplitude. It can be a variable whose value is given in the score. The

maximum value the amplitude can attain is 32,767 (216- 1) since soundfiles
are currently sampled at 16 bit resolution.

freq is the frequency in cycles per second (CPS or hz). It can be a variable whose

value is given in the score.

func refers to a function defining the basic waveform (sine, square, etc.). The

function is defined in the score.

phase is the phase of the waveform. It is in brackets because it does not have to be

specified, in which case it is assumed to have a default value of 0.

In CS1.ORC the output is called a1a1a1a1. The amplitude is given by the variable p4p4p4p4. This is a
special kind of variable. A pppp followed by a number tells the computer that this is a
parameter that will be given in the score. p4p4p4p4 means that the fourth parameter given in any
line of the score referring to this specific instrument (instr 1) will determine the amplitude.

Similarly, the frequency is given by p5p5p5p5. Again, this means that the fifth parameter in any
line referring to instrument 1 determines the frequency.

Finally, the waveform is 1. This tells Csound that the score will contain a definition of the
shape of one cycle of the oscillator identified by the number 1. The cycle so defined will be
repeated by the oscillator to produce a continuous waveform.

2.4.2 OUT
OUT is used in order to produce an actual output. In other words, it tells the computer to
create a soundfile.

The general form is
out signal

where

signal is the actual waveform that is going to be contained in the soundfile. It is

usually an output or an arithmetic combination of outputs of one or more
oscillators

In CS1.ORC, the statement
out a1

means that the soundfile created contains a1a1a1a1: the output of the oscillator.

Any combination of outputs is possible. For example, if an instrument has three oscillators
with outputs represented by a1, a2 and a3 then the statement

out a1 + a2/2 + a3*1.5

effectively mixes the three with different gains.

3. Syntax of the Score3. Syntax of the Score3. Syntax of the Score3. Syntax of the Score

It is now possible to proceed to see how the score works. Again, a look at the example
CS1.SC in the first chapter, will prove helpful.

Comments can also be written into the score starting with a semicolon ';;;;'. It is also
permissible to use the letter cccc instead.

Each line in the score starts with a letter. The possible letters are: aaaa, cccc, eeee, ffff, iiii, ssss, and tttt. They
are followed by numbers which are the actual data. A letter tells Csound what type of
information the data refers to. For example, the letter ffff means that the information in that
line refers to the basic waveform of an oscillator. the letter tttt refers to tempo , iiii invokes an
instrument, and so on.

3.1 Function Statements Function Statements Function Statements Function Statements ---- GEN routines GEN routines GEN routines GEN routines
The first line appearing after the comments in CS1.SC is a statement starting with the
letter ffff. It is called a function statement or f-statement, because it provides the computer
with a mathematical function that describes the shape of one cycle of the waveform that
will be used by an oscillator in an instrument.
 Once the computer gets the information given by the f-statement it produces a sampled
version of the cycle of that waveform called the function table, because it is used as a
basic table from which actual waveforms can be built by interpolation in order to get the
right frequency, and then by repetition of the cycle in order to produce a periodic signal.
Before we look at the actual information given in an f-statement, a new comparison with
the analogue synthesizer may prove helpful. In chapter 1, it was seen that the same
configuration used in diagram 1 with a sine generator could be used with a square
generator in diagram 2, thus producing a different waveform. Therefore, the basic cycle of
a waveform depends on the signal generator used by the oscillator.

In a similar fashion, different signal generators available in Csound can produce the most
diverse signals. These generators, known as GEN routines, are each called by using an
identification number. For example, GEN10 is used to produce sine waves and

combinations of a fundamental and its harmonics, GEN9 is used to produce a combination
of non-harmonic and/or out of phase sine waves, GEN7 is used to produce waveforms that
can be built of straight lines like square and triangular waves, and so on.

The actual result depends on the data fed into the GEN routines, and this is exactly what
an f-statement provides.

The general form of an f-statement is

f number time size GEN-number data

number is a number given to the specific function table resulting from this

statement, so it can be addressed by the orchestra. In the example, the
third parameter of the oscillator defined in the orchestra is 1. This means
that it will use the waveform cycle defined by f1f1f1f1. Using a negative number
cancels a previous definition of a function.

time indicates at what time (in beats) is the signal generator first going to be

used. If the function number is negative, it indicates a time at which this
function definition will be cancelled.

size indicates the number of samples used to produce the table. Obviously if

more samples are used, the shape of the cycle will be defined more
accurately. On the other hand, this requires more computing time.

The size has to be a power of 2 (2, 4, 8, 16, 32, 64, etc.). A reasonably
practical value is 512.

GEN-number indicates the specific GEN routine number used.

data is the specific data required by that GEN routine.

For example, GEN7 and GEN10 need different parameters: while the first
of them requires break points that are going to be joined by straight lines
to produce the waveform cycle, the latter requires the number of harmonic

and its relative amplitude.

In the CS1.SC, the statement

f1 0 512 1 0 1

tells Csound that the table containing the basic cycle of the waveform is table 1. It is used
at time = 0 (the beginning of the score), it is defined by 512 samples and it uses GEN10.

The data required by GEN10 is the relative values of the harmonics. We see that only the
first harmonic or fundamental is used. Thus, the waveform will be a sine wave.

 3.2 Tempo StatementTempo StatementTempo StatementTempo Statement
Next in the CS1.SC comes a line starting with the letter tttt: a tempo statement or t-
statement.

Time is specified in beats, like in instrumental music, therefore the tempo, or number of
beats per minute has to be defined.

Its general form is

t beat# speed beat# speed

beat# is the beat number at which the tempo is specified.

speed is the number of beats per minute (metronome mark).

In short, a tempo statement contains a series of beat numbers and speeds. The computer
interpolates the speeds in between the beats, therefore producing accelerando or
ritardando effects.

In CS1.SC, the tempo is constant and specified once at the beginning as 60 MM.
Therefore every beat lasts exactly a second and in this case, counting beats is the same
as counting seconds.

If there is no tempo statement in the score, the default value of 60 MM is used
automatically.

3.3 Instrument Statements Instrument Statements Instrument Statements Instrument Statements ---- Parameter Fields Parameter Fields Parameter Fields Parameter Fields
The next line starts with the letter iiii. This is an instrument statement or i-statement,
because it defines an event for a specific instrument in the orchestra. The data obviously
varies according to the configuration of the instrument.

There are some parameters pertinent to a particular instrument that have no meaning for
others. This also happens in traditional music: it is quite improbable to find an indication
like sul tasto in a horn part! On the other hand, all events have to be given a starting time
and a duration. Therefore, it is useful to specify all the indispensable data first: instrument
number, start time and duration, and then allow for specific parameters to be given for
each particular instrument.

This leads to the general form of an i-statement

i instr-number start-time duration other parameters...

where

instr-number is the identification number of the instrument as defined in the

orchestra. In the example, it is instrument 1 (i1i1i1i1).

start-time is the time in beats at which the event starts. In the example, it is 0

which means that the event is produced at the very beginning.

duration is the duration in beats of the event. Sometimes an instrument in the

orchestra uses the duration as a parameter. For example, the speed
of a tremolo can depend on how long is the sound. It may be
remembered that in order to use data from the score, special variables
that use the letter pppp and a number are used. In this case, since the
duration is the third parameter, the variable representing it in any
instrument is p3p3p3p3.

other parameters These are the corresponding values given to variables represented by

p4, p5, p6, etc. in the orchestra. This purely depends on the particular
configuration of the instrument. But it is common practice to assign p4
to the amplitude, and p5 to the fundamental frequency or to the pitch if
any of those is defined in the instrument.

In CS1.SC there is only one instrument line

i1 0 2 3 2000 440
It addresses instrument 1 (i1i1i1i1), which should produce an event at time = 0 (second
parameter), with a duration of 2 beats (third parameter), an amplitude of 32000 (fourth
parameter, corresponding to p4p4p4p4 in the orchestra) and a frequency of 440 hz (fifth
parameter, corresponding to p5p5p5p5).

3.4 End of ScoreEnd of ScoreEnd of ScoreEnd of Score
Finally, the last line contains the single letter eeee which stands for: end of score.

3.5 SectionsSectionsSectionsSections
When scores became too long, it is useful to divide them into sections.

The advantage of this is that time is reset at the beginning of each section. That is, time
starts at 0. Functions can also be redefined.

In order to separate sections, the letter ssss is used.

3.6 General Form of the Score FileGeneral Form of the Score FileGeneral Form of the Score FileGeneral Form of the Score File

It is now possible to define the general form of a score file.

f-statements

t-statement

i-statements

s

f-statements

t-statement

i-statements

s

.
.
.

e

3.7 Example Example Example Example ---- Use of GEN10 Use of GEN10 Use of GEN10 Use of GEN10

The following example uses the same orchestra as CS1.ORC. This time, though, four sine
waves will be produced.

261.625 hz corresponding to middle C
329.627 hz corresponding to E above
391.995 hz corresponding to G above
466.163 hz corresponding to Bb above.

C will sound at the beginning, then E will be added, then G and finally Bb. In order to do
so, GEN10 is used to produce a sine wave. Therefore, the statement defining f1f1f1f1 in
CS1.SC can still be used.

The score looks as follows

f1 0 512 10 1

; p3 p4 p5
;instr start dur amp freq
i1 0 5 8000 261.625
i1 1 4 . 329.627
i1 2 3 . 391.995
i1 3 2 . 466.163
e

A new feature of Csound can be noticed: If a variable repeats itself, a dot '....' can be used
instead to avoid typing long numbers. In this case, the amplitude is the same for all the
notes, so instead of the value corresponding to p4, a dot can be used in the second, third
and fourth lines.

It is important to bear in mind that the amplitudes are added, so that if the notes are to be
heard together, the sum of their amplitudes can not be greater than 32,767 which is the
maximum amplitude value that can be represented with 16 bits, otherwise the sound will
be distorted. If this happens, Csound will issue a message while compiling.

Diagram 5 Waveform produced by the f-statement: f1 0 512 10 1

GEN10 can also be used to produce more complex waveforms. The following score uses
the same fundamentals for its waveforms, but the generating function is defined differently.

f1 0 512 10 1 0 .5 0 .7 0 .9 0 2

; p3 p4 p5
;instr start dur amp freq
i1 0 5 8000 261.625
i1 1 4 . 329.627
i1 2 3 . 391.995
i1 3 2 . 466.163
e

The meaning of the definition of f1 is

The fundamental has a relative amplitude of 1

The second harmonic has a relative amplitude of 0

The third harmonic has a relative amplitude of .5

The fourth harmonic has a relative amplitude of 0

The fifth harmonic has a relative amplitude of .7

The sixth harmonic has a relative amplitude of 0

The seventh harmonic has a relative amplitude of .9

The eight harmonic has a relative amplitude of 0

The ninth harmonic has a relative amplitude of 2

In other words, this produces an instrument with odd harmonics.

Diagram 6 Waveform produced by the f-statement :

f1 0 512 10 1 0 .5 0 .7 0 .9 0 2

Finally, another example score

f1 0 512 10 1 .5 .7 .9 .2 .87 .76

; p3 p4 p5
;instr start dur amp freq

i1 0 5 8000 261.625
i1 1 4 . 329.627
i1 2 3 . 391.995
i1 3 2 . 466.163

e

This time f1 defines an oscillator with 7 harmonics.

Diagram 7 Waveform defined by the f-statement

f1 0 512 10 1 .5 .7 .9 .2 .87 .76

Csound tape example 2 is the realization of the score CS2.SC in which the three previous
scores are played one after the other. This is possible since it is allowed to redefine f1
after the end of a section. In order to have a gap of 1 beat, a dummy note of 0 amplitude is
introduced.

It can be noticed that each note starts and ends with a click. The next chapter will deal with
ways of avoiding this problem. Apologies for the time being.

Orchestra and score:
; CS2.ORC Simple Oscillator
; Uses table defined by f1

; NOTE : Clicks will be heard since
; there is no envelope.

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 1

 a1 oscil p4, p5, 1 ; oscillator
 out a1 ; output

endin

; CS2.SC

f1 0 512 10 1

; p3 p4 p5
;instr start dur amp freq

i1 0 5 8000 261.625
i1 1 4 . 329.627
i1 2 3 . 391.995
i1 3 2 . 466.163
i1 5 1 0 0

s

f1 0 512 10 1 0 .5 0 .7 0 .9 0 2

; p3 p4 p5
;instr start dur amp freq

i1 0 5 8000 261.625
i1 1 4 . 329.627
i1 2 3 . 391.995
i1 3 2 . 466.163
i1 5 1 0 0

s

f1 0 512 10 1 .5 .7 .9 .2 .87 .76

; p3 p4 p5
;instr start dur amp freq

i1 0 5 8000 261.625
i1 1 4 . 329.627
i1 2 3 . 391.995
i1 3 2 . 466.163

e

It now remains to be seen how to combine the different timbres in the same section. This
requires two things :

1. More than one waveform table is needed. This is easily accomplished by defining

the tables f2, f3, f4, etc. with different parameters for GEN10.

2. Our instrument has to be told which waveform to use. This suggests a variable that

represents the table number. Thus, a new parameter, p6p6p6p6, can be introduced in oscil
that gets the table number. When p6p6p6p6 assumes the value 1, f1f1f1f1 will be used. When p6p6p6p6
is 2, f2f2f2f2 will be used and so on.

This is applied to CS3.ORC and CS3.SC

; CS3.ORC - Simple Oscillator
; Uses table defined by function number
; indicated in p6.

; NOTE : Clicks will be heard since
; there is no envelope.

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 2

 a1 oscil p4, p5, p6 ; oscillator
 out a1 ; output

endin

; CS3.SC

f1 0 512 10 1 0 .5 0 .7 0 .9 0 2
f2 0 512 10 1 .5 .7 .9 .2 .87 .76
f3 0 512 10 1 .7 0 .9 0 .87 0 .76
f4 0 512 10 1

t 0 120

; p3 p4 p5 p6
;instr start dur amp freq func no.
i2 0 10 8000 261.625 1
i2 2 8 . 329.627 2
i2 4 6 . 391.995 3
i2 6 4 . 466.163 4
e

Csound tape example 3 is the realization of the above orchestra and score.

4. Envelopes4. Envelopes4. Envelopes4. Envelopes
The sounds produced so far have a problematic feature: when they end (and sometimes
even when they start), a click is heard. Clicks like this are usually due to quick changes in
the amplitude of a waveform. This usually happens when a sound is interrupted and the
value of the current sample is much larger than zero, therefore producing a sudden drop to
silence (zero amplitude), as shown in diagram 8.

Diagram 8 Appearance of Clicks

 Click No Click

In order to rid the sounds of these clicks, a mechanism that produces smooth transitions
between silence and actual sounds is needed. The best way of achieving this is by means
of an envelope.

Envelopes also shape sounds, and in some cases even help determine their timbre. For
example, a piano sound without its characteristic attack will not be recognizable.
Furthermore, reversing a low piano note will actually produce something similar to a
bowed string.

4.1 RatesRatesRatesRates

Before dealing in more detail with the production of envelopes it is worth remembering that
the control rate provides the means of saving some computer calculation time by setting a
lower sampling rate for signals that are expected to change relatively slow.

Envelopes are usually slow changing signals. It makes sense to assign the output of an
envelope generator to a variable that is sampled at the control rate. In Csound, control
variables always start with the letter kkkk, as opposed to audio signals, sampled at the audio

rate, which start with the letter aaaa. For example, k1, kenv, k56, represent control signals,
while a3, asig, aleft, represent audio signals.

Furthermore, there are some cases in which it is necessary to calculate the value of a
variable only once, at the beginning of an event. This type of variable is called initialization
variable. Its value is calculated only once per event. This is referred by the manual as the
initialization rate. In Csound initialization variables always start with the letter iiii. i1 and ifreq
are examples of initialization variables.

Finally, there are variables, like the values in the header of the orchestra (sampling rate,
control rate, etc.) that are set only once in the whole 'piece'. These are called setup rate
variables and are described in the manual. However, for practical purposes only the three
rates need to be considered:

a-rate For audio signals. Variables beginning with aaaa
k-rate For control signals. Variables beginning with kkkk
i-rate For values that are Variables beginning with iiii

calculated once, at the
beginning of an event.

4.2 Envelope GeneratorsEnvelope GeneratorsEnvelope GeneratorsEnvelope Generators
We will now proceed to discuss some of the most common ways of creating envelopes in
Csound.

4.2.1 LINEN
The first and most direct way of producing an envelope is by using the LINEN statement. It
produces a linear envelope as shown in the following diagram.

Diagram 9 Linear Envelope

Its general form is

kr linen amp, attack, dur, decay

where

amp is the maximum amplitude.

attack is the duration of the attack.

dur is the duration of the sound.

decay is the duration of the decay.

4.2.2 LINSEG
Sometimes, more complicated shapes are desired. LINSEG is used do this. By specifying
a list of amplitudes and the time it takes to reach each amplitude from the previous one,
the envelope can be calculated.

For example if an event lasts 3 seconds, and the desired envelope starts at 0, then
increases in .5 sec to an amplitude of 20,000, then decreases to 8,000 during the following
1.2 seconds, followed by an increase to 15,000 after .6 sec and finally decreases to 0 for
the remaining 1.1 seconds, the amplitudes are

0 , 20000 , 8000 , 15000 , 0

The time durations are

From 0 to 200000 .5 sec
From 20000 to 8000 1.2 sec
From 8000 to 150000 .6 sec
From 15000 to 0 1.1 sec

and the following list of numbers represents the envelope
0 , 0.5 , 20000 , 1.2 , 8000 , 0.6 , 15000 , 1.1 , 0

amp dur amp dur amp dur amp dur amp

Then straight linear interpolation is used to calculate the values in between, as the
following diagram shows

Diagram 10

The general form of LINSEG is therefore

kr linseg amp1, dur1, amp2, dur2, amp3, dur3, ...

where

amp1, amp2, amp3... are the amplitudes.

dur1, dur2, dur3... are the time durations.

4.2.3 EXPSEG
This envelope generator works in a similar fashion to LINSEG, the only difference being
that instead of interpolating straight lines between the given points, it uses exponential
segments.

It is worth remembering that an exponential function can never be 0. Therefore if the same
values as before were to be used, the computer would issue an error message. In order to
avoid this, a very small value, like 0.0001 can be given. For example, if an EXPSEG
generator is given the same values as before replacing the zeros at the beginning and the
end with 0.0001 the result is :

Diagram 11

4.2.4 Other Means of Producing Envelopes
There are at least two other ways of producing an envelope. One is the envelope
generator ENVLPX. It is explained in the Csound manual and will not be covered here.

The second method is achieved by using an oscillator to generate an envelope. The
envelope generator must have a period of oscillation equal to the duration of the event. In
order to achieve an envelope oscillator with a period T T T T equal to p3p3p3p3 the duration of the
event its frequency must be

freq = 1/T = 1/p3

The advantage of using an oscillator is that it can take advantage of the GEN routines in
order to generate most diverse and capricious envelopes.

Following is an example of an instrument that uses an oscillator to generate an envelope
with its shape of the determined by the function table 1. The shape of the audio waveform
is determined by the function table 10.

instr 3
k1 oscil p4, 1/p3, 1; envelope
a1 oscil k1, p5, 10; audio signal

out a1; output
endin

4.3 Example Example Example Example ---- Three Different Envelopes Three Different Envelopes Three Different Envelopes Three Different Envelopes
CS4.ORC contains three instruments that play a waveform with different envelopes.

instr 4 uses LINEN with an attack given by the parameter p6 p6 p6 p6 and a decay time given by
p7 p7 p7 p7 . As usual, p3p3p3p3 represents the duration.

instr 5 uses LINSEG with an attack that is .05 of the duration of the note (p3 p3 p3 p3), then a
decrease to .4 of the amplitude that takes .3 of the duration of the note, followed by an
increase to .75 of the amplitude in .15 of the duration of the note, and finally a decay to
zero in the remaining time (.5 of the duration).

instr 6 uses EXPSEG with the same amplitudes and durations as above.

In the score, a 2 second sound coming from the same signal generator is played in each
instrument giving different results according to the envelope as shown in diagrams 12, 13
and 14. The results can be heard in Csound tape example 4.

Diagram 12 Instrument 4 :Use of LINEN

Diagram 13 Instrument 5 :Use of LINSEG

Diagram 14 Instrument 6 :Use of EXPSEG

The orchestra and the score are listed below:
; CS4.ORC - Simple Oscillators
;with envelopes

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 4; uses LINEN

;p4amplitude
;p5frequency
;p6attack
;p7decay
;p8function table

k1linenp4, p6, p3, p7; envelope
a1oscilk1, p5, p8; oscillator
outa1 ; output

endin

instr 5; uses LINSEG

;p4amplitude
;p5frequency
;p6function table

i1=.05*p3 ;dur1
i2=.15*p3 ;dur2
i3=.3*p3 ;dur3
i4=.5*p3 ;dur4
k1linseg0,i1,p4,i2,.3*p4,i3,.75*p4,i4,0 ; envelope

a1oscil k1, p5, p6 ; oscillator
out a1 ; output
endin

instr 6; uses EXPSEG

;p4amplitude
;p5frequency
;p6function table

i1=.05*p3 ;dur1
i2=.15*p3 ;dur2
i3=.3*p3 ;dur3
i4=.5*p3 ;dur4
k1expseg .0001,i1,p4,i2,.3*p4,i3,.75*p4,i4,.0001 ;env
a1oscil k1, p5, p6 ; osc
outa1 ; out
endin

; CS4.SC

f5 0 512 10 1 .5 .7 .9 .2 .87 .76

;Uses simple linear envelope
; p3 p4 p5 p6 p7 p8
;instr start dur amp freq rise decay func

i4 0 2 30000 120 .05 1 5

s

;Uses linear envelope
; p3 p4 p5 p6
;instr start dur amp freq func

i5 1 2 30000 120 5

s

;Uses exponential envelope
; p3 p4 p5 p6
;instr start dur amp freq func

i6 1 2 30000 120 5

e

5. Some Useful Devices5. Some Useful Devices5. Some Useful Devices5. Some Useful Devices

In addition to statements representing oscillators, envelopes and
filters, Csound offers a series of facilities in the shape of functions that can perform quick
operations to relieve the user from doing tedious calculations. For example, there is a
function to convert dB to amplitude and another to convert amplitude back to dB.

Some of these facilities will be surveyed in this chapter. At the same time, new examples
of slightly more sophisticated instruments will be shown.

5.1 LINELINELINELINE

This time we will begin with an example. An instrument will be designed that has some
voice-like qualities. As an example it will be used to play the first two Kyrie Eleison of
Palestrina's Missa Papae Marcelli.

The properties that add interest to the instrument are

1. An amplitude that 'swells' to up to an additional 1/5 of the maximum amplitude

indicated by p4p4p4p4. In order to do this, an envelope generator that produces a straight
line is used.

Diagram 15 Line Envelope Generator

2. A 5 hz vibrato (frequency fluctuation), of width that varies from 0 to 1/100 of the

frequency (p5p5p5p5) in the first half of the note and then decreases to 0 at the end. This is
achieved by using an envelope to determine the vibrato width, which is then fed into
an oscillator that produces the actual vibrato subsequently added to the actual
frequency.

Diagram 16 Vibrato Module

The amplitude swell can be implemented by using LINSEG. However, this is an
opportunity to introduce a new statement: LINE.

This statement is a variation of LINSEG that produces only one linear segment. Its general
form is

kr line amp1, dur, amp2

where
amp1 is the first amplitude

amp2 is the last amplitude

dur is the duration.

Therefore this statement is equivalent to
kr linseg amp1, dur, amp2

Since the former two improvements take care of adding higher harmonics and some
dynamic variation, the sound generator does not need to be very complicated. In fact, a
sine wave is used.

The whole instrument is shown in diagram 17

Diagram 17 Instrument 7

The orchestra and score are listed below. Csound tape example 5 contains the results.

; CS5.ORC - Oscillator with variable width
; vibrato and swell.

;p4 amplitude
;p5 frequency
;p6 attack
;p7 decay
;p8 function table

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 7

 i1 = 1/5 ; maximum swell
 i2 = p5/100 ; maximum vib width
 i3 = p3/2 ; half a cycle

 k1 linen p4,p6,p3,p7 ; envelope
 k2 line 0, p3, i1 ; swell
 k3 linseg 0, i3, i2, i3, 0 ; vib width
 k4 oscil k3, 5, 1 ; vibrato
 a1 oscil k1*(1+k2), p5+k4, p8 ; oscillator
 out a1 ; output

endin
; CS5.SC
; First two Kyrie Eleison from Palestrina's Missa Papae Marcelli

f1 0 8192 10 1

; SOPRANO
; p3 p4 p5 p6 p7 p8
;instr start dur amp freq attack decay func
i7 1 1.5 4000 587.329 .05 .05 1 ; D
i7 + 0.5 ; D
i7 + 1 ; D
i7 + 0.75 . 783.991 . . . ; G
i7 + 0.25 . 698.456 . . . ; F
i7 + . . 659.255 . . . ; E
i7 + . . 587.329 . . . ; D
i7 + . . 523.251 . . . ; C
i7 + . . 493.883 . . . ; B
i7 + . . 440 . . . ; A
i7 + . . 391.995 . . . ; G
i7 + 1 ; G
i7 + 0.5 . 369.994 . . . ; F#
i7 + 1 . 391.995 . . . ; G
; second phrase
i7 + . . 587.329 . . . ; D
i7 + 0.75 . 493.883 . . . ; B
i7 + 0.25 . 440 . . . ; A

i7 + . . 493.883 . . . ; B
i7 + . . 523.251 . . . ; C
i7 + 0.5 . 587.329 . . . ; D
i7 + 0.75 . 659.255 . . . ; E
i7 + 0.25 . 587.329 . . . ; D
i7 + . . 523.251 . . . ; C
i7 + . . 440 . . . ; A
i7 + 0.75 . 587.329 . . . ; D
i7 + 0.25 . 523.251 . . . ; C
i7 + 1 . 523.251 . . . ; C
i7 + 0.5 . 493.883 . . . ; B
i7 + 2 . 523.251 . . . ; C

; ALTO
; p3 p4 p5 p6 p7 p8
;instr start dur amp freq attack decay func

i7 3 1.5 . 391.995 . . . ; G
i7 + 0.5 ; G
i7 + 1 ; G
i7 + 2 . 523.251 . . . ; C
i7 + . . 493.883 . . . ; B
; second phrase
i7 10.5 1 . 391.995 . . . ; G
i7 + 0.5 ; G
i7 + 1 ; G
i7 + 0.5 . 440 . . . ; A
i7 + 1 . 391.995 . . . ; G
i7 + 0.5 . 349.228 . . . ; F
i7 + 1 . 391.995 . . . ; G
i7 + 2 . 329.627 . . . ; E

; TENOR 1
; p3 p4 p5 p6 p7 p8
;instr start dur amp freq attack decay func

i7 0 1.5 4000 293.664 .05 .05 1 ; D
i7 + 0.5 ; D
i7 + 1 ; D
i7 + 0.75 . 391.995 . . . ; G
i7 + 0.25 . 349.228 . . . ; F
i7 + 0.5 . 329.627 . . . ; E
i7 + . . 293.664 . . . ; D
i7 + 1.5 . 329.627 . . . ; E
i7 + 0.5 . 293.664 . . . ; D
i7 + 1 . 261.625 . . . ; C
; second phrase
i7 + 1 . 293.664 . . . ; D
i7 + 0.5 . 246.941 . . . ; B
i7 + . . 195.997 . . . ; G
i7 + 0.75 . 391.995 . . . ; G
i7 + 0.25 . 349.228 . . . ; F
i7 + 0.5 . 329.627 . . . ; E
i7 + . . 293.664 . . . ; D
i7 + 0.5 . 261.625 . . . ; C
i7 + 1 . 329.627 . . . ; E
i7 + 0.5 . 293.664 . . . ; D
i7 + 0.5 . 329.627 . . . ; E
i7 + 0.25 . 293.664 . . . ; D
i7 + . . 261.625 . . . ; C
i7 + 1 . 293.664 . . . ; D
i7 + 2 . 261.625 . . . ; C

; TENOR 2
; p3 p4 p5 p6 p7 p8

;instr start dur amp freq attack decay func

i7 8 1.5 4000 293.664 .05 .05 1 ; D
i7 + 0.5 ; D
i7 + 1 ; D
i7 + 0.75 . 391.995 . . . ; G
i7 + 0.25 . 349.228 . . . ; F
i7 + . . 329.627 . . . ; E
i7 + . . 293.664 . . . ; D
i7 + . . 261.625 . . . ; C
i7 + . . 246.941 . . . ; B
i7 + 0.5 . 220 . . . ; A
i7 + 0.5 . 246.941 . . . ; B
i7 + 1 . 261.625 . . . ; C

; BASS 1
; p3 p4 p5 p6 p7 p8
;instr start dur amp freq attack decay func

i7 2 1.5 4000 195.997 .05 .05 1 ; G
i7 + 0.5 ; G
i7 + 1 ; G
i7 + 1.5 . 261.625 . . . ; C
i7 + 0.5 . 246.941 . . . ; B
i7 + 1 . 220 . . . ; A
i7 + 2 . 195.997 . . . ; G
; last chord
i7 16 2 . 130.812 . . . ; C

; BASS 2
; p3 p4 p5 p6 p7 p8
;instr start dur amp freq attack decay func

i7 9 1.5 4000 195.997 .05 .05 1 ; G
i7 + 0.5 ; G
i7 + 1 ; G
i7 + 1.5 . 261.625 . . . ; C
i7 + 0.5 . 246.941 . . . ; B
i7 + 1 . 220 . . . ; A
i7 + 3 . 391.995 . . . ; G

e

A new feature can be noticed in the score: when consecutive events are played, a '++++' in
the start time field means 'play after the previous sound has finished'. This effectively
relieves us from having to calculate the start time for each event.

5.2 EXPONEXPONEXPONEXPON

There is an equivalent of LINE that produces an exponential between to amplitudes. It is
called EXPON and it uses the same parameters as LINE.

Also

kr expon amp1, dur , amp2

is equivalent to

kr expseg amp1, dur, amp2

It is now possible to produce an instrument that uses an exponential swell instead of the
linear one:

instr 8; Oscillator with varying vibrato rate and ;width, and exponential 'swelling' amplitude.
 i1 = 1/5 ; maximum swell
 i2 = p5/100 ; maximum vib width

 i3 = p3/2 ; half a cycle
 k1 linen p4,p6,p3,p7 ; envelope
 k2 expon .0001, p3, i1 ; exponential swell
 k3 linseg 0, i3, i2, i3, 0 ; vib width
 k4 oscil k3, 5, 1 ; vibrato
 a1 oscil k1*(1+k2), p5+k4, p8 ; oscillator
 out a1 ; output
endin

The previous score can be used.

5.3 Pitch RepresentationPitch RepresentationPitch RepresentationPitch Representation
The fact that pitches are represented by frequencies makes the task of producing the
score in the previous examples a very tedious and unnatural one. Fortunately, there are
two alternatives to using frequencies.

5.3.1 PCH Representation
This is akin to tempered tuning: A pitch is represented by a number consisting of an
integer representing the octave and a fractional part usually ranging from .00 to .12
representing the number of semitones above C.

The middle C octave is represented by the integer 8. Therefore, the lower octave is 7, two
octaves lower 6, and so on. In a similar way, the octaves above are 9, 10, etc.

Examples

8.07is 7 semitones above middle C: G.
6.10is 10 semitones above C two octaves below: Bb.

Microtones can be achieved by using more decimal places. For example

8.065 is a quarter tone above F#.

Finally, if the number of semitones indicated by the decimal part is bigger than 12, this will

indicate more than an octave above C.
For example

8.15 is 15 semitones above middle C: Eb a minor tenth above. This is equivalent to Eb, a
minor third above C in the next octave: 9.03.

5.3.2 OCT Representation
This representation uses a number consisting of an integer part that represents the octave,
and a fraction that represent an actual subdivision of the octave.

For example
8.5 is half an octave above middle C. This is F#. If PCH representation was used, this
would be represented as 8.06.

The score in the previous example can now be written using PCH representation. As an
example, the first phrase of Tenor 1 is listed below. The whole score is given as CS6.SC in
the floppy disk containing the code for the examples.

; TENOR 1
; p3 p4 p5 p6 p7 p8
;instr start dur amp PCH attack decay func

i9 0 1.5 4000 8.02 .05 .05 1 ; D
i9 + 0.5 ; D
i9 + 1 ; D
i9 + 0.75 . 8.07 . . . ; G
i9 + 0.25 . 8.05 . . . ; F
i9 + 0.5 . 8.04 . . . ; E
i9 + . . 8.02 . . . ; D
i9 + 1.5 . 8.04 . . . ; E
i9 + 0.5 . 8.02 . . . ; D
i9 + 1 . 8.00 . . . ; C

5.3 Pitch ConvertersPitch ConvertersPitch ConvertersPitch Converters
The use of PCH notation makes the score easier to write and understand. However, this
presents a problem in the orchestra: OSCIL needs data expressed in cycles per second
(CPS or hz). Therefore, it is necessary to translate PCH data into frequency.

Csound provides a function that can convert PCH information into cycles per second:
CPSPCH.

The general form of this converter is

variable = cpspch(PCH)
where

variable is equal to the frequency corresponding to the PCH representation.

Instrument 9 is an altered version of instrument 7 that can cope with PCH notation thanks
to the variable i0i0i0i0, which is made equal to the frequency corresponding to p5p5p5p5 (given in PCH
representation) and use subsequently instead of p5p5p5p5.

i0 = cpspch(p5)

The whole instrument is given next
; CS6.ORC-Oscillator with variable width
; vibrato and swell.
; Accepts pitch and converts it ;to frequency.

;p4 amplitude
;p5 frequency
;p6 attack
;p7 decay
;p8 function table

sr = 44100
kr = 4410

ksmps = 10
nchnls = 1

instr 9

 i0= cpspch(p5) ; pitch to frequency
 i1= 1/5 ; max swell
 i2= i0/100 ; maximum vib width
 i3= p3/2 ; half a cycle
 k1linen p4,p6,p3,p7 ; envelope
 k2line 0, p3, i1 ; swell
 k3linseg 0, i3, i2, i3, 0 ; vib width
 k4oscil k3, 3, 1 ; vibrato
 a1oscil k1*(1+k2), i0+k4, p8 ; oscillator
 out a1 ; output
endin

Csound tape example 6 shows the result of using CS6.ORC and CS6.SC which is
identical to example 5.

There are other converters that transform OCT to frequency, PCH to OCT, etc., namely
CPSPCHconverts PCH to CPS.
CPSOCTconverts OCT to CPS.
OCTCPSconverts CPS to OCT.
OCTPCHconverts PCH to OCT.
PCHOCTconverts OCT to PCH.
There is no conversion from CPS to PCH.

5.4 Value ConvertersValue ConvertersValue ConvertersValue Converters

Csound offers functions that help avoid tedious calculations called value converters. In this
section, two of these will be used to produce an instrument that expands or squeezes the
octave around middle C according to a factor given by p9p9p9p9.

The principle behind this new instrument is: At the beginning of each note, the given pitch
is converted into semitones above or below middle C. This is stored in the variable istististist (if ist
is positive then the pitch is above middle C otherwise it is below). Then, that number of
semitones is multiplied by the factor given by p9. Finally, it is added to middle C.

The number of semitones above (below) middle C is found as follows:

Middle C in PCH notation is octave 8. That is 8 x 12 = 96 semitones.

The pitch given is separated into

1. Its integer part, representing the number of octaves, which is subsequently

multiplied by 12.

2. Its fractional part, representing the number of semitones above that octave. In order

to find the actual number of semitones, this fraction has to be multiplied by 100.

Therefore, the total number of semitones is

integer part x 12 + fractional part x 100

Finally, the variable istististist is equal to

ist = total number of semitones - 96

For example, if G, 7 semitones above middle C is given, its PCH representation will be
8.07.

integer part = 8->8 x 12 = 96 semitones
fractional part = .07->.07 x 100 = 7 semitones

total number of semitones = 96 + 7 = 103
ist = 103 - 96=7 semitones above

The integer and fractional parts of the PCH representation are obtained by respectively
using the converters INT and FRAC.

instr 10 is the implementation of an instrument that can squeeze or expand intervals above
and below middle C.

; CS7.ORC-Oscillator with variable width
; vibrato and swell. Accepts pitch and converts
;to frequency and squeezes or expands the
;octave above and below middle C

;p4 amplitude
;p5 frequency
;p6 attack
;p7 decay
;p8 function table
;p9 squeeze/expansion factor

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 10

;squeeze or compress

 ist = int(p5)*12 + frac(p5)*100 - 96
 ; semitones above
 ; middle C
 itot = 96 + ist*p9 ; total semitones

 ioc = int(itot/12) ; octave
 ist = itot - ioc*12 ; semitones above
 i0 = ioc+ist/100 ; to PCH notation ; middle C

;the rest is identical to instrument 9

 i0 = cpspch(i0) ; PCH to freq
 i1 = 1/5 ; max swell
 i2 = i0/100 ; max vib width
 i3 = p3/2 ; half a cycle
 k1 linen p4,p6,p3,p7 ; envelope
 k2 line 0, p3, i1 ; swell
 k3 linseg0, i3, i2, i3, 0 ; vib width
 k4 oscil k3, 3, 1 ; vibrato
 a1 oscil k1*(1+k2), i0+k4, p8 ; oscillator
 out a1 ; output
endin

The score in the two previous examples can be used with instrument 10 by adding
parameter p9p9p9p9.

Csound tape example 7 contains two versions: First, the octave is squeezed by .65 and
then it is expanded by 1.35. They do not appear to do much good to this piece. However,
this instrument could be used to investigate non-rigid transformations of the tempered or
any other scale. Non-rigid transformations do not preserve interval distances.

The previous instrument can still be made more sophisticated. The centre pitch can be
given in the score and set as a variable in the orchestra. All that has to be done is convert
it to semitones.

Instrument 11 is a realization of this enhancement and Csound tape example 8 uses the
first note in (yet) the same score - D above middle C - as the centre pitch and expands the
octave by a factor of 1.3 .

; CS8.ORC-Oscillator with variable width
; vibrato and swell.
; Accepts pitch and converts to frequency.
; and squeezes or expands the octave above and
; below a centre pitch given by p10

;p4 amplitude
;p5 frequency
;p6 attack
;p7 decay
;p8 function table
;p9 squeeze/expansion factor
;p10 centre pitch

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 11

;Convert centre pitch to semitones

 icst= int(p10)*12 + frac(p10)*100

;squeeze or compress

 ist = int(p5)*12 + frac(p5)*100 - icst
 ; semitones above
 ; centre pitch
 itot = icst + ist*p9 ; total semitones

 ioc = int(itot/12) ; octave
 ist = itot - ioc*12 ; semitones above
 i0 = ioc+ist/100 ; to PCH notation ; middle C

;the rest is identical to instrument 9

 i0 = cpspch(i0) ; PCH to freq
 i1 = 1/5 ; max swell
 i2 = i0/100 ; max vib width
 i3 = p3/2 ; half a cycle
 k1 linen p4,p6,p3,p7 ; envelope
 k2 line 0, p3, i1 ; swell
 k3 linseg0, i3, i2, i3, 0 ; vib width
 k4 oscil k3, 3, 1 ; vibrato
 a1 oscil k1*(1+k2), i0+k4, p8 ; oscillator
 out a1 ; output

endin

5.5 Example Example Example Example ---- Fan Out Fan Out Fan Out Fan Out
After the lengthy discussion on pitch representation and manipulation, Csound may appear
to be a note oriented synthesis language. This is not necessarily so, since an event does
not have to be a note. On the contrary, sounds with very complex morphologies can be
produced, as will be shown in later sections.

The next example shows an instrument that, given a certain frequency, 'fans out' 3 upper
and 3 lower glissandi. The width of each glissando is a multiple of a fraction of the original
frequency. The fraction is determined by p8p8p8p8 in the score.

For example, if 440 hz and a factor of .1 are given

The separation in hz will be

440 hz x .1=44 hz

The upper glissandi will fan out to 440 + 44 = 484 hz
484 + 44 = 528 hz
528 + 44 = 572 hz

and the lower will fan to

440 – 44 = 396 hz
396 – 44 = 352 hz
352 – 44 = 308 hz

Two versions are given: One with a linear fan-out (instrument 12) and one with an
exponential fan-out (instrument 13).

Csound example 9 shows the results of using instrument 12 with CS9.SC (given below).

; CS9.ORC - Fan Out Instrument
; From one frequency, 3 upper and 3 lower glissandi
; fan out. They are separated by a fraction of the
; frequency given in p9

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 12; linear fan-out

;p4 : amplitude
;p5 : frequency
;p6 : attack
;p7 : decay
;p8 : fraction
;p9 : function table

 ihz = p8*p5; separation in hz
 iu1 = p5+ihz; first fan up freq.
 iu2 = iu1+ihz; second fan up freq.
 iu3 = iu2+ihz; third fan up freq.
 il1 = p5-ihz; first fan down freq.
 il2 = il1-ihz; second fan down freq.
 il3 = il2-ihz; third fan down freq.

 k1 linen p4, p6, p3, p7 ; envelope
; linear glissandi

 ku1 line p5, p3, iu1; first glissando up
 ku2 line p5, p3, iu2; second gliss. up
 ku3 line p5, p3, iu3; third gliss. up
 kl1 line p5, p3, il1; first gliss down
 kl2 line p5, p3, il2; second gliss down
 kl3 line p5, p3, il3; third gliss down

; each glissando has its own oscillator

 al1 oscil k1, kl1, p9 ; oscillator
 al2 oscil k1, kl2, p9 ; oscillator
 al3 oscil k1, kl3, p9 ; oscillator
 au1 oscil k1, ku1, p9 ; oscillator
 au2 oscil k1, ku2, p9 ; oscillator
au3 oscil k1, ku3, p9 ; oscillator

; mix and output
out (au1+au2+au3+al1+al2+al3)/6

endin

instr 13; exponential fan-out

;p4 : amplitude
;p5 : frequency
;p6 : attack
;p7 : decay
;p8 : fraction
;p9 : function table

 ihz = p8*p5; separation in hz
 iu1 = p5+ihz; first fan up freq.
 iu2 = iu1+ihz; second fan up freq.
 iu3 = iu2+ihz; third fan up freq.
 il1 = p5-ihz; first fan down freq.
 il2 = il1-ihz; second fan down freq.
 il3 = il2-ihz; third fan down freq.

 k1 linen p4, p6, p3, p7 ; envelope

; linear glissandi. In this case CARE must be taken in order ; to avoid iu1, iu2, iu3, il1, il2,
il3 being negative or ; zero since an exponential can never be zero or change ; sign. This
is done by not allowing p8 to be larger than ; 1/3

 ku1 expon p5, p3, iu1; first glissando up
 ku2 expon p5, p3, iu2; second gliss. up
 ku3 expon p5, p3, iu3; third gliss. up
 kl1 expon p5, p3, il1; first gliss down

 kl2 expon p5, p3, il2; second gliss down
 kl3 expon p5, p3, il3; third gliss down

; each glissando has its own oscillator

 al1 oscil k1, kl1, p9 ; oscillator
 al2 oscil k1, kl2, p9 ; oscillator
 al3 oscil k1, kl3, p9 ; oscillator
 au1 oscil k1, ku1, p9 ; oscillator
 au2 oscil k1, ku2, p9 ; oscillator
au3 oscil k1, ku3, p9 ; oscillator

; mix and output
out (au1+au2+au3+al1+al2+al3)/6

endin

;CS9.SCExample score

f1 0 512 10 1 .7 .4 1 .3 .8 .95

; p3 p4 p5 p6 p7 p8 p9
;instr start dur amp freq attack decay fract. func

i12 0 1 15000 300 .05 1 .3 1
i12 2 6 4500 60 .05 1 .2 1
i12 4.5 4 . 680 . . .3 1
i12 4.7 3.5 . 400 . . .1 1
i12 5 3 . 560 2 1 .15 1
i12 6.4 1.5 . 230 . .5 .25 1
i12 6.7 1.3 . 1200 . .5 .06 1
i12 6.8 3 . 2000 . 1 .13 1

e

PART IIPART IIPART IIPART II
Linear Synthesis TechniquesLinear Synthesis TechniquesLinear Synthesis TechniquesLinear Synthesis Techniques

6. Additive Synthesis6. Additive Synthesis6. Additive Synthesis6. Additive Synthesis

Additive synthesis is one of the oldest techniques. The main assumption is that sound can
be decomposed into a unique sum of pure sine waves - called partials - each with its own
amplitude, frequency and phase. The description of a sound in terms of the frequencies
and amplitudes of its partials is called the spectrum.

6.1Static SpectrumStatic SpectrumStatic SpectrumStatic Spectrum

The simplest approach to additive synthesis is to imagine that the spectrum of a sound is
always the same throughout its duration. In other words, the spectrum is assumed to be
static.

If the sound waveform is represented by a function of time: s(t), this function can be
expressed as follows

s(t) = A0 + A1 sin(2 π f1t + p1) + A2 sin(2 π f2t + p2) + ...

= A0 + Σ { Ai sin(2 π fit + pi) }
 i

π = 3.1415927...

where the amplitudes A0, A1, A2 ... the frequencies f0, f1, f2 ... , and phases p0, p1, p2 ...

are all constant: they do not change as time goes by.

It can then be inferred that:

1. Different sets of amplitudes and frequencies (different spectra) produce different

sounds. Experiments seem to indicate that the phase is not a significant factor in
sound recognition, but rather has to do more with positioning a sound in space.

2. Two sounds that have the same component frequencies but differ in the relative
amplitudes of these partials, have different timbre.

3. Sounds that have partials that are close to multiples of the lowest frequency
(fundamental) tend to be more 'pitched' than those that do not. When there is such a
relation, the partials are also called harmonics and the spectrum is said to be
harmonic.

6.1.1Harmonic Spectrum
Harmonic static spectrum has been dealt with when examining GEN10, which requires the
relative amplitude of each harmonic. Examples can be found in chapter 3, section 3.10,
(CS2.ORC and CS2.SC).

This is an appropriate place to introduce an statement very similar to OSCIL. This
statement is called OSCILI and requires exactly the same parameters as OSCIL.
ar oscili amp, freq, func (, phase)

The only difference between these two is that OSCILI uses a more accurate method of
producing a waveform, therefore the sounds so produced are cleaner. But, as expected,
there is a price that has to be paid: OSCILI is about twice as slower to compile than
OSCIL.

In order to enjoy the speed of OSCIL with the accuracy of OSCILI, larger function tables
can be used with OSCIL (8192 points or more) which sample the cycle of a waveform
more accurately at the expense of more memory needed to store the function table. A few
table sizes of 8192 should not be a terrible problem to handle for a 512 Kbyte or 1 Mbyte
RAM microcomputer.

6.1.2 Inharmonic Spectrum
Inharmonic spectra occur when the frequencies of the partials are not multiples of a
fundamental. This requires a signal generator that allows specifying the frequency of each
partial as well as its amplitude.

Theoretically, such a generator is available in GEN9, which also allows specification of the
phase. Thus, for each partial GEN9 requires three values

freq ratio amplitude phase

where

amplitude is the relative amplitude of that partial, like in GEN10.

freq ratio is the ratio between the frequency of that partial and the fundamental. For

example, if the fundamental is 100 hz and the partial is 141 hz, the ratio is

141 / 100=1.41

phase is the phase of the partial given in degrees.

For example, the function
f2 0 4096 9 1 1 0 1.41 .8 20 1.89 .9 45 2.3 .7 90

defines a waveform that has the following 4 partials.

freq ratio amplitude phase
fundamental 1 1 0
2nd partial 1.41 .8 20
3rd partial 1.89 .9 45
4th partial 2.3 .7 90

If the fundamental were 100 hz, then the partials would be: 141, 189 and 230 hz.

However, this will not really produce the effect of a sound that has different inharmonic
spectrum. What GEN9 really does is to produce a cycle that can be repeated, with no
regard to the fact that the partials are not necessarily contained a whole number of times
in that cycle, thus truncating their continuation. In the end, because of the fact that a cycle
is repeated, a pitched sound is produced regardless of how complicated the data given to
GEN9 may be. Effectively, because of the truncation of the partials, the spectrum of the
resulting sound is distorted and does not necessarily contain the specified frequencies.

This can be shown if an instrument that truly produces inharmonic spectra is devised. The
instrument is readily done by dedicating an oscillator to each partial and mixing the result
at the end, as shown in diagram 18. Instrument 14 (shown below in CS10.ORC) is a
realisation of this diagram.

Diagram 18 Instrument that Produces Seven Partials

In order to prove that the results given by this instrument and GEN9 are different,
CS10.ORC and CS10.SC implement a waveform that is generated both by a simple
oscillator using GEN9, and by instrument 14 using pure sines. For the sake of simplicity,
the phases are left to be 0. This comparison can be heard in Csound tape example 10.
First the GEN9 generated signal is played, then the one produced with instrument 14,
which is the truly unpitched sound.
Waveform description

Partial number RelativeFrequency Relative Amplitude
fundamental 1 1

 2 0.8 1.41
 3 0.9 1.89
 4 0.7 2.3
 5 0.65 2.6
 6 0.93 3.2
 7 0.94 3.5

; CS10.ORC
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 3 ; Simple Oscillator
 ; Uses table defined by function number
 ; indicated in p8.

 k1linen p4, p6, p3, p7 ; envelope
 a1 oscil k1, p5, p8 ; oscillator
 out a1 ; output
endin

instr 14 ; Inharmonic oscillator. Up to 7 partials.

;p4 : overall amplitude
;p5 : fundamental frequency
;p6, p8, p10, p12, p14, p16, p18 : relative amplitudes
;of partials
;p7, p9, p11, p13, p15, p17, p19 : relative frequencies
;of partials

 i1 = p5*p7 ; 1 partial freq
 i2 = p5*p9 ; 2 partial freq
 i3 = p5*p11 ; 3 partial freq
 i4 = p5*p13 ; 4 partial freq
 i5 = p5*p15 ; 5 partial freq
 i6 = p5*p17 ; 6 partial freq
 i7 = p5*p19 ; 7 partial freq
 k1 linen p4, .1, p3, .1 ; envelope
 a1 oscil p6, i1, 1 ; 1 partial
 a2 oscil p8, i2, 1 ; 2 partial

 a3 oscil p10, i3, 1 ; 3 partial
 a4 oscil p12, i4, 1 ; 4 partial
 a5 oscil p14, i5, 1 ; 5 partial
 a6 oscil p16, i6, 1 ; 6 partial
 a7 oscil p18, i7, 1 ; 7 partial

 ; mix and output
 out k1*(a1+a2+a3+a4+a5+a6+a7)/7
endin

;CS10.SC
f1 0 4096 10 1
f2 0 4096 9 1 1 0 1.41 .8 0 1.89 .9 0 2.3 .7 0
 2.6 .65 0 3.2 .93 0 3.5 .94 0

; Using GEN9
; p3 p4 p5 p6 p7 p8
;instr start dur amp freq rise decay func
i3 0 2 30000 300 .1 .1 2
s

; Using 7 oscillators
; p3 p4 p5 p6,p8...p18 p7,p9...p19
;instr start dur amp fund relative relative
 overall freq amplitudes frequencies
i14 2 2 30000 300 1 1

.8 1.41

.9 1.89

.7 2.3

.65 2.6

.93 3.2

.94 3.5
e

A snapshot of the waveforms is shown in diagram 19. Observe the periodicity of the GEN9
waveform.

Diagram 19

1. Using GEN9

2. Using Independent Oscillators in instr 14

6.2 Dynamic SpectrumDynamic SpectrumDynamic SpectrumDynamic Spectrum
So far a static spectrum has been assumed. However, sounds in nature have a dynamic
spectra. That is, they change as time goes by. In the early days, this was one of the main
reasons for the 'dead' quality of synthesized sounds.

From a formal point of view a waveform is now represented as:

s(t) = A0(t) + A1(t) sin(2 π f1(t)t + p1(t)) + ...

= A0(t) + Σ { Ai(t) sin(2 π fi(t)t + pi(t)) }
 i

where A0(t), A1(t), A2(t) ... , f0(t), f1(t), f2(t) ... and p0(t), p1(t), p2(t) ... are now themselves

functions of time, changing as the sound evolves.

A dynamic spectrum gives sounds their morphology. Therefore, regardless of which

technique is in use, the main aim is always to produce such spectrum and to control its
evolution. In additive synthesis, this is done by varying the amplitudes and frequencies of
the partials through time, which amounts to giving each of these components an individual
amplitude and frequency envelope.

Csound offers a module called ADSYN. This used to require some tedious preparation, but
there is a graphical interface, ADSYN DRAW, created by Richard Orton at York University,
through which the envelopes for each partial are drawn using a mouse. Information about
this program is available in the CDP users manual.

6.3 Example Example Example Example ---- A Dynamic Spectrum Simple Instrument A Dynamic Spectrum Simple Instrument A Dynamic Spectrum Simple Instrument A Dynamic Spectrum Simple Instrument
In spite of having a graphics interface like ADSYN DRAW, producing a sound by creating
each envelope is still a very lengthy process that implies accurate knowledge of the
envelopes of each partial. This is extremely time consuming, especially if a wide range of
timbres and morphologies are needed.

A great deal of work can be saved if the synthesis of a sound is approached in a more or
less intuitive way, based on a reasonable assumption of what the desired characteristics
are; therefore having a rough idea of how the spectrum varies, how the envelope of that
sound affects its morphology, etc. Once the rough sound is produced, it can be refined.

As an example, an instrument will now be produced to comply with one requirement. To
produce a dynamic spectrum that results in a very definite gesture.

This will be achieved by making some modifications to instr 14, as follows

1. An envelope that rises in two stages: slowly at first and then more abruptly as

shown in diagram 20. The parameter p20p20p20p20 is used to determine the position of the
breakpoints.

Diagram 20 Overall envelope Shape

2. A vibrato that changes from a maximum width of 1/10 of the fundamental at the

beginning of the sound (when it is not very loud), to almost nothing at the end. This
vibrato affects each partial differently since it is a frequency added up and not a
factor that multiplies all the spectrum. For each oscillator, the diagram looks as
follows

Diagram 21 Oscillator for One Partial

In order to obtain a richer spectrum, the generating function is not necessarily restricted to
being a sine wave.

; CS11.ORC
sr = 44100
kr = 4410
ksmps = 10

nchnls = 1

instr 15 ;Inharmonic oscillator. Up to 7 partials with
 ; vibrato shape determined by function 2

;p4 : overall amplitude
;p5 : fundamental frequency
;p6, p8, p10, p12, p14, p16, p18 : relative amplitudes
;of partials
;p7, p9, p11, p13, p15, p17, p19 : relative frequencies
;of partials
;p20 : envelope shaper
;p21 : function table

 i1 = p5*p7 ; 1 partial freq
 i2 = p5*p9 ; 2 partial freq
 i3 = p5*p11 ; 3 partial freq
 i4 = p5*p13 ; 4 partial freq
 i5 = p5*p15 ; 5 partial freq
 i6 = p5*p17 ; 6 partial freq
 i7 = p5*p19 ; 7 partial freq
 ifrq1 = 1/p3 ; freq = 1/dur

 ; overall envelope

 k1 linseg 0,p3-.7*p20,p4/4,.3*p20,p4,.4*p20,0

 ; frequency vibrato envelope

 k2 line 1, p3, 0
 k3 oscil k2*p5/10, 10, 2 ; frequency change

 a1 oscil p6, i1+k3, p21 ; 1 partial
 a2 oscil p8, i2+k3, p21 ; 2 partial

 a3 oscil p10, i3+k3, p21 ; 3 partial
 a4 oscil p12, i4+k3, p21 ; 4 partial
 a5 oscil p14, i5+k3, p21 ; 5 partial
 a6 oscil p16, i6+k3, p21 ; 6 partial
 a7 oscil p18, i7+k3, p21 ; 7 partial

 ; mix and output

 out k1*(a1+a2+a3+a4+a5+a6+a7)/7

endin

Csound tape example 11 contains the sounds produced with the following score:

;CS11.SC

f1 0 1024 10 1
f2 0 1024 10 1
f3 0 1024 10 1 .5 .6 .9 1 .3 .4 .2

t 0 80

; p3 p4 p5 p6..p18 p7..p19 p20 p21
;instr start dur amp fund relat. relat. env func
; overll freq amps freqs shaper

i15 0 .5 10000 300 1 1
 .8 1.41
 .9 1.89
 .7 2.3
 .65 2.6
 .93 3.2
 .94 3.5 .15 1
i15 1.3 .7 10000 300 1 1

 .8 1.41
 .9 1.89
 .7 2.3
 .65 2.6
 .93 3.2
 .94 3.5 .15 1
i15 1.8 .5 15000 900 1 1
 .8 1.41
 .9 1.89
 .7 2.3
 .65 2.6
 .93 3.2
 .94 3.5 .15 1
i15 1.9 3 19000 40 1 1
 .8 1.41
 .9 1.89
 .7 2.3
 .65 2.6
 .93 3.2
 .94 3.5 .8 1
i15 4.4 2 19000 600 1 1
 .8 1.41
 .9 1.89
 .7 2.3
 .65 2.6
 .93 3.2
 .94 3.5 1 3

e

6.4 Example Example Example Example ---- Risset's Beating Harmonics Risset's Beating Harmonics Risset's Beating Harmonics Risset's Beating Harmonics

Jean-Claude Risset's beating harmonics constitute one of the most successful displays of
ingenuity achieved with additive synthesis. The principle behind this sound (shown in
Csound tape example 12), is the very simple fact that when two sine waves are mixed,
they produce a cosine wave of half the difference of their frequencies that serves as an
envelope to a sine wave of half of the sum of those frequencies.

Assuming that the frequencies of the sine waves are f1 and f2. Then m(t), the result of

mixing them can be written as follows

m(t) = sin(2 π f1t) + sin(2 π f2t)

but from trigonometry:
 a-b a+b
sin(a) + sin(b) = 2 [cos(------) sin(------)]

 2 2

therefore

 f1- f2 f1- f2

m(t) = 2 [cos(2 π ------) sin(2 π -------)]
 2 2

For example, if the frequency of the one of the sine waves is 100 hz and the second one is
150 hz, a cosine of 25 hz will serve as an envelope to a 175 hz sine wave.

Now, if the values of the frequencies are carefully chosen so that they are very close, it is
possible to end up with a very slow changing cosine that serves as an envelope to a sine
that is itself very close to the original frequencies.

For example, 110 and 110.03 hz will give an envelope of 0.015 hz (one cycle will take
about 66 seconds) and an audible sine of 110.015 hz. When the 0.015 hz cosine reaches
its maximum value, the 110.015 hz sine will be loud. Conversely, when the cosine value is

close to 0, the sine will be attenuated.

If instead of mixing a two sines, two complex harmonic signals are mixed, then each of the
harmonics of one signal will interact with those of the other to produce envelopes that have
different rates. Especially important are the corresponding harmonics of 110 and 110.03
which will still be very close creating slow envelopes. For example, the corresponding
second harmonics are 220 and 220.06 hz. Their interaction will produce an envelope of
0.03 hz (1 cycle lasts ~33 seconds) shaping a 220.03 hz sine wave. The corresponding
third harmonics will produce an envelope of 0.045 hz (1 cycle lasts ~22 seconds) shaping
a 330.045 sine, and so on.

Therefore, different harmonics will be heard at different times, corresponding to the
maximum value of their envelopes.

Finally, if more harmonic rich signals are mixed, their harmonics will interact with each
other creating the beating effect. A good set of values is 109.88, 109.91, 109.94, 109.97,
110, 110.03, 110.06, 110.09 and 110.12 hz, used in CS12.SC . The beauty of the idea
lays in the simplicity of its orchestra, which of an oscillator with an envelope (instrument 3).
The orchestra and score are listed below.

;CS12.ORC This produces a simple oscillator with an
;envelope needed to produce RISSET's beating ;harmonics

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 3

;p4 : amplitude
;p5 : fundamental

 k1 linen p4, .5, p3, .5; envelope
 a1 oscil k1, p5, 1; oscillator
 out a1

endin

; CS12.SC
; This produces the original Risset beating harmonics

f1 0 8192 10 1 1 1 1 1 1 1 1 1 1 1 1

; p3 p4 p5
;instr start dur amp fund

i3 0 35 3500 110
i3 . . . 110.03
i3 . . . 110.06
i3 . . . 110.09
i3 . . . 110.12
i3 . . . 109.97
i3 . . . 109.94
i3 . . . 109.91
i3 . . . 109.88

e

7. Subtractive Synthesis7. Subtractive Synthesis7. Subtractive Synthesis7. Subtractive Synthesis

This is another technique that has been used since the early days of electronic synthesis.
The principle behind it is simple: a source signal that is rich in partials is passed through
filters that enhance or attenuate some of these, literally shaping the sound.

RICH SIGNAL ---> FILTER --> OUTPUT

7.1 Input Input Input Input ---- Sources Sources Sources Sources

The main synthetic sources used as input to the filters are noise generators and pulses.
Square waves are also rich in harmonics and can be used.

7.1.1 Noise Generators

The spectrum of ideal white noise contains all possible frequencies evenly distributed up to
half of the sampling rate (Nyquist frequency). Therefore, it is very useful for subtractive
synthesis purposes.

The basic white noise generator in Csound is RAND, which generates pseudo-random
numbers every sample. The prefix 'pseudo' is used because these are not real random
numbers picked by chance, but rather the result of a formula that simulates randomness
by producing a sequence of values that can not be perceived as having any repetition
pattern. This formula takes a seed number as a starting value from which it generates the
rest. Therefore, if the same seed is used, the numbers generated will always be the same.

When the purpose of using RAND is to produce white noise, using the same seed should
not make any difference, but if a pseudo-random generator is used to produce a slow
sequence of values, like for example, a pitch series, this fact must be taken into account,
in which case repetition can be avoided by using a different seed each time a new
sequence is produced.

RAND produces values between -1 and +1. To change this range, it is possible to multiply
each number by an amplitude. Thus, the resulting series can be set to be between -
amplitude and +amplitude.

The general statement for RAND is

ar rand amp (,seed)

where

ar is the output signal.

amp is the amplitude that determines the range. For example, if numbers between

-32000 and 32000 are desired, amp = 32000.

seed is the starting value used by the random generator. It is optional, therefore if

it is not given, a default value of .5 is taken.

As stated above, white noise has a uniform frequency distribution. Sometimes, noise that
has a greater density at lower frequencies is desired sounding more like a rumble.

In order to find out how to influence the frequency distribution, a rule of thumb stating that
very quick changes in amplitude are a sign of existing high frequencies will be adopted
(this is why clicks, that are a sudden change in amplitude, can sometimes be removed by
appropriate low pass filters).

This rule can give a heuristic explanation to the uniform distribution of frequencies in white
noise: since RAND produces a random number at each sample, it could produce two
consecutive random numbers with the same value, which
could be interpreted as part of a constant or 0 hz frequency signal. On the other hand, it
could produce 1 and -1 as two consecutive values, which can be interpreted as being part
of the component that can change the quickest, having a cycle of two samples, thus a

frequency of half of the sampling rate. But this is no other than the Nyquist frequency. Any
two changes between these extremes will belong to other frequencies, larger drops or
increments in amplitude will belong to higher frequencies and viceversa. This is illustrated
in diagram 22.

The immediate conclusion is that in order to lower the probability of having high
frequencies, the rate at which random numbers are produced must be lowered: instead of
producing a random number each sample (that is at a frequency equal to half of the
sampling rate), it could be produced at a lower frequency.

Diagram 22 Extreme Cases in White Noise

RANDH is an alternative to RAND that can generate random numbers at any frequency. It
will hold to the value of the last number generated until it is time to produce a new one. Its
general form is

ar randh amp, freq, (,seed)

where

ar is the output.

freq is the frequency at which the random numbers are produced. If the frequency

is equal to the sampling rate, the random numbers will be produced every
sample, thus the effect is the same as with RAND.

seed is the seed, is also optional and has the same default as with RAND.

RANDH can then produce a signal that has a higher density in the low part of the
spectrum. If an even higher predominance of low frequencies is desired, there are still
some corners that can be cut. The samples at which the numbers change to a new value,
are points of very quick amplitude variation. If they are smoothed, making a gradual
transition between two values then those high frequency components can be further
neutralised, as shown in diagram 23, which displays the result of series of random
numbers produced at a frequency of 400 hz (a new number every 2.5 milliseconds), once
by changing values change abruptly and then by changing them gradually.

Diagram 23 Random Numbers Produced Every 2.5 msec

23.1 Abrupt change between values.

23.2 Gradual change between values.

For the reasons mentioned above, there is a third generator in Csound called RANDI,
which produces random numbers at a given frequency but instead of changing abruptly
from one number to the other, it interpolates between them. Its general form has the same
variables and default seed as RANDH.

ar randi amp, freq (,seed)

In order to hear the difference between the three, instruments using each of the random
generators are implemented in CS13.ORC and compiled with CS13.SC .

; CS13.ORC - Use of RAND, RANDH, RANDI

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 16 ; uses RAND

;p4 : amplitude
;p5 : not used
;p6 : attack
;p7 : decay

k1 linen p4, p6, p3, p7 ; envelope
 a1 rand k1 ; noise source
 out a1 ; output
endin

instr 17 ; uses RANDH

;p4 : amplitude
;p5 : random oscillator frequency
;p6 : attack
;p7 : decay

k1 linen p4, p6, p3, p7 ; envelope
 a1 randh k1,p5 ; noise source
 out a1 ; output

endin
instr 18 ; uses RANDI

;p4 : amplitude
;p5 : random oscillator frequency
;p6 : attack
;p7 : decay

k1 linen p4, p6, p3, p7 ; envelope
 a1 randi k1,p5 ; noise source
 out a1 ; output
endin

The score produces :

1.2 seconds of 'white noise'.

2.2 seconds of noise produced with RANDH at a frequency of 400 hz.

3.2 seconds of noise produced with RANDI at the same frequency of 400 hz.

The results can be heard in Csound tape example 13. The second sound is perceived as
being lower than the first, and the third is heard as being even lower.

;CS13.SC Noise Generators

; p3 p4 p5 p6 p7
;instr start dur amp freq attack decay

; RAND
i16 0 2 10000 0 .1 .1

; RANDH 400 hz
i17 3 2 10000 400 .1 .1

; RANDI 400 hz
i18 6 2 10000 400 .1 .1

e

7.1.2 Pulse Generators
An ideal pulse is a signal containing an infinite number of partials. In practice, the most
direct way of obtaining an approximation of a pulse is by having as many partials as
possible, all with the same relative amplitude. However care must be taken: if a large
number of partials is taken indiscriminately, there is the danger of exceeding the Nyquist
frequency, which means aliasing !

Csound provides a generator that produces pulses - with as many partials as required -
which repeat periodically. The actual sonorous result is similar to a buzz. For this reason,
the statement is called ... BUZZ. Its general form is

ar buzz amp, freq, nharm, func (, phase)

where

ar is the output.

amp is the overall amplitude.

freq is the frequency of the fundamental.

nharm is the required number of harmonics. In order to avoid exceeding the Nyquist

frequency the number of harmonics must be less than the number of times
the fundamental is contained in the Nyquist frequency. Thus, the following
formula can be used to obtain the maximum possible partials

nharm = int((sr/2) / fundamental)

where sr, is the variable used by Csound to store the sampling rate. int() is
used because it is necessary to round down the result.

func is a function table containing a sine wave.

phase is the optional phase of the signal.

CS14.ORC contains an instrument that uses BUZZ. The score CS14.SC produces pulses
that have a fundamental of 40 hz and 5, 15 and 45 partials respectively. The cycles so
produced can be seen in diagram 24.

; CS14.ORC - Use of BUZZ
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 19

;p4 : amplitude
;p5 : fundamental
;p6 : attck
;p7 : decay
;p8 : number of partials

k1 linen p4, p6, p3, p7; envelope
 a1 buzz k1, p5, p8, 1 ; pulse generator
 out a1 ; output
endin

; CS14.SC

f1 0 8192 10 1

; p3 p4 p5 p6 p7p8
;instrstartduramp freq atckdecayNo. of
; partials

i19 0 2 30000 40 .1 .1 5

i19 3 2 . 40 .1 .1 15

i19 6 2 . 40 .1 .1 45

e

Diagram 24 Shape of One Pulse Generated by BUZZ with a Fundamental of 40 hz.

24.1 Using 5 harmonics.

24.2 Using 15 harmonics.

24.3 Using 45 harmonics.

Csound tape example 14 contains the sounds produced.

BUZZ can be used in order to produce inharmonic spectra. In order to do this a
fundamental that is below the auditory range (less than ~15 hz) should be used. This way,
the missing fundamental will not be heard and the lowest audible frequency will not be at
integer ratios with the other partials.

There is an alternative generator, called GBUZZ, that allows control over low frequency
and high frequency partials. This is done by varying their relative amplitudes using a factor
that multiplies each partial and increases or decreases with the harmonic number. It is also
possible to start at any partial, not necessary from fundamental.

The general form of GBUZZ is

ar gbuzz amp, freq, npart, lowest, fact, func (,phase)

where

ar is the output.

amp is the overall amplitude.

freq is the frequency of the fundamental.

lowest is the lowest partial relative to the fundamental that should be produced.

Compare this with BUZZ, in which the partials will always start with the
fundamental.

npart is the required number of partials starting from lowest. For example if a

fundamental of 100 hz is specified and the pulse is to contain 10 partials
starting from the fifth (500 hz), then

freq = 100
lowest = 5
npart = 10

The actual components of the pulse will be 500, 600, 700, 800, 900, 1000,
1100, 1200, 1300, and 1400 hz.

This time, in order to avoid exceeding the Nyquist frequency, the number of
the highest partial must be less than the number of times the fundamental is
contained in the Nyquist frequency. Thus, the following formula can be used
to obtain the maximum possible partials

nharm = int((sr/2)/freq) - lowest + 1

fact is the factor that multiplies the relative amplitude of each partial according to

its harmonic number.

The amplitude of the lowest partial is left as it is.

The amplitude of the next partial is multiplied by fact. The amplitude of the
following partial is multiplied by fact2. The next one is multiplied by fact3,
and so on.

If fact is bigger than 1, the higher harmonics will be amplified. If, instead, it is
smaller than 1, they will be attenuated.

fact can be made to vary in time, by assigning it to a control rate variable.

func is the function table. It has to be a cosine wave.

phase is the optional phase of the signal.

For example, if the fundamental is 20 hz, the beginning partial is the fifth (5 x 20 = 100 hz),
a total of 4 partials is requested and the factor is .5, the relative amplitudes of the partials
will be

Partial Frequency Relative Amplitude

fifth 100 hz 1
sixth 120 hz 0.5
seventh 140 hz 0.52 = .25
eight 160 hz 0.53 = .125

CS15.ORC contains an instrument that use GBUZZ with partials
specified by the score and an amplitude factor that progresses linearly from a value at the
beginning of the event to a different value at the end.

The score produces a sound with a fundamental of 30 hz, a lowest partial of 150 hz, a total
of 30 partials and a factor that changes from 0.7 to 1.7.

; CS15.ORC - Use of GBUZZ
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 20
;p4 : amplitude
;p5 : fundamental
;p6 : attack
;p7 : decay
;p8 : beginning value of amplitude multiplier
;p9 : final value of amplitude multiplier
;p10 : lowest partial number
;p11 : total number of partials

 k2 line p8,p3,p9 ; changing multiplier
 k1 linen p4,p6,p3,p7 ; envelope
 a1 gbuzz k1,p5, p11,p10,k2,1 ; pulse generator
 out a1 ; output
endin

;CS15.SC
f1 0 512 9 1 1 90; cosine wave
; p3 p4 p5 p6 p7 p8 p9 p10 p11

;instr start dur amp freq atck decay beg end low numb
; mult mult part part
i20 0 4 25000 30 .1 .5 .7 1.7 5 30
e

The result can be heard in Csound tape example 15.

7.2 Shaping of the Spectrum with FiltersShaping of the Spectrum with FiltersShaping of the Spectrum with FiltersShaping of the Spectrum with Filters

The four basic types of ideal filters are shown in diagram 25. Apart from these there is the
all-pass filter, which only delays a signal, changing its phase. The all-pass will not be
discussed here.

Diagram 25Basic Types of Filters

1.Low-Pass 2.High-Pass

2.Band-Pass 3.Band-Stop

All these filters have a cut-off value ffffcccc that determines the limit for frequencies which will be
passed or stopped. However, the figures above, are only ideal approximations. Real filters
have ripples and a transition region, as shown in diagram 26. Therefore, for a real filter,
the cut-off is defined as the frequency at which a signal is attenuated by -3 dB.

In addition, the transition region is characterized by a parameter called roll-off, that
measures its steepness. The roll-off is defined as the change in the intensity of a signal
when its frequency is doubled. In other words, it measures the change of the frequency
response in dB per octave .

Diagram 26 Cut-off Frequency for a Real Life Filter

The sharpness of a filter can be increased by narrowing the transition region (which is
equivalent to increasing the value of the roll-off). This is achieved by connecting it with an
identical copy of itself. Doing this usually narrows the bandwidth, which is not always
desirable.

In order to avoid a narrower bandwidth, the filters can have their cut-off frequencies slightly
shifted above and below the actual cut-off.

Diagram 27 shows qualitatively the result of connecting two band-pass filters with centres
at 500 hz, and compares it with the connection of two filters centred at 480 hz and 520 hz
respectively. The bandwidth in the second case is better preserved. As an additional
benefit, flatter pass and attenuation regions are produced.

Diagram 27 Connected Band-Pass Filters

 Same Bandwidth Shifted Bandwidths

We will now proceed to discuss the implementation of the four basic filters in Csound.

7.2.1 Low-Pass and High-Pass: TONE and ATONE

Csound provides a first order recursive filter. A filter is called recursive when the value of
its current output depends on previous outputs. It is of the first order when it only depends
on its immediate previous value. Therefore, if xn is the nth sample of the input, then yn is
the nth sample of the output and yn-1 is the immediate previous sample of that same

output. The mathematical expression for the first order recursive can then be written as
follows

yn = c0xn + d1yn-1

The cut-off frequency and whether the filter is a low-pass or a high-pass depend on the
coefficients cccc0000 and dddd1111. However, this should not trouble the Csound user, since there are
two different statements, each representing a different type, which require the value of the
cut-off frequency, rather than those of the coefficients. The statements representing those
filters are:

TONE for a low-pass.

ATONE for a high-pass.

The general statements are :

ar tone ain, cutoff (, init)

ar atone ain, cutoff (, init)

where

ar is the output.

ain is the input.

cutoff is the cut-off frequency in hz.

init describes the initial conditions of the filter: it is always necessary to state the

initial value of the output, because the current output is dependent on its
immediate previous value. Therefore, the first output has to be determined in
order to start this process.

If init is 0, the initial value is 0. This is also the default value.

If a non-zero value is given, the initial output recalls the value obtained the
last time the filter was used .

7.2.2 Band-Pass and Band-Stop: RESON and ARESON

These are second order filters (they depend on the previous two values of either their input
or their output). The band-pass filter is recursive - its current output depends on the two
previous outputs - and is represented by the following expression:

yn = c0xn + d1yn-1 + d2yn-2

The band-stop is actually non-recursive: it only depends on its two previous inputs. Its
representation is given below.

yn = c0xn + c1xn-1 + c2xn-2

The coefficients cccc0, dddd1and dddd2 and cccc0, cccc1and cccc2 determine the centre frequency and

bandwidth of the band-pass and band-stop, respectively. This, again, does not have to
worry the user since the statements in Csound do the calculations themselves. The
statements are

RESON for a band-pass.

ARESON for a band-stop.

Their general form is

ar reson ain, cfreq, bw, scaling (,init)

and

ar areson ain, cfreq, bw, scaling (,init)

where

ar is the output.

ain is the input.

cfreq is the centre frequency in hz.

bw is the bandwidth.

scaling is a scaling factor. When a signal is filtered, the components that are

attenuated do not contribute to the average intensity. This may result in an
output with a much lower loudness. For this reason, it is sometimes
necessary to amplify the output.

If the scaling is 0, the signal is not amplified.

If the scaling is 1, the pass-band frequencies are amplified to the maximum
amplitude of the signal.

If the scaling is 2, the average intensity is kept. It is not clear from the manual
what will higher scaling values do. Experience shows that there is some
amplification.

NOTES:

1. The scaling factor changes the steepness of the transition between pass

and stop bands.

2. If a large scaling is used, the amplitude may become larger than 32,767
or smaller than -32,768 causing distortion.

init describes the initial conditions of the filter, and acts in the same way as with

TONE and ATONE.

If init is 0, the initial values are 0. This is also the default.

If a non-zero value is given, the initial outputs (RESON) or inputs (ARESON)
recall values obtained the last time the filter was used.

7.3 Output: BALANCEOutput: BALANCEOutput: BALANCEOutput: BALANCE

As stated above, when a signal is filtered, the components that are attenuated do not
contribute to the average intensity, resulting in a lower level signal.

Apart from using a scaling factor of 1 or 2 within the filter, there is another method used in
order to amplify the output: the average intensity of the output is made equal to the
average intensity of the input or of another signal used for this purpose. This technique is
usually safer for avoiding amplitudes larger than 32,767.

In Csound, a special filter called BALANCE is used:

ar balance ain, acomp, (, lowcutoff, init)
where

ar is the output.

ain is the signal that has to be balanced.

acomp is the signal to which it is compared.

lowcutoff is the cut-off frequency of an internal low-pass filter built into BALANCE. The

purpose of this is to stop frequencies below the auditory range that do not
contribute to the intensity of the perceived sound. If no value is given, the
default is 10 hz.

init determines the initial conditions of BALANCE in the same way as with TONE

and RESON.

A typical example of the use of a filter and BALANCE is now given. A signal ainainainain is sent
through a high-pass filter of 100 hz cut-off. Then the output of the filter is balanced with the
original signal.

aout atone ain, 100
aout balance aout, ain

7.4 Example Example Example Example ----Filtered NoiseFiltered NoiseFiltered NoiseFiltered Noise
The principle behind subtractive synthesis is the filtering of sounds with rich spectrum. It is
highly desirable that the output has a dynamic spectrum. Therefore, it is necessary that at
least the sound source or the filter (or both) change their spectral characteristics as time
goes by.

Accurate control of filter characteristics is possible when using a computer. For example,
the cut-off frequency of a low-pass filter can be driven by a control signal that changes in
time. Combinations of several filters can be used to shape a signal to a tighter degree.
However, it is worth bearing in mind that increasing quantity and complexity increases the
number of operations a computer has to perform resulting in slower processing.

The following example, instrument 21, uses white noise as a source which is passed
through a band-pass filter with centre frequency and bandwidth controlled respectively by
the time varying control signals k2k2k2k2 and k3k3k3k3.

k2k2k2k2 varies, according to the shape of a linear oscillator, between the centre frequencies p7p7p7p7
and p8p8p8p8. k3k3k3k3 varies, according to the shape of an exponential oscillator, with bandwidths that
are between p9p9p9p9/100 of the minimum centre frequency and p10p10p10p10/100 of the maximum centre
frequency. A graphic representation of this instrument is given in diagram 28.

The orchestra, CS16 is given below, followed by a score which consists of two events:

1. Simulation of a blow by increasing the centre frequency from 260 to 650 hz and the

bandwidth from 0.1% to 20% of the centre frequency.

2. The reverse of 1: The centre frequency decreases from 650 to 260 hz and the

bandwidth from 20% to .1 %.

Csound tape example 16 contains the two events produced.

Diagram 28 Instrument 21: White Noise Shaped with a Variable Centre Frequency and

Variable Bandwidth filter.

; CS16.ORC - FILTERED NOISE
; White noise is passed through a band-pass filter
; with varying centre frequency and bandwidth.

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 21

;p4 : amplitude

;p5 : attack
;p6 : decay
;p7 : minimum centre frequency
;p8 : maximum centre frequency
;p9 : minimum bandwidth in %
;p10 : maximum bandwidth in %

i1= 1/p3; one cycle
 i2 = p9*p7/100 ; minimum bandwidth
 i3 = p10*p8/100 ; maximum bandwidth
 k1 linen p4, p5, p3, p6 ; envelope
 k2 oscil p8-p7, i1, 1 ; varying centre freq
 k3 oscil i3-i2, i1, 2 ; varying bandwidth
 a1 rand 1 ; random numbers
 a2 reson a1, p7+k2, i2+k3, 4 ; filter
 a2 balance a2,a1 ; power balance
 out k1*a2 ; output
endin

;CS16.SC
; FROM PITCH TO NOISE SLIDING UP

f1 0 1024 7 0 512 .3 512 1; controls centre frequency
f2 0 1024 5 .001 512 1 512 .4; controls bandwidth

; p3 p4 p5 p6 p7 p8 p9 p10
;instr start dur amp attack dec centre Bandwidth
; frequency in %
; min max min max

i21 0 2 10000 .5 .7 260 650 .1 20
i21 2.9 .1 0

s

; FROM NOISE TO PITCH SLIDING DOWN

f1 0 1024 7 1 512 .3 512 0; controls centre frequency
f2 0 1024 5 .4 512 1 512 .001; controls bandwidth

; p3 p4 p5 p6 p7 p8 p9 p10
;instr start dur amp attack dec centre Bandwidth
; frequency in %
; min max min max

i21 0 2 10000 .7 .5 260 650 .1 20

e

7.5 FormantsFormantsFormantsFormants

It has been found that one of the major factors influencing timbre recognition in traditional
music is the enhancement of frequencies in certain regions of the audible spectrum that
particular types of instruments show. The enhanced regions are called formants.

This assumption is strengthened by the fact that there are significant differences in
waveform characteristics when different pitches produced with the same instrument are
examined.

Formants are due to the physical characteristics of an instrument and are independent of
the pitch produced.

For example, an oboe has its first and second formants at 1400 and 3000 hz respectively.
This means that if a 440 hz A pitch is produced, the harmonics falling in the 1400 and
3000 hz regions will be strongly emphasised as shown by the underlined values given
below.

440 880 1320 1760 2200 2640 3080 3520

Formant theory also applies to the most versatile of all instruments: the human voice.
Speech production theories describe human voice articulation in terms of pulses or bands
of noise produced by air passing through the vocal chords - pulses for voiced sounds and
noise for unvoiced sounds like P, T, K and other consonants. These sounds are then
filtered by the shape of the vocal tract, which changes dynamically according to the
position of the tongue, lips, jaws, etc, thus changing the formant regions. This principle is
used to produce very articulated sounds with instrument 22: A very rich pulse (maximum
possible harmonics)is passed through five band-pass filters in parallel with centre
frequencies in different regions of the audible spectrum: 500, 1000, 2000, 3300 and 4800
hz. These frequencies and bandwidths are made fluctuate by random number interpolators
(RANDI).

To enhance the articulation of the sounds the following steps are taken:

1. The frequency of the random number generators is varied by a function that makes

it fluctuate between a minimum and a maximum value given in the score by p8 and
p9. The control variable determining this frequency is kfrndkfrndkfrndkfrnd. In this particular score,
the frequency fluctuates between 3 and 50 hz.

2. The fundamental frequency of the pulse generator is made to fluctuate by up to 1/5

of its value using the same function. The change in pitch provides for expressivity in
a similar way to that in which the human voice is articulated. The control variable
determining the frequency of the fundamental is kprndkprndkprndkprnd.

 The output of the filters is balanced with a sine wave especially generated for this
purpose. The reason for not using the pulse generator to balance it is that a pulse is an
extreme type of signal with most of its energy bursting very quickly followed by almost
silence until the next pulse appears. Therefore if it were used for balancing purposes, the
output would be distorted.
The graphical representation of this instrument 22 is shown below.

Diagram 29 Voice-like Instrument 22

The score contains a short and very articulated sound, using a fundamental of 70 hz and a
random number frequency that varies between 10 and 15 hz, followed by two other events
producing distorted versions by changing the fundamental, the duration and random
number frequency more drastically. Both sounds were used towards the end of the piece
Dreams of Being and can be heard in in Csound tape example 17.

The orchestra and the score are given next.

; CS17.ORC - FILTERED PULSE WITH FORMANTS
; A pulse is passed through 5 parallel bandpass
; filterswith varying centre frequency and
; bandwidth.

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 22

;p4 : amplitude
;p5 : fundamental
;p6 : attack
;p7 : decay
;p8 : minimum frequency of RANDI
;p9 : maximum frequency of RANDI

ip3 = 1/p3 ; one cycle
 ipfl = p5/5 ; pitch fluctuation
 iffl = p9-p8 ; freq fluctuation of RANDI

 inh = int(sr/2/(p5+ipfl)); maximum harmonics
 kenv linen p4,p6,p3,p7 ; envelope

 krand oscil .5, ip3, 2 ; oscil between -.5 and .5
 krand = krand + .5 ; correct between 0 and 1

 kfrnd = p8+iffl*krand ; actual frequency of RANDI
 kprnd = p5+ipfl*krand ; variable pitch

 a1 buzz 1,kprnd,inh,1 ; pulse
 abal oscil 1,p5,1 ; balancing sine wave

;random number generator for each filter

 k1 randi 1,kfrnd,.12 ; random generator
 k2 randi 1,kfrnd,.23 ; for each filter
 k3 randi 1,kfrnd,.34 ; each with a
 k4 randi 1,kfrnd,.45 ; different seed
 k5 randi 1,kfrnd,.56 ;

;formant filters

 a2 reson a1, 500+k1*100, 30*(1+k1), 0 ; 500 hz bandpass
 a3 reson a1, 1000+k2*200, 40*(1+k2), 0 ; 1000 hz bandpass
 a4 reson a1, 2000+k3*300, 80*(1+k3), 0 ; 2000 hz bandpass
 a5 reson a1, 3500+k4*500, 200*(1+k4), 0 ; 3500 hz bandpass
 a6 reson a1, 4800+k5*800, 400*(1+k5), 0 ; 4800 hz bandpass

;mix outputs

 a7 = a2+a3+a4+a5+a6

 a7 balance a7,abal ; balance intensity

 out kenv*a7 ; output
endin

;CS17.SC

f1 0 4096 10 1
f2 0 512 7 0 50 .6 50 .8 50 .3 50 .7 50 .9 50 .4
50 .1 50 .01 62 .2

; p3 p4 p5 p6 p7 p8 p9
;instr start dur amp fund. atck dec random freqs.
; freq minmax

i22 0 .5 5000 70 .1 .1 10 15

i22 1 5 2500 490 4 .5 40 45
i22 1 5 2500 615 4 .5 40 45
i22 3.5 7 2500 60 .5 1.5 3 50

e

7.6 Example Example Example Example ---- Extension of Risset's Beating Harmonics Principle Extension of Risset's Beating Harmonics Principle Extension of Risset's Beating Harmonics Principle Extension of Risset's Beating Harmonics Principle

In the previous chapter, Risset's beating harmonics were shown as an example of
ingenuity using additive synthesis. However, once the basic sound was achieved, there
was little else that could be done to modify it. In fact, the frequencies of the components
had to be carefully chosen in such a way that very slow envelopes were produced. Also,
the results were all more or less harmonics of a fundamental drone.

This section will deal with an extension of this principle using subtractive synthesis
techniques to produce an instrument that affords great flexibility. The main advantages of
this extended technique are now listed:

1. The beating partials do not have to be harmonics. Any reasonable frequency values

can be ascribed to the beating partials.

2. The frequencies of the beating partials can change in time.

3. The envelopes can have any frequency.

4. The envelopes can have any shape.

5. It is possible to filter any sound. Thus, advantage can be taken of gesture and

morphology of concrete sound sampled into the system.

The first step in order to arrive at this desired instrument will be to explain and emulate the
beating harmonics of the previous chapter. In it, nine frequencies were chosen as follows:

110.12 = 110 + 0.12 = 110 + 4 x 0.03
110.09 = 110 + 0.09 = 110 + 3 x 0.03
110.06 = 110 + 0.06 = 110 + 2 x 0.03
110.03 = 110 + 0.03 = 110 + 1 x 0.03

110.00 hz
109.97 = 110 - 0.03 = 110 - 1 x 0.03
109.94 = 110 - 0.06 = 110 - 2 x 0.03
109.91 = 110 - 0.09 = 110 - 3 x 0.03
109.88 = 110 - 0.12 = 110 - 4 x 0.03

It can be seen that 4 frequencies were chosen above and 4 below a central value of 110
hz. Instead of 110 hz a general value ffff could be chosen, with nnnn frequencies above it and nnnn
frequencies below: a total 2n+12n+12n+12n+1 frequencies. A general increment represented by the letter
dddd could replace the value of 0.03 hz. The frequencies used can now be represented as
follows:

f + n x d
.
.
f + 2 x d
f + 1 x d

f

f - 1 x d
f - 2 x d
.
.
f - n x d

If sine waves are assumed, then the output could be written as

m(t) = sin [2 π ft] +
sin [2 π (f + d)t] + sin [2 π (f - d)t] +
sin [2 π (f + 2d)t] + sin [2 π (f - 2d)t] +
.
.
sin [2 π (f + nd)t] + sin [2 π (f - nd)t]

but it may be remembered that

 a-b a+b
sin(a) + sin(b) = 2 [cos(------) sin(-------)]

 2 2
therefore

sin[2 π (f + nd)t] + sin[2 π (f - nd)t] = 2 cos[2 π ft] sin[2 π (nd)t]
and

m(t) = sin [2 π ft] +

2 sin[2 π ft] cos [2 π dt] +

2 sin[2 π ft] cos [2 π (2d)t] +
.
.
2 sin[2 π ft] cos [2 π (nd)t]

= sin [2 π ft] { 1 + 2cos [2 π dt]
 + 2cos [2 π (2d)t]
 .
 .

+ 2cos [2 π (nd)t] }

 n

m(t) = sin [2 π ft] { 1 + 2 Σ cos [2 π (id)t] } (7.1)

 i=1

Expression (7.1) can be interpreted as a sine wave of frequency ffff with an envelope that is
the result of a sum of cosines of frequencies dddd, 2d2d2d2d, 3d3d3d3d ... ndndndnd. In the previous example, the
value of dddd was 0.03 hz. The envelope in the curly brackets is just a cosine oscillator of
fundamental frequency dddd, with a DC component (frequency = 0hz) and nnnn harmonics and
can be easily implemented using GEN9.

f1 0 512 9 0 .5 01 1 901 1 901 1 901 1 90 . . .

Now, if complex signals are used, then the corresponding harmonics will generate similar
waveforms, the difference being in the values of the frequency ffff and increment dddd. For
example, if we take the kthkthkthkth harmonic, its frequency will be kfkfkfkf and the increment will be kdkdkdkd.
We can then write

 n

mk (t) = sin [2 π (kf)t] { 1 + 2 Σ cos [2 π (ikd)t] } (7.2)

 i=1

The envelope in the curly brackets still has the same shape as above, with a different
fundamental frequency.

In order to generate any harmonic, a very narrow band-pass filter can be imposed on a
rich pulse. Then the previous envelope can be imposed. The implementation is shown in
CS18.ORC and CS18.SC. Csound tape example 18 contains a pulse followed by the
resulting beating harmonics after it is filtered.

; CS18.ORC
; Filters the output of BUZZ and gives it an amplitude envelope
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 23

;p4 : amplitude factor
;p5 : fundamental
;p6 : number of partials
;p7 : frequency of envelope
;p8 : envelope function
;p9 : centre frequency of band-pass filter
;p10: bandwidth as a percentage of centre frequency

 ibw = p8*p7/100 ; % bandwidth to hz
 kenv oscil p4, p7, p8 ; envelope
 ain buzz 1, p5, p6, 2 ; pulse generator
 afilt reson ain, p9, p10, 1 ; filter
 out kenv*afilt; output

endin

; CS18.SC
; It uses f1 as an envelope

f1 0 1024 9 0.001 1 0 1 2 90 2 2 90 3 2 90 4 2 90 ; harmonics env
f2 0 8192 10 1; sine for BUZZ

; p3 p4 p5 p6 p7 p8 p9 p10
;inst start dur ampl fund No of envl envl centre bw in
; factor freq parts freq func freq % of
; centre

i23 0 35 .4 20 250 .03 1 100 1
i23 06 . 200 .
i23 09 . 300 .
i23 12 . 400 .

i23 15 . 500 .
i23 18 . 600 .
i23 21 . 700 .
i23 24 . 800 .
i23 27 . 900 .
i23 30 . 1000 .

e

There is no reason to limit the source to a pulse generator. In fact, it is possible to process
an existing soundfile by reading it into an instrument. In order to do this two things are
necessary:

1. The soundfile has to be renamed to soundin.nnn, where nnn is a number between 1

and 999. soundin.1, soundin.33 and soundin.763 are examples of possible names.

2. The instrument has to include the Csound statement SOUNDIN. The general form

of SOUNDIN is

soundin nnn, skip

where

nnn is the number assigned to the soundfile soundin.nnn.

skip is the number of beats that are to be skipped from the beginning of the

soundfile.

Now it is possible to produce an instrument that has all the features mentioned at the
beginning of this section in addition to variable bandwidth of the filters. This is instrument
24, implemented in CS19.ORC.

This orchestra was run with CS19.SC in order to produce one of the basic sounds used in
the composition of Los Dados Eternos. This time the beating partials, at 100, 200, 350,
550, 800, 1100, 1450, 1850, 2300, 2800, 3350 and 3950 hz were clearly not harmonic.
The envelope repetition frequencies, from 1 to 12 hz were two orders of magnitude faster
than those in the original Risset sound. The input, soundin.1 was reminiscent of a low cry
and the result kept the gestural characteristics of the original. These two were
subsequently spliced together. Csound tape example 19 contains the original sound,
followed first by the processed result and then by their splice.

; CS19.ORC
; Filters soundfile SOUNDIN.NNN and gives it an envelope.
; The bandwidth of the filter fluctuates according to function 2

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 24

;p4 : skip
;p5 : frequency of envelope
;p6 : envelope function
;p7 : centre frequency of band-pass filter
;p8 : minimum bandwidth in %
;p9 : maximum bandwidth in %
;p10: scaling of filter
;p11: input file

 icyc = 1/p3 ; one cycle
 iminbw = p8*p7/100 ; min % bw to hz
 imaxbw = p9*p7/100 ; max % bw to hz
 kenv oscil p10, p5, p6 ; envelope
 kbw oscil imaxbw-iminbw, icyc, 2 ; bw fluctuation

 ain soundin p11, p4 ; input soundfile
 afilt reson ain, p7, iminbw+kbw, 1 ; filter
 out kenv*afilt; output

endin

; CS19.SC
; This inputs the soundfile SOUNDIN.1 and filters it.
; It uses f1 as an envelope and f2 as bandwidth fluctuation

f1 0 1024 9 0.001 1 0 1 2 90 2 2 90 3 2 90 4 2 90
f2 0 1024 5 1 700 0.0001 324 0.0001

; p3 p4 p5 p6 p7 p8 p9 p10 p11
;inst start dur skip envel envel ctre bw in % scaling input
; freq func freq min max factor sfile

i24 0 4.47 0 1 1 100 .5 100 5 4
i24 . . . 2 . 200
i24 . . . 3 . 350
i24 . . . 4 . 550
i24 . . . 5 . 800
i24 . . . 6 . 1100
i24 . . . 7 . 1450
i24 . . . 8 . 1850
i24 . . . 9 . 2300
i24 . . . 10 . 2800
i24 . . . 11 . 3350
i24 . . . 12 . 3950

e

PART IIIPART IIIPART IIIPART III
NonNonNonNon----Linear Synthesis TechniquesLinear Synthesis TechniquesLinear Synthesis TechniquesLinear Synthesis Techniques

8. Amplitude Modulation (AM)8. Amplitude Modulation (AM)8. Amplitude Modulation (AM)8. Amplitude Modulation (AM)

Amplitude modulation includes all the techniques that produce changes in the spectrum of
a sound by controlling its amplitude. The effectiveness of these techniques is due to the
fact that they distort the input signal, changing its shape in such a way that new frequency
components that were not there in the first place are created: when the shape of a
waveform is altered, its spectrum changes.

This is different from filtering because of the fact that digital filters are linear: they do not
distort the signal and, as a consequence, they do not create new frequencies that were not
previously contained in the input. On the other hand, effective amplitude modulation must
be essentially non-linear: it must produce distortion.

Linear procedures process samples in only three possible ways

1. By delaying them.

2. By scaling, which is equivalent to multiplying a sample by a constant.

3. By adding or subtracting scaled samples.

Non-linear processes can raise a sample to a power, or multiply it by different coefficients
depending on its value, etc.

To illustrate the difference, imagine the following linear
amplifier:

y = Ax

All this does is multiply each sample by the number AAAA. If xxxx varies between -1 and 1, the

values of yyyy against those of xxxx can be plotted to obtain the following diagram

Diagram 30 Linear amplifier y = Ax

Therefore, if a sampled sine wave of frequency ffff is passed through this amplifier, the input
sine wave is represented by

X = sin(2 π ft)

The output of the amplifier will be

Y=Asin(2 π ft)

Thus, the output consists of a sine wave of exactly the same frequency as the input,
scaled by a factor A.

If, instead, the sine wave is passed through a non-linear device represented by

y = Ax2

then, plotting the values of yyyy against xxxx produces the following curve

Diagram 31 Non-linear amplifier y = Ax2

Feeding the sine wave to this function will produce

Y=A [sin(2 π ft)]2

But, from trigonometry :

 1 1
sin2x = --- - --- cos2x

 2 2

thus

 A A
Y = --- - --- cos(2(2 π f)t)

 2 2

 A A
= --- - --- cos(2 π (2f)t)

 2 2

There are now two terms contributing to the components of the output:

a constant which represents a component at 0 hz

a component at twice the frequency of the input.

Therefore, two components that did not exist in the input were created.

The respective outputs of the linear and the non-linear devices are shown next.

Diagram 32 Linear Non-Linear

 Output Output

Input

These two devices are implemented in CS20.ORC. CS20.SC sends a 440 hz waveform
first through a linear amplifier and then through the non-linear device. Csound tape
example 20 contains the results: when the linear amplifier is used, the frequency is
conserved, but in the case of the non-linear amplifier, the result is an octave higher (twice
the frequency) as predicted. The DC component is not heard therefore it does not
contribute to the perceived intensity. As a result, the non-linear output is not as loud.

; CS20.ORC - Linear and Non-linear amplifiers

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 25 ; linear amplifier y = Ax

;p4 : amplitude
;p5 : frequency
;p6 : attack
;p7 : decay
;p8 : function
;p9 : amplitude factor A

kenv linen 1,p6,p3,p7 ; envelope
 ain oscil 1,p5,p8 ; oscillator

 aout = p4*ain ; y = Ax
 out kenv*aout ; output
endin

instr 26 ; 2
 ; non-linear amplifier y = Ax

;p4 : amplitude factor A
;p5 : frequency
;p6 : attack
;p7 : decay
;p8 : function

 kenv linen 1,p6,p3,p7 ; envelope
 ain oscil 1,p5,p8 ; oscillator
 ; 2
 aout = p4*ain*ain ; y = Ax
 out kenv*aout ; output
endin

;CS20.SC

f1 0 8192 10 1

; p3 p4 p5 p6 p7 p8
;instr start dur amplif freq attack decay func
; factor

;linear amplifier
i25 0 2 25000 440 .3 .3 1

;non-linear amplifier
i26 3 2 25000 440 .3 .3 1

e

8.1 The Simplest Amplitude ModulatorThe Simplest Amplitude ModulatorThe Simplest Amplitude ModulatorThe Simplest Amplitude Modulator

One of the simplest ways to achieve non-linear amplitude modulation is by multiplying two
sine waves.

Take two sine waves of frequencies ffffcccc and ffffmmmm. The former will be called the carrier and the
latter the modulator. If the carrier is multiplied by the modulator, the output will be

o(t) = sin(2 π fct) sin(2 π fmt)

but from trigonometry

 1
sin(a) sin(b) = --- [cos(a+b) - cos(a-b)]

 2

therefore

 1
o(t) = --- [cos(2 π (fc+fm)t) - cos(2 π (fc-fm)t)]

 2

A look at this expression reveals that two components are created. One at the frequency
ffffcccc+ ffffm m m m and one at ffffcccc- ffffmmmm. The amplitude of each component is half of the amplitude of the

overall output. In other words, the resulting spectrum consists of two components, one of
them ffffmmmm hz below the carrier and the other ffffmmmm hz above it. These components are called

sidebands.
Diagram 33 shows an instrument that multiplies two waveforms, illustrating the changes in
the spectrum as well as displaying snapshots of possible inputs and the output they
produce.

Diagram 33 Side Band AM Modulator

Waveforms

Carrier Modulator

Output

It is worth discussing the difference frequency ffffcccc- ffffmmmm:

If the frequency of the carrier and the modulator are very close, ffffcccc- ffffmmmm will be a very small

number. For values of less than 15 hz, it will not be heard, becoming an envelope.
If the frequency of the modulator is higher than the frequency of the carrier, ffffcccc- ffffmmmm will be

negative. A negative frequency of a cosine wave reflects as a positive frequency of the
same value and phase because of the identity

cos(a) = cos(-a)

For example, if the frequency of the carrier is 300 hz and the frequency of the modulator is
500 hz, the resulting frequencies will be

300 + 500 = 800 hz

and

300 - 500 = -200 --> 200 hz.

CS21.ORC contains instr 27, which is the realization of the instrument shown in Diagram
33. CS21.SC produces examples of a carrier of 300 hz and for different modulators of 15,
110, 310, and 500 hz. In each example, the carrier and the modulator are first played
separately using instr 3 followed by the modulation. The resulting frequencies are:

Carrier(hz) Modulator(hz) Components(hz)
300 15 315 and 285
300 110 410 and 190
300 310 610 and 10 (not heard)
300 500 800 and 200

The orchestra and score are listed below and the sounds can be heard in Csound tape
example 21.

; CS21.ORC - Amplitude Modulator

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 3 ; Used to play pure sinewaves

 k1 linen p4, p6, p3, p7 ; envelope
 a1 oscil k1, p5, p8 ; oscillator
 out a1 ; output

endin

instr 27 ; Side bands only

;p4 : amplitude
;p5 : carrier
;p6 : attack
;p7 : decay
;p8 : modulator
;p9 : function

 kenv linen p4, p6, p3, p7 ; envelope

 acarr oscil 1, p5, p9 ; carrier
 amod oscil 1, p8, p9 ; modulator

 aout = kenv*acarr*amod ; modulation
 out aout ; output

endin

;CS21.SC

f1 0 8192 10 1

;SECTION 1 carrier 300 hz, modulator 15 hz

; p3 p4 p5 p6 p7 p8
;instr3 start dur amp carr. attack dec func
 i3 0 2 25000 300 .3 .3 1
i3 3 2 25000 15 .3 .3 1

; p3 p4 p5 p6 p7 p8 p9
;inst27 start dur amp carr. attack dec mod. func.

i27 6 2 25000 300 .3 .3 15 1

s

;SECTION 2 carrier 300 hz, modulator 110 hz

; p3 p4 p5 p6 p7 p8
;instr3 start dur amp carr. attack dec func

i3 1 2 25000 300 .3 .3 1
i3 4 2 25000 110 .3 .3 1

; p3 p4 p5 p6 p7 p8 p9
;inst27 start dur amp carr. attack dec mod. func.

i27 7 2 25000 300 .3 .3 110 1

s

;SECTION 3 carrier 300 hz, modulator 310 hz

; p3 p4 p5 p6 p7 p8
;instr3 start dur amp carr. attack dec func

i3 1 2 25000 300 .3 .3 1
i3 4 2 25000 310 .3 .3 1

; p3 p4 p5 p6 p7 p8 p9
;inst27 start dur amp carr. attack dec mod. func.

i27 7 2 25000 300 .3 .3 310 1

s

;SECTION 4 carrier 300 hz, modulator 500 hz

; p3 p4 p5 p6 p7 p8
;instr3 start dur amp carr. attack dec func

i3 1 2 25000 300 .3 .3 1
i3 4 2 25000 500 .3 .3 1

; p3 p4 p5 p6 p7 p8 p9
;inst27 start dur amp carr. attack dec mod. func.

i27 7 2 25000 300 .3 .3 500 1

e

In side band modulation, the frequency of the carrier is lost. Sometimes it is desirable to
keep some of it. In order to do this, the modulator multiplies only part of the carrier, as
shown in diagram 34.

CS22.ORC contains an instrument that realizes this: In addition to the carrier and the
modulator frequencies, it gets from the score the percentage of the waveform that is to be
modulated.

CS22.SC produces 2 sounds. Both have a carrier of 600 hz and a modulator of 15 hz. In
the first sound, 90% of the carrier is modulated. In the second only 10%. Csound tape
example 22 contains the results. It may be noticed that the second sound is actually a sine
wave with a tremolo. Therefore, tremolo is a special case of amplitude modulation, when
only a small percentage of a signal is modulated at a frequency that is below the audible
range. Small amounts of tremolo can add to the liveliness of a sound. Even better effects
are achieved by using an interpolating random number generator (RANDI) at frequencies
of arround 15 hz.

Diagram 34 Side Bands and Carrier.

Only part of carrier is modulated.

Waveforms

modulation of 10% of modulation of 90% of
carrier carrier

; CS22.ORC - Amplitude Modulator

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 28 ; Side bands and carrier

;p4 : amplitude
;p5 : carrier
;p6 : attack
;p7 : decay
;p8 : modulator
;p9 : percentage of carrier to be modulated
;p10 : generating function of carrier
;p11 : generating function of modulator

imod = p9/100.00 ; modulated part
 inomod = 1 - imod ; unmodulated part

 kenv linen p4, p6, p3, p7 ; envelope

 acarr oscil 1, p5, p10 ; carrier
 amod oscil 1, p8, p11 ; modulator

 aoutm = acarr*amod*imod ; modulated signal
 aoutnm = acarr*inomod ; unmodulated signal
 out kenv*(aoutm+aoutnm) ; output

endin
;CS22.SC

f1 0 8192 10 1

; p3 p4 p5 p6 p7 p8 p9 p10 p11
;instr start dur amp carr. attack dec mod mod% carr mod.
; func func

i28 0 2 25000 600 .3 .3 15 90 1 1

i28 3 10 1 1

e

8.2 Ring ModulationRing ModulationRing ModulationRing Modulation

This technique is just a generalisation of the case of two sine waves that are multiplied.
For example, if a carrier that is not a sine wave, but rather a waveform with component
frequencies ffffc1c1c1c1, ffffc2c2c2c2, ffffc3c3c3c3, etc. modulating it with a sine wave of frequency ffffmmmm will produce a

pair of frequencies for each component of the carrier:

fc1+ fm and fc1- fm

fc2+ fm and fc2- fm

fc3+ fm and fc3- fm

.

.
etc.

This can be seen in diagram 35.

Diagram 35

As an example, if a modulator with components at 50, 100 and 150 hz, and a carrier of
500 hz are given. The resulting frequencies will be

 50 hz modulating 500 hz: 450and550 hz
100 hz modulating 500 hz: 400and600 hz
150 hz modulating 500 hz: 350and650 hz

Instrument 26 can now be used with a modulator that is a complex waveform. CS23.ORC
is identical to CS22.ORC and CS23.SC contains
a complex modulator defined by function 2. A carrier of 300 hz is completely modulated by

a modulator with a fundamental of 212 hz and components at 424, 636, 848 and 1060 hz.

The resulting frequencies are:

212 hz on 300 hz : 512 and 88.
424 hz on 300 hz : 724 and -124 --> 724 and 124 hz.
636 hz on 300 hz : 936 and -336 --> 936 and 336 hz.
848 hz on 300 hz : 1148 and -548 --> 1148 and 548 hz
1060 hz on 300 hz: 1360 and -860 --> 1360 and 860 hz

The result can be heard in Csound tape example 23. The score is now listed.

;CS23.SC

f1 0 512 10 1
f2 0 512 10 1 .8 .7 .6 .5

; p3 p4 p5 p6 p7 p8 p9 p10 p11
;inst start dur amp carr attack dec mod mod% carr mod
; func func

i28 0 2 25000 300 .3 .3 212 100 1 2

e

8.3 Carrier to Modulator RatioCarrier to Modulator RatioCarrier to Modulator RatioCarrier to Modulator Ratio

In the last example, it could be noticed that the resulting sound was not definitely pitched,
more like a bell. The reason for this is that the the frequency of the carrier is not a multiple
of the modulator, in other words, the ratio between the frequencies cannot be represented
as a ratio of integers.

In fact, the ratio between the carrier and the modulator is a very important parameter when
determining the quality of the resulting spectrum. Therefore in order to have an idea of

what the output is going to be, it is worthwhile knowing the effects of the carrier to
modulator ratio on the spectrum.

Since the intention is just to evaluate qualitatively the results rather than to produce a
rigorous description of all the possible cases, the following assumptions will be adopted:

1. The carrier is a pure sine wave of frequency ffffcccc.

2. The modulator has at least two partials (otherwise this reverts to the simple case of

the product of two sine waves). Its fundamental is ffffmmmm.

3. The partials are actual harmonics.

4. They are consecutive (there are no harmonics missing between the highest and the

lowest component).

The following cases can then occur:

8.3.1 c/m = 1 , which means that ffffcccc = ffffmmmm

In this case, the fundamental of the output is equal to the frequency of the carrier (=
modulator fundamental). Also, if the modulator has M harmonics, the output will have M+1.

To illustrate this, assume the simplest case, in which the carrier is a sine wave of
frequency ffffcccc and the modulator has two partials: ffffcccc (= ffffmmmm) and 2f2f2f2fcccc, therefore M = 2. The
resulting components will be:

fc + fm1 = fc + fc = 2fc

fc + fm2 = fc + 2fc = 3fc

fc - fm1 = fc – fc = 0
fc - fm2 = fc - 2fc = -fc --> fc

It can be seen that the output has 2 + 1 = 3 harmonics out which ffffcccc is the fundamental.

8.3.2 c/m = 1/N , which means that ffffmmmm = NfNfNfNfcccc

Here, the modulator is a multiple of the carrier. This is a generalization of the previous
case. The fundamental will be

(N-1) x fc

For example, if the carrier is a sine wave of 100 hz and the modulator consists of two
partials at 300 and 600 hz, the modulator fundamental is 3 times the frequency of the
carrier, therefore the fundamental will be

(3-1) x 100=200 hz

This can be corroborated by looking at the resulting components.
100 + 600 = 700 hz
100 + 300 = 400 hz
100 - 300 = -200 hz --> 200 hz
100 - 600 = -500 hz --> 500 hz

The lowest component is 200 hz, as expected.

It can be noticed that there is a gap between the fundamental and the next harmonic of the
resulting sound. In fact, if the frequency of the modulator becomes higher, the gap
between the fundamental and the harmonics will grow. In general, this can be associated
with the production of brighter sounds.

8.3.3 c/m = N , which means that ffffcccc = NfNfNfNfmmmm

Here, the carrier is a multiple of the modulator. Assuming that the modulator M harmonics,
there are two possibilities:

1. If N is larger than M, or in other words, if the c/m ratio is larger than the highest

harmonic, then the fundamental of the output will be

(N - M) x f

For example, if the carrier frequency is 1000 hz, and the modulator consists of the
three components 200, 400 and 600 hz, the fundamental will be:

(5 - 3) x 200 = 2 x 200 = 400 hz

which is the difference between the carrier and the highest partial,namely 600 hz.

Summarizing: the new fundamental will be the difference between the carrier
frequency and the highest component of the modulator.

2. If M is larger or equal than N, that is, if the highest harmonic is larger or equal than

the c/m ratio, the fundamental of the resulting sound will be equal to the fundamental
of the modulator.

For example, if the carrier frequency is 400 hz, and the modulator consists of the
three components 200, 400 and 600 hz, the fundamental will be 200 hz.

This can be checked by finding all the frequencies produced.

200 modulating 400 --> 200 and 600 hz
400 modulating 400 --> 0 and 800 hz
600 modulating 400 --> -200 and 1000 hz
The component at 0 hz (DC) is not heard, thus the output is perceived as having a
fundamental is 200 hz, as expected.

8.3.4 Non-Integer Ratio

In the three previous cases the carrier to modulator ratio could be expressed as the ratio
between two integers. Next the case in which c/m cannot be expressed as a ratio of
integers is discussed.

Before we proceed with this case, it should be made clear that in computer terms there is

no such a thing as an irrational number - (a number that cannot be expressed as a ratio of
integers) - since computers deal with finite values. For example, the number 3.1415927
can be expressed as

31'415,927

10'000,000

which is formally a ratio of integers. However, when these integers are large, the practical
results are identical to the case of irrational numbers.

Back to this case, when the ratio between carrier and modulator starts deviating from the
(small) integer to integer relationship, the sound will become less and less pitched.

Values that are close but are not exactly an integer ratio produce a desirable effect closer
to the characteristics of real life instruments. Since the partials are almost harmonics but
not quite, the beating patterns between them produce a livelier sound.

CS24.ORC contains instr 29, which is a modification of instr 28.
Instead of being given the frequency of the modulator, it
requires the carrier to modulator ratio (c/m).

CS24.SC uses a carrier of 250 hz, a modulator with 5 partials and different c/m ratios to
produce the four following sounds.

1. The carrier is half of the modulator (c/m = .5). The result will be a pitched sound at

250 hz.

2. The carrier is twice the modulator (c/m = 2). c/m is smaller than the number of

partials, which is 5, therefore, according to section 8.3.3, the result will be the
fundamental of the modulator. Since c/m = 2, the fundamental of the modulator is half
of that of the carrier, i.e. 125 hz. Thus, the resulting sound will be an octave lower.

3. c/m is close to .5 (q/m = .501). Still a pitched sound of about 250 hz but livelier.

4. c/m is far from .5 (c/m = .35355). The sound is more like a bell.

Csound tape example 24 demonstrates these sounds. The orchestra and the score are
listed below.

; CS24.ORC - Amplitude Modulator

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 29 ; Side bands and carrier
 ; carrier and modulator with
 ; different generating functions

;p4 : amplitude
;p5 : carrier
;p6 : attack
;p7 : decay
;p8 : carrier to modulator ratio. Should not be 0.
;p9 : percentage of carrier to be modulated
;p10 : carrier function table
;p11 : modulator table

 imod = p9/100.00 ; modulated part
 inomod = 1 - imod ; unmodulated part

 imf = p5/p8 ; modulator frequency

 kenv linen p4, p6, p3, p7 ; envelope

 acarr oscil 1, p5, p10 ; carrier
 amod oscil 1, imf, p11 ; modulator

 aoutm = acarr*amod*imod ; modulated signal
 aoutnm = acarr*inomod ; unmodulated signal
 out kenv*(aoutm + aoutnm) ; output

endin

;CS24.SC

f1 0 512 10 .9 1 .78 .07 .24 .53 .09 .46
f2 0 512 10 1 .46 .56 .87 .35

; p3 p4 p5 p6 p7 p8 p9 p10 p11
;instr start dur amp carr. attack dec c/m mod% carr mod
; func func

i29 0 1.5 25000 250 .1 1 .5 95 1 2

i29 2.5 2 . . .

i29 5 501 . . .

i29 7.5 35355 . . .

e

8.4 Dynamic Spectrum Dynamic Spectrum Dynamic Spectrum Dynamic Spectrum ---- Examples Examples Examples Examples

As usual, the best situation is one in which a dynamic spectrum can be produced and
controlled. In order to achieve this, the following parameters can be made to change in

time:

1. The overall amplitude.

2. The frequency of the carrier.

3. The Carrier to Modulator Ratio (c/m)
4. The percentage of the carrier that is modulated.

Instrument 28, in CS25.ORC is an implementation of a ring modulator in which these four
parameters change each according to different function tables. This instrument is very
versatile and can produce the most dissimilar sounds.

CS25.SC uses it to produce the following:

8.4.1 Section 1

A short pitched percussive sound, similar to that made by a hollow wood instrument, is
produced by changing very quickly from a highly inharmonic to a more or less harmonic
spectrum.

This is done by varying the c/m ratio from 2.0397 to 3 and the modulated percentage from
1 to 0 at the beginning of the sound in 1/16th of the total duration. The sound has to be
very short, about .05 seconds or less. Otherwise, the percussive part will be smeared.
If the duration through which the change from inharmonic to harmonic spectrum takes
place is made longer, the result is a less pitched sound, and if it is made shorter, a more
pitched and metallic sound, like a glockenspiel or vibraphone, will be heard.

The pitch of the carrier is left constant and the overall envelope has a very sharp attack
and a quick decay in two stages.

The shape of the four time varying parameters can be seen in the following diagram.

Diagram 36 Short Percussive Pitched Sound Funtions

8.4.2 Section 2

A low bouncy sound is followed by a long glissando that fans out when it reaches its
lowest point.

The bouncy quality is produced just by extending the duration of the percussive sound of
the previous section. In order to achieve a softer attack the overall amplitude, c/m ratio and
percentage of modulation change in a more gradual fashion. This can be seen in diagram
37.

Diagram 37 Low Bouncy Sound Functions

Diagram 38 describes the function tables of the second sound in this section. It should be
noticed that there is a sudden increase of overall amplitude after about 2 seconds, that
coincides more or less with the quickest frequency slide. When the overall amplitude
becomes more or less stable, the fan out effect is achieved by changing the c/m ratio from
1 (harmonic) to .7001 (inharmonic). In order to avoid discontinuities, the modulation
percentage increases gradually at this point giving the impression of a real fan out of
frequencies.

Finally, it can also be seen that during the first 2 seconds, the percentage of modulation
goes from 0 to 100% and back to 0, adding life to the pitched glissando sound, that first
goes slightly up and then begins to descend, following the frequency function table.

8.4.3 Section 3

A bell-like sound is produced. The main characteristic of bell sounds is that they are
initially very inharmonic and dissolve more or less into a sine wave, while the amplitude

envelope attacks very quickly (when the bell is hit), decays quickly at the beginning and
slows its decay as time goes by. Therefore c/m has to be very inharmonic (1.4142) and
has to control 100% of the sound at the beginning. The modulated percentage has to
decrease to 0 in order to turn completely into the carrier: a sine wave. This is shown in
diagram 39.

Diagram 38 Glissando - Fan Out Functions.

Diagram 39 Bell-like Sound Functions

The orchestra and the score are listed below. The score, CS25.SC, shows a new feature
of Csound. Whenever it is required to interpolate between two values in the same
parameter field (in this case p4p4p4p4), the symbol '>>>>' can be used. In the current score, the
symbol is used to produce a gradual increase in amplitude amounting to a crescendo.
The sounds produced can be heard in Csound tape example 25.

; CS25.ORC - Dynamic Spectrum Ring Modulator

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 30 ; Variable parameter amplitude modulation
 ; instrument.
 ; The following can change in time :
 ;overall amplitude, carrier frequency,
 ; c/m ratio, percentage of the carrier that

 ; is modulated.

;p4 : max amplitude
;p5 : highest carrier pitch
;p6 : max carrier to modulator ratio (c/m)
;p7 : function table controlling amplitude
;p8 : function table controlling carrier pitch
;p9 : function table controlling c/m ratio
;p10 : function table controlling modulation percentage

 ; one cycle

 ip3 = 1.0/p3

 ; pitch frequency conversion

 ifr = cpspch(p5)

 ; envelopes

 kamp oscil p4,ip3,p7 ; amplitude
 kcar oscil ifr,ip3,p8 ; carrier freq
 kcmr oscil p6,ip3,p9 ; c/m
 kmp oscil 1,ip3,p10 ; modulation %

 ;oscillators

 acarr oscil 1, kcar, 10 ; carrier
 amod oscil 1, kcar/kcmr,11 ; modulator

 aoutm = acarr*amod*kmp ; modulated signal
 aoutnm = acarr*(1-kmp) ; unmodulated signal

 ;mix and output

 out kamp*(aoutm+aoutnm)

endin

;CS25.SC

;SECTION 1

t 0 120 4 120 6 140 6 250 8.6 40 8.8 60

; percussive sound functions

f1 0 512 7 0 32 1 64 .3 384 0
f2 0 512 7 1 512 1
f3 0 512 7 0.6799 32 .6799 160 1 384 .9808
f4 0 512 7 1 32 .1 414 .11

; carrier and modulator functions

f10 0 8192 10 1 ; carrier
f11 0 8192 10 1 .9 .8 .7 .6 .5 .6 .7 .8 ; modulator

; p3 p4 p5 p6 p7 p8 p9 p10
;instr start dur max highest max amp carr c/m mod%
; amp carr. c/m func func func func
; pitch

i30 0 .1 5000 9.03 3 1 2 3 4
i30 .2 . 1000
i30 .4 . >
i30 .6 . >
i30 .8 . >

i30 1 . 25000
i30 2 . . 10.02

i30 3.5 . 15000 9.07
i30 3.7 . 15000
i30 3.85 . 15000
i30 4 . 15000 10.04
i30 4.4 . > 9.10
i30 4.8 . > 10.06
i30 5.2 . > 10.02
i30 5.6 . > 10.08

i30 6 . 32000 11.01
i30 6.2
i30 6.4
i30 6.6 . >
i30 6.8 . >
i30 7.0 . >
i30 7.2 .09 >
i30 7.4 .085 >
i30 7.6 .08 >
i30 7.8 .075 >
i30 8.0 .07 >
i30 8.2 .065 >
i30 8.4 .06 >
i30 8.6 .05 8000

s

;SECTION 2

; low 'bounce' functions

f1 0 1024 7 0 32 1 64 .6 128 .3 800 0
f2 0 512 7 1 512 1
f3 0 512 7 .7057 64 .45 64 1 384 .9980
f4 0 512 7 1 64 .6 64 .3 128 0

; gliss and fan sound functions

f5 0 512 7 0 128 .2 64 1 32 .8 96 .7 192 0
f6 0 512 7 1 64 1.02 64 .9 64 .8 64 .6 256 .64
f7 0 512 7 1 128 1 0 .7001 384 .7
f8 0 512 7 0 64 1 64 0 192 1 64 .8 128 1

; carrier and modulator functions

f10 0 8192 10 1 ; carrier
f11 0 8192 10 1 .9 .8 .7 .6 .5 .6 ; modulator

; p3 p4 p5 p6 p7 p8 p9 p10
;instr start dur max highest max amp carr c/m mod%
; amp carr. c/m func func func func
; freq pitch

i30 1 1 30000 6.01 1 1 2 3 4
i30 1.75 9 30000 9.01 1 5 6 7 8

s

; SECTION 3

; Bell-like sound functions

f1 0 2048 7 0 4 1 128 .6 280 .2 1200 0
f2 0 512 7 1 512 1
f3 0 512 7 1 512 1
f4 0 512 7 1 100 .65 100 .4 312 .05

; carrier and modulator functions

f10 0 8192 10 1 ; carrier
f11 0 8192 10 1 .9 .8 .7 .6 ; modulator

; p3 p4 p5 p6 p7 p8 p9 p10
;instr start dur max highest max amp carr c/m mod%
; amp carr. c/m func func func func
; freq pitch

i30 1 4 30000 8.06 1.4142 1 2 3 4

e

9. Waveshaping9. Waveshaping9. Waveshaping9. Waveshaping

In the previous chapter, the outputs of a sine wave going through a linear amplifier and a
non-linear processor that squares it were discussed. Each of these devices was
characterized by a function that relates the input with the output. The function
characterizing the linear amplifier was given by

y = Ax

and the squaring device was represented by the relation

y = Ax2

These functions were also described graphically in diagrams 30 and 31 above.

In general, every device, linear or non-linear can be described in terms of a mathematical
relation between the input and the output. This relation is called the transfer function. If the
input and the transfer function are known, it is possible to predict what the output will be.
Therefore, the process can now be described as follows:

SIGNAL--->TRANSFER FUNCTION--->OUTPUT

The process by which a signal is distorted by a non-linear transfer function in order to alter
its spectrum is called waveshaping. Examples of non-linear transfer functions can be
found in a device that outputs the square of a signal, or a processor that multiplies it by a
gain factor that depends on the actual value of the signal itself.

Csound tape example 26 contains the outputs obtained by passing a sine wave through
devices with different transfer functions. These can be seen in the following diagram.

Diagram 40 Examples of Transfer Functions

The first is an example of a linear filter, the sine wave is not distorted but rather only
multiplied by a constant factor.

In the second case, a non-linear function is used. If the value of the sine wave is below .7,
it will be multiplied by a certain value but if it is larger than .7, it will be multiplied by a
smaller instead value. The effect is one of compression around an amplitude of .7.

In case 3, the transfer function has abrupt leaps. This means that the value of the output
signal will change very quickly at some points. But quick changes in amplitude mean high
frequency components: abrupt leaps or sharp changes in direction of the transfer function
produce infinite harmonics, exceeding the Nyquist frequency and causing aliasing.

In case 4, the function is symmetrical with respect to the centre. A function that has this
property is called odd and its output contains only odd harmonics (the fundamental, third
harmonic, fifth, etc.).

Conversely, when a function is symmetrical with respect to the vertical axis, like in case 5,
it is called even and only produces even harmonics. For this reason, the frequency of the
fundamental (first harmonic) will not appear in the output, which sounds an octave above,
as can be heard in the tape example.

9.1A Waveshaping InstrumentA Waveshaping InstrumentA Waveshaping InstrumentA Waveshaping Instrument

This section, shows how to build a basic waveshaping instrument. The principle is simple:
the transfer function can be represented by a table that consists of a series of numbers
representing the values that should multiply the amplitude of the input. Each of this values
can be addressed by indicating its position in the table, referred as the index. Diagram 41
shows a function and its representation in a table that has 11 points.

Diagram 41 Waveshaping Function Table

 Index 0 1 2 3 4 5 6 7 8 9 10
 TABLE
 Value -1 -.875 -.75 -.5 -.25 0 .25 .5 .75 .875 1

If a sine wave is fed to the input, its value determines an index in the table. The value of
the function corresponding to that index determines the output. From the diagram, it can
be seen that when the value of the sine wave is 0, the corresponding multiplier is the
middle of the table, in this case: the fifth value (index = 5).

When the sine wave is -1, the multiplier is the first number of the table (index = 0). When it
is 1, the multiplier is the last value of the table (index = 10).

This relationship between the sine wave and the index can be put as follows:

index=(value of sine + 1) x 5

If the value is 1 : index = (1+1)x5 = 2x5 = 10
If the value is 0 : index = (0+1)x5 = 1x5 = 5
If the value is -1: index = (-1+1)x5 = 0x5 = 0

It may be noticed that the size of the table is 10 (= 5x2), thus a generalization of the
formula can be written for any size:

Index = (value of sine + 1) x (table size/2)

For values in between, the result of this formula may not be an integer, therefore it has to
be rounded down to an integer value. This means that if the table is very small, a large
error will be introduced when rounding. Therefore, the table has to be quite large (ideally
65536 for 16 bit resolution but sizes of 8192 may work reasonably well).

The previous formula can be made simpler if instead of changing from 0 to 10, the index
changed from -5 to 5. Then

index=value of sine x table size/2

If the value is 1 : index = 1x5 = 5
If the value is 0 : index = 0x5 = 0
If the value is -1 : index = -1x5 = -5

This is equivalent to starting the table in the middle: if the index is positive the values after
the middle of the table are referred, and if the index is negative, the reference is to the
values before the middle. Therefore, it is useful to have an offset that indicates where to
start the table. In the previous case the offset is 5 and the index varies from -5 to +5.

Generalizing again, in order to have the middle of the table as a starting point:

1.The offset must be

offset = (table size - 1) / 2

2.The index should vary between +offset and -offset.

In the previous example:

offset = (11 - 1)/2 = 10/2 = 5

and the index varies between -5 and 5.

The previous table is easy to handle since it has a middle value, but if instead of having 11
entries, the table had 12, it would not be possible to find a middle value. Nevertheless,
Csound allows definition of the size of a function as a power of two less one (2n- 1), which
will always be odd.

Now that indexing of a function table has been explained, it is necessary to examine the
statement that finds the value corresponding to the index. It is actually called TABLE, and
its general form is now given

artableindex, func (, mode, offset, wrap)
where

ar is the table value corresponding to the index.

Index is exactly what it means.
func is the function table number (in the score).

mode is an optional facility in Csound that allows normalization, which means that

the index can be specified as a fraction between 0 and 1, in which case mode
must be 1 (normalized mode). Otherwise it should be set to 0 (raw mode), its
default value.

offset is an optional offset from the beginning of the table. Thus, the table can begin

from any point. This is very useful for inputs that can assume negative values,
like a sine or a cosine, in which case the index is taken from the middle of the
table.

For example, if a sine wave that changes between -1 and 1 is waveshaped
with a table of size tablesize: if the table is read in the raw mode, it can be
started at the middle by making

offset = int((tablesize-1)/2)

and the index can be made to vary from -offset to +offset. Alternatively, if the
table is read in normalized mode, the offset has to be offset = .5

wrap is an option that enables the use of indexes larger than the table size. If an

index is bigger than the size of the table, and wrap is set to 1, it is 'wrapped

around' to the beginning.

For example if the size of the table is 33 and the index is 35, the 'wrapped
index' is 2. Arithmetically, this can be expressed as

wrapped index = 35 modulo 33 = 2

 The default value is 0, in which case there is no wrap.

CS26.ORC contains the implementation of a waveshaping instrument. CS26.SC was used
to produce the examples of waveshaping functions displayed above (diagram 40).

; CS26.ORC - Waveshaper

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 31 ; Basic Waveshaping instrument

;p4 : amplitude
;p5 : frequency
;p6 : attack
;p7 : decay
;p8 : oscillator function
;p9 : waveshaping function

 ioffset = .499 ; offset
 k1 linen p4, p6, p3, p7 ; envelope
 a1 oscil ioffset, p5, p8 ; oscillator

 awsh table a1,p9,1,ioffset ; waveshaping value
 out k1*awsh ; output

endin

;CS26.SC

; OSCILLATOR

f1 0 8192 10 1

; WAVESHAPING FUNCTIONS

;linear
f2 0 8193 7 -1 8193 1

;non-linear
f3 0 8193 7 -1 2048 -0.7 4097 0.7 2048 1

;leaps
f4 0 8193 7 -1 2048 -0.5 0 -0.3 2048 0.1 0 0.4 2048 0.5
 0 0.7 2049 1

;odd function
f5 0 8193 9 1 1 180 2 .9 180 3 .8 180 4 .7 180 5 .6 180

;even function
f6 0 8193 9 1 1 90 2 .9 90 3 .8 90 4 .7 90 5 .6 90

;EVENTS

; p3 p4 p5 p6 p7 p8 p9
;inst start dur amp freq attack dec osc wsh
; func func

i31 0 1 32000 440 .1 .1 1 2
i31 1.5 1 . . .1 .1 1 3
i31 3 1 . . .1 .1 1 4
i31 4.5 1 . . .1 .1 1 5
i31 6 1 . . .1 .1 1 6

e

9.2 Avoiding aliasingAvoiding aliasingAvoiding aliasingAvoiding aliasing

When examining the examples of transfer functions in diagram 40, a certain difficulty has
been pointed out: if a transfer function has sharp changes of direction or contains leaps,
aliasing will take place because an infinite number of harmonics will be produced.
Therefore, it is necessary to use only well behaved functions. This is ensured by utilizing
polynomials.

In principle, any smooth function can be modelled by a polynomial. Furthermore, there is
another characteristic that makes polynomials very desirable waveshapers: The highest
harmonic produced can be predicted. In fact, it can be shown that the highest harmonic
produced by waveshaping a sine wave through a polynomial transfer function is the one
corresponding to the the highest power (the order) of that polynomial.

For example, the highest harmonic produced by the waveshaping function : 1 + x + 5x2 +
x4 is the fourth harmonic because the highest power in the polynomial is 4. It is now easy
to avoid aliasing if the frequency of the input and the order of the transfer function are
known.
Csound offers a GEN routine that produces polynomials: GEN3. It is given the coefficients
(multipliers of the powers of x). Formally, the data is given is as follows:

minin maxin c0 c1 c2 c3 ...

where

minin is the minimum input value expected. Usually sine waves between -1 and 1

are used. When this is the case, minin is -1.

maxin is the maximum input value expected. If a sine wave between -1 and 1 are

used. When this is the case, maxin is 1.

c0, c1.. are the coefficients of the polynomial. c0 is a constant, c1 multiplies x, c2

multiplies x2 ...

For example, in order to produce the polynomial

1 + 2x + 3x2 + 5x3 + x4

assuming an input waveform between -1 and 1, a function can be defined as
follows:

f1 0 8192 3 -1 1 1 2 3 5 1

9.3 Chebyshev PolynomialsChebyshev PolynomialsChebyshev PolynomialsChebyshev Polynomials

It is very helpful to know what the highest harmonic is in order to avoid aliasing. It would be
even more useful if it were possible to predict accurately the relative amplitude of each
harmonic, since this would allow greater control of the spectrum. Fortunately, there is a set
of polynomials called Chebyshev Polynomials that allow this type of control.

Each Chebyshev Polynomial produces a different harmonic when a sine wave is used as
an input. Take for example the polynomial that produces the second harmonic (second
order polynomial):

T2(x) = 2x2 - 1

Applying a sine wave to this transfer function and remembering that
 1 1
sin2a = --- - --- cos(2a)
 2 2

we obtain

 1 1
T2(sin(2 π ft)) = 2 (--- - --- cos(2(2 π ft))) - 1
 2 2

 = 1 - cos(2(2 π f)t) - 1

 = cos(2 π (2f)t)

This is a cosine of twice the frequency, corresponding to the second harmonic.

The first five Chebyshev polynomials of first kind are:

T0(x) = 1 Produces a DC component
T1(x) = x Produces the fundamental
T2(x) = 1 - 2x2 Produces the second harmonic
T3(x) = 4x3 - 3x Produces the third harmonic
T4(x) = 8x4 - 3x2 + 1 Produces the fourth harmonic

It is now possible to control each resulting harmonic when a sine wave is used by
combining the polynomials with different relative amplitudes. For example, in order to
obtain a spectrum described below

Harmonic Relative Amplitude

1 1
2 .3
3 0
4 .7

the following transfer function can be used

y = T1(x) + .3 T2(x) + .7 T4(x)

If GEN3 is used, the each Chebyshev polynomial has to be replaced and then the
expression has to be simplified. Nevertheless, this is not necessary because Csound
provides a GEN routine especially designed for use with Chebyshev transfer functions.
This is GEN13.

The data required by GEN13 is

ampin scaling h0 h1 h2 h3 ...

where

ampin is the maximum input amplitude expected. Usually sine waves between -1 and

1 are used. When this is the case, ampin = 1.

scaling is a scaling factor that multiplies the input after it is waveshaped. This is also

usually 1 because the common way to control the amplitude is by using an
envelope within the orchestra.

h0, h1.. are the relative amplitudes of the Chebyshev polynomials, or in other words,

the relative amplitudes of the harmonics. It is worth remembering that h0
refers to a DC component, and not to the fundamental (h1).

In the next example, instrument 31 is used to produce the first 9 harmonics of a sine wave,
which can be heard in Csound tape example 27. First, the sine wave is played with
instrument 3, and then, GEN13 produces a DC component (that will not be heard),
followed by the fundamental and the harmonics up to the ninth. This is done by setting all
the relative amplitudes to zero except the one that represents the desired harmonic.

; CS27.ORC

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 3 ; Simple Oscillator

 k1 linen p4, p6, p3, p7 ; envelope
 a1 oscil k1, p5, p8 ; oscillator
 out a1 ; output

endin

instr 31 ; Basic Waveshaping instrument

;p4 : amplitude
;p5 : frequency
;p6 : attack
;p7 : decay
;p8 : oscillator function
;p9 : waveshaping function

 ioffset = .5 ; offset
 k1 linen p4, p6, p3, p7 ; envelope
 a1 oscil ioffset, p5, p8 ; oscillator
 awsh table a1,p9,1,ioffset ; waveshaping value
 out k1*awsh ; output

endin

;CS27.SC
; Use of GEN13 to produce a harmonic series out of a sine
; wave.

f1 0 8192 10 1 ; sine wave

f2 0 8193 13 1 1 1 ; DC
f3 0 8193 13 1 1 0 1 ; 1 harmonic (fund)
f4 0 8193 13 1 1 0 0 1 ; 2 harmonic
f5 0 8193 13 1 1 0 0 0 1 ; 3 harmonic
f6 0 8193 13 1 1 0 0 0 0 1 ; 4 harmonic
f7 0 8193 13 1 1 0 0 0 0 0 1 ; 5 harmonic
f8 0 8193 13 1 1 0 0 0 0 0 0 1 ; 6 harmonic
f9 0 8193 13 1 1 0 0 0 0 0 0 0 1 ; 7 harmonic
f10 0 8193 13 1 1 0 0 0 0 0 0 0 0 1 ; 8 harmonic
f11 0 8193 13 1 1 0 0 0 0 0 0 0 0 0 1 ; 9 harmonic

; SINE WAVE

; p3 p4 p5 p6 p7 p8
;instr start dur amp freq attack decay func

i3 0 1 25000 200 .1 .1 1

; HARMONICS

; p3 p4 p5 p6 p7 p8 p9
;inst start dur amp freq attack dec osc wsh
; func func

i31 1 .5 25000 200 .1 .1 1 2
i31 + 3
i31 + 4
i31 + 5
i31 + 6
i31 + 7
i31 + 8
i31 + 9
i31 + 10
i31 + 11

e

9.4 Distortion Index and DynamicDistortion Index and DynamicDistortion Index and DynamicDistortion Index and Dynamic Spectrum Spectrum Spectrum Spectrum

So far, sine waves with amplitude 1 have been considered. The effects of having an
amplitude different than 1 will now be examined. Take for example the sine wave:

A sin(2πft)

Suppose this waveform is sent through a device with the following transfer function

y = x + x3

The output will be

A sin(2 π ft) + A3 sin3(2 π ft)

After some manipulation, the result is:

 3A3 A3

(A + -----) sin3(2 π ft) - --- sin(2 π (3f)t)
 4 4

It can be noticed that the relative amplitudes of the harmonics produced are dependent on
the amplitude of the sine wave:

h1 = A + 3A3/4
h3 = A3/4

Even more more important is the fact that each relative amplitude depends on the
amplitude of the input in a different way. This means that if the amplitude of the input
changes, each partial will be affected differently. Therefore, by changing A in time, the
spectrum of the output will be modified, since the relative amplitudes of the partials will
change with respect to one another. For this reason, AAAA is called the modulation index.

In general, the higher the partial, the quicker it will grow when AAAA grows or decrease when
AAAA decreases.

Finally, in order to achieve dynamic spectrum, it is enough to make the modulation index
change in time. CS28.ORC contains an instrument that implements a waveshaper that
takes account of the envelope, as shown in diagram 42.

Diagram 42

; CS28.ORC

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 32 ; Dynamic Waveshaping instrument
 ; Distortion index changes according to
 ; function indicated by p11

;p4 : amplitude
;p5 : frequency
;p6 : oscillator function
;p7 : waveshaping function
;p8 : envelope (distortion index) function

 ifr = cpspch(p5) ; pitch to freq
 ip3 = 1/p3 ; one cycle
 ioffset = .5 ; offset
 k1 oscil 1, ip3, p8 ; envelope (dist idx)
 a1 oscil offset, ifr, p6 ; oscillator
 awsh table k1*a1,p7,1,ioffset ; waveshaping value

 out k1*p4*awsh ; max amp & output

endin

;CS28.SC

;sine wave
f1 0 8192 10 1

;waveshaper
f2 0 8193 13 1 1 0 1 .7 -.8 -.3 .1 .8 -.9 -1 1

envelope (distortion index)
f3 0 512 7 0 64 1 64 .2 184 .5 152 1 48 0

; p3 p4 p5 p6 p7 p8
;instr start dur amp pitch osc wsh index
; func func func

i32 0 1 15000 7.06 1 2 3
i32 + 0.5 . 8.00 . . .
i32 + 0.25 . 7.01 . . .
i32 + 0.25 . 6.02 . . .
i32 2.5 2.5 20000 5.08 . . .

e

Two warnings should be issued about a variable index:

1. In order to achieve effective waveshaping, the changes in envelope must happen in

the range where the transfer function changes the most. For example, if the function
has rapid changes for amplitudes between .8 and 1 and is fairly linear for amplitudes

less than .8, a sine wave with an amplitude of .7 will hardly experience any distortion
when that specific function.

2. Since waveshaping depends on the amplitude of a signal, it is usually necessary to

produce wide changes in the envelope in order to get reasonable effects. But this also
means changes in intensity, which may require balancing the signals after they have
been waveshaped (using BALANCE, for example).

It is also important to notice that only harmonic spectra is produced when waveshaping. In
order to achieve an inharmonic spectrum it is necessary to have an inharmonic input or to
do something to the input before or after it is passed through the waveshaper. For
example, it could be ring modulated.

Another way of producing a dynamic spectrum is by changing the transfer function in time.

CS29.ORC contains an instrument that simulates this effect by waveshaping the same
signal through two different waveshapers and then cross-fading the outputs. While the
output of one of the waveshapers fades out the other fades in. In order to achieve a rich
spectrum, the input is ring modulated before it is passed through the waveshapers.

CS29.SC contains events that use a sine wave carrier, a more complex modulator with an
irrational c/m to produce an inharmonic spectrum and a very smooth symmetrical varying
index. The smooth index function consists of half a sine wave that is achieved by using
GEN9 with a harmonic number of .5 (half of the fundamental). When the frequency of this
kind of oscillator is set to 1/p3, it will only produce half a cycle for the whole duration of the
event.

The sounds produced with CS29.ORC and CS29.SC can be heard in Csound tape
example 29. The orchestra and score are now listed.

; CS29.ORC

sr = 44100

kr = 4410
ksmps = 10
nchnls = 1

instr 33 ; Dynamic Waveshaping instrument
 ; changes linearly between two different
 ; transfer functions that waveshape the same
 ; signal

;p4 : amplitude
;p5 : frequency
;p6 : oscillator function
;p7 : beginning waveshaping function
;p8 : final waveshaping function
;p9 : index function
;p10 : c/m ratio

 ip3 = 1/p3 ; one cycle

 icarr = cpspch(p5) ; carrier freq
 imod = icarr*p10 ; modulator freq
 ioffset = .5 ; offset
 k1 oscil 1, ip3, p9 ; envelope
 kmix line 1, p3, 0 ; mix proportions
 acarr oscil ioffset, icarr, 1 ; carrier
 amod oscil 1, imod,p6 ; modulator

 a1 = acarr*amod ; modulated signal

 awsh1 table k1*a1,p7,1,ioffset ; 1 waveshaping
 awsh2 table k1*a1,p8,1,ioffset ; 2 waveshaping

 ; mix output

 out k1*p4*(kmix*awsh1 + (1-kmix)*awsh2)

endin

;CS29.SC

f1 0 8192 10 1 ; carrier
f2 0 8192 10 1 .7 .3 .8 .4 ; modulator

; waveshaper 1
f3 0 8193 13 1 1 0 1 -.9 -.8 .7 .6 -.5 -.4 .3 .2

; waveshaper 2
f4 0 8193 13 1 1 0 .1 .1 .2 1 .3 .2 .1

; envelope (index function)
f5 0 1024 9 .5 1 0

; p3 p4 p5 p6 p7 p8 p9 p10
;ins stt dur amp pch mod frst last idx ring
; func wsh wsh func c/m
; func func
i33 0 5 25000 7.08 2 3 4 5 .35355
i33 6 2 . 7.06354
i33 7 6 . 8.0535355

e

10. Frequency Modulation (FM)10. Frequency Modulation (FM)10. Frequency Modulation (FM)10. Frequency Modulation (FM)

Frequency modulation is another non-linear technique used in sound synthesis. However,
while amplitude modulation controls the spectrum of sounds by manipulating their
amplitude, FM does this by manipulating their frequency.

As a matter of fact, there is a carrier, a modulator and the carrier to modulator ratio also
plays an important role. There is also an index, related to frequency (rather than to
amplitude), that can help predict some of the characteristics of the resulting spectrum.

10.1The Basic Frequency ModulatorThe Basic Frequency ModulatorThe Basic Frequency ModulatorThe Basic Frequency Modulator

One of the advantages of frequency modulation is that very simple waveforms can be
used to produce a very complex spectrum. The basic frequency modulator consists of a
carrier sine wave that changes its frequency according to another sine wave: the
modulator. The corresponding mathematical expression is

 f(t) = A sin(2 π fct + d sin(2 π fmt)) (10.1)

where

ffffccccis the carrier frequency.
ffffmmmm is the modulator frequency.
AAAAis the amplitude of the carrier (also the amplitude of the output).
ddddis the modulator amplitude

The basic frequency modulator is shown in diagram 43.

Diagram 43 Basic FM Instrument

ffffcccc carrier frequency.
ffffmmmm modulator frequency.

AAAA amplitude
dddd modulator amplitude

It can be shown that expression (10.1) is equivalent to a sum of simpler sine waves of
frequencies
fc

fc + fm fc - fm

fc + 2 x fm fc - 2 x fm

fc + 3 x fm fc - 3 x fm

.

.
etc.

For example, if the carrier is 1000 hz and the modulator 100 hz, the resulting frequencies
are:

1000 hz
1000 + 100 = 1100 hz 1000 - 100 = 900 hz
1000 + 200 = 1200 hz 1000 - 200 = 800 hz
1000 + 300 = 1300 hz 1000 - 300 = 700 hz

.
.
etc.

Expression (10.1) can be written as follows:

f(t) = A0sin(2 Π fct) +

A1sin(2 Π (fc+fm)t) + A1sin(2 Π (fc-fm)t) +
A2sin(2 Π (fc+2fm)t) + A2sin(2 Π (fc-2fm)t) +
A3sin(2 Π (fc+3fm)t) + A3sin(2 Π (fc-3fm)t) +
A4sin(2 Π (fc+4fm)t) + A4sin(2 Π (fc-4fm)t) +

.

.
etc.

= A0 sin(2 Π fct) +
A1 x (sin(2 Π (fc+fm)t) + sin(2 Π (fc-fm)t)) +
A2 x (sin(2 Π (fc+2fm)t) + sin(2 Π (fc-2fm)t)) +
A3 x (sin(2 Π (fc+3fm)t) + sin(2 Π (fc-3fm)t)) +
A4 x (sin(2 Π (fc+4fm)t) + sin(2 Π (fc-4fm)t)) +

.

.
etc. (10.2)
or more concisely

 f(t) = Σ Ai [sin(2 Π (fc+ifm)t) + sin(2 Π (fc-ifm)t)] (10.3)
 i

The physical interpretation of expressions (10.2) and (10.3) is that frequencies are
produced on both sides of the carrier. These frequencies are appear at intervals of ffffmmmm hz.
They are also called side bands. Diagram 44 displays the spectrum obtained using a
carrier ffffcccc and a modulator ffffmmmm. It may be noticed that the components at both sides of the
carrier have the same amplitudes.

Diagram 44 Spectrum Produced by FM

The basic FM oscillator can be implemented in Csound by straightforward realization of
diagram 43, as shown in instr 34. There is, however, a special FM statement in Csound
that will be introduced later. For the time being, until some concepts are clarified, instr 34
will be used.

instr 34 ; Basic FM instrument

;p4 : carrier amplitude
;p5 : carrier frequency
;p6 : attack
;p7 : decay
;p8 : modulator amplitude
;p9 : modulator frequency
;p10 : oscillator function

 kenv linen p4,p6,p3,p7 ; envelope
 amod oscil p8,p9,p10 ; modulator
 aout oscil kenv,p5+amod,p10 ; modulated carrier
 out aout ; output

endin

10.2Distortion IndexDistortion IndexDistortion IndexDistortion Index

Expression (10.1) and diagram 43 show that the amplitude of the modulator, dddd, is actually
the maximum possible fluctuation, or peak deviation from the frequency of the carrier.
Therefore the frequency of the resulting waveform changes between the values

fc – d and fc + d

If dddd is very small compared with ffffmmmm, the effect of the modulator on the frequency of the
overall waveform will be very small, whereas if dddd is relatively large, it will affect the
waveform drastically. In order to show the effects of dddd, instr 34, is used by CS30.SC to
produce five sounds with a carrier of 400 hz, a modulator of 440 hz and different values of
dddd: 0, 10, 100 800 and 1600 hz.

The score and orchestra are listed below. The results can be heard in tape example 30:

When dddd = 0 the result is no modulation at all. Thus, a pure sine wave at the frequency of
the carrier is heard. This is in accordance with the mathematical representation of FM.

 f(t) = A sin(2 Π fct + 0 x sin(2 Π fmt))

=A sin(2 Π fct)
When dddd = 10 very little distortion is produced.
When dddd = 100 the distortion begins to be noticeable.
When dddd = 800 the distortion is more significant.

When dddd = 1600 the sound becomes completely distorted.

; CS30.ORC Basic FM instrument

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 34 ; Basic FM instrument

;p4 : carrier amplitude
;p5 : carrier frequency
;p6 : attack
;p7 : decay
;p8 : peak deviation
;p9 : modulator frequency
;p10 : oscillator function

 kenv linen p4,p6,p3,p7 ; envelope
 amod oscil p8,p9,p10 ; modulator

 aout oscil kenv,p5+amod,p10 ; modulated carrier
 out aout ; output

endin

;CS30.SC Modulation of a 400 hz sine wave by a
; 440 hz sine wave and different deviation
; values

f1 0 8192 10 1 ; sine wave

; p3 p4 p5 p6 p7 p8 p9 p10
;instr startdurampcarrattackdecpeakmodfunc
; freq dev freq

i34 0 1.5 15000 400 .1 .1 0 440 1
i34 2 10 . .
i34 4 100 . .
i34 6 800 . .
i34 8 1600 . .

e

So far we have seen that when the peak deviation is very small in relation to the
modulator, the effect it produces is minor, but as it increases its distorting effect is more
significant. Therefore, it makes sense to device a way of measuring how large the peak
deviation is in comparison to the modulating frequency. The simplest way of comparing
two quantities is by finding their ratio. For this reason, the modulation index IIII is defined as
follows:

 peak deviation d

I = --------------------------- = ---
modulator frequency fm

then

If dddd is 0, then IIII = 0.
If d d d d is very small compared to ffffm then IIII is much smaller than 1 (IIII << 1).
If dddd is equal to ffffmmmm, then IIII = 1.
If dddd is larger than ffffmmmm, then IIII > 1.

The conclusions drawn from example 30 can now be rephrased:

When IIII = 0 no distortion is produced.
When IIII << 1 very little distortion is produced.
When IIII = 1 the distortion begins to be noticeable.
When IIII = 2 the distortion grows.
When IIII = 4 (I >> 1) the sound becomes completely distorted.

It can be proved that the reason for distortion is the fact that when the index grows, the
amplitudes of the sidebands further away from the carrier also grow, therefore, more
partials, corresponding to these distant sidebands, can be heard. At the same time, the
intensity of the carrier decreases with an increasing index.

As a rule of thumb, it is useful to consider the number of pairs of sidebands that became
audible equal to the index. Thus, in total, the sound will have

2 x I + 1 partials.

For example:

If I = 0,there will be only one significant partial: the carrier.

If I = 1,there will be one partial at each side of the carrier. In total 2x1 + 1 = 3 partials,
corresponding to ffffcccc---- f f f fmmmm, ffffcccc and ffffcccc+ f f f fmmmm.

If I = 2,there will be 2 partials at each side of the carrier. In total 2x2 +1 = 5 partials, etc.

Diagram 45 shows the relative amplitudes of the partials produced by frequency
modulation for five values of IIII (0, .1, 1, 2, 4). These are not to scale and just give an idea
of which partials are prominent.

Diagram 45 Relative Amplitudes of Partials Produced by Different Values of the Index.

In this section, it has been shown that the modulation index controls the relative
amplitudes of the partials. In general it can be said that the modulation index determines
how many partials will be heard.

10.3 Reflected FrequenciesReflected FrequenciesReflected FrequenciesReflected Frequencies

By now, it should be clear that if the modulation index grows, more and more sidebands
can be heard. At some point the sidebands produced by the difference between ffffcccc and
multiples of ffffmmmm will either be zero or negative.

In order to interpret these values it is necessary to look at expressions (10.2) or (10.3)
which consist of a sum of sine waves. In the case of 0hz

sin(2 Π (0) t) = sin(0) = 0

Therefore, the resulting waveform has no DC component which is usually an advantage
FM has over waveshaping.

In the case of -200 hz, using the trigonometric identity

sin(a) = -sin(-a) = sin(a- Π)

it can be seen that

sin[2 π (-f)t] = -sin[2 π ft] = sin[2 π ft - π]

This means that the components with negative frequencies always reflect themselves as
positive frequencies with negative amplitudes, which is the same as to say that they have
a phase shift of π (they will lag or be in front by half a cycle).

For example, if we take a carrier of 400 hz and a modulator of 200 hz, the first three pairs
of sidebands are:

400 + 200 = 600 hz400 - 200 = 200 hz

400 + 400 = 800 hz400 - 400 = 0 hz
400 + 600 = 1000 hz400 - 600 = -200 hz ---> 200 hz

Therefore, when the spectrum is viewed, the partial at -200 hz reflects as a partial of 200
hz with negative amplitude as shown in the following diagram.

Diagram 46 Reflected frequency of -200 hz and final result, when a carrier of 400 hz is

modulated by a a 200 hz signal

It is worth pointing out that in this case the final amplitude of the partial at 200 hz is the
result of adding the amplitudes of the reflected -200 hz and the original 200 hz sideband.

10.4 Carrier to ModulaCarrier to ModulaCarrier to ModulaCarrier to Modulator Ratio (c/m)tor Ratio (c/m)tor Ratio (c/m)tor Ratio (c/m)

If a 400 hz carrier is modulated by a 200 hz signal. The first few sidebands are:

 200 hz and 600 hz
 0 hz and 800 hz
-200hz (which reflects as 200 hz) and 1000 hz
-400hz (which reflects as 400 hz) and 1200 hz

It can be seen that the resulting partials are:

200, 400, 600, 800, 1000, 1200 hz, etc.

Therefore, the fundamental is 200 hz, which is equal to the frequency of the modulator.

If, instead, a 200 hz carrier is modulated by a 400 hz signal, the first few sidebands are:

 -200hz (which reflects as 200 hz) and 600 hz
 -600hz (which reflects as 600 hz) and 1000 hz
-1000hz (which reflects as 400 hz) and 1400 hz
-1400hz (which reflects as 400 hz) and 1800 hz

Now, the resulting partials are:
200, 600, 1000, 1400 hz, etc.

Therefore, the fundamental is 200 hz, which, this time, is the frequency of the carrier.

In both cases, the resulting partials are harmonics (multiples of the fundamental); however,
in the first example, all the harmonics are present, whereas in the second, only the odd
harmonics (1, 3, 5, etc.) appear.

If a third case is taken with a carrier of 200 hz and a modulator of 283 hz, the first few

sidebands are:

- 83 hz (which reflects as 83 hz) and 483 hz
-366 hz (which reflects as 366 hz) and 766 hz
-649 hz (which reflects as 649 hz) and 1049 hz

Therefore, the partials are:

83, 200, 366, 483, 649, 766, 1049 hz, etc.

The fundamental is 83 hz this time, which is neither the frequency of the carrier nor of the
modulator. Furthermore, the spectrum is not harmonic.

The resulting sounds in each case can be heard in Csound tape example 31, which is the
output produced by using CS31.ORC and CS31.SC . The sounds are the outputs of:

1.Carrier = 400 hz. Modulator = 200 hz.
2.Carrier = 200 hz. Modulator = 400 hz.
3.Carrier = 200 hz. Modulator = 283 hz.

In order to preserve the value of the index (IIII = 2) throughout these three cases, the peak
deviation has to be different for each case. Since

I = d/fm

then

 d = fm x I

therefore

In case 1: d = 200 x 2 = 400 hz.
In case 2: d = 400 x 2 = 800 hz.
In case 3: d = 283 x 2 = 566 hz.

CS31.ORC contains instr 34, already listed above. CS31.SC is shown below.

;CS31.SC Different carrier-modulator combinations

f1 0 8192 10 1 ;sine wave

; p3 p4 p5 p6 p7 p8 p9 p10
;instr startdurampcarrattackdecpeakmodfunc
; freq dev freq

i34 0 1.5 15000 400 .1 .1 400 200 1
i34 2 . . 200 . . 800 400 .
i34 4 . . 200 . . 566 283 .

e

In the previous example, the fundamental and the harmonicity of the spectrum could have
been predicted because they depend on the ratio between the carrier and the modulator
c/mc/mc/mc/m. This is similar, but much simpler case of ring modulation and can be summarized in
as follows:

10.4.1 Harmonic Spectrum (c/m = Ratio of Integers)

Whenever the carrier to modulator ratio can be represented as a ratio of (small) integers,
the spectrum will be harmonic. This can be expressed as

fc/fm = N1/N2 where N1 and N2 are integers.

Furthermore, if this expression can be simplified so that N1 and N2 have no common
factors then there is more information that can be inferred:

10.4.1.1The fundamental is

fund = fc/N1 = fm/N2

In the first case of the previous example, the carrier to modulator ratio is

400/200 = 2/1

therefore

fund = 400/2 = 200/1 = 200 hz

In the second case the carrier to modulator ratio is

200/400 = 1/2

therefore

fund = 200/1=400/2=200 hz

10.4.1.2 The carrier is always the N1 harmonic of the output spectrum.

In the first two cases of the previous example the carrier to modulator ratios are

respectively

400/200=2/1The carrier is the second harmonic (N1 = 2)

and

200/400=1/2The carrier is the fundamental (N1 = 1)

10.4.1.3Different values of N2

If N2 is 1, all the harmonics will appear. This can be corroborated by the first case above.

If N2 is even, the spectrum contains only odd harmonics. The second case above

corroborates this.

If N2 = 3, every third harmonic is missing.

An example is now given: if the carrier is 200 hz and the modulator is 300 hz, then

c/m = 2/3

The sidebands are

 -100 (reflects as 100) and 500 hz
 -400 (reflects as 400) and 800 hz
 -700 (reflects as 700) and 1100 hz
-1000 (reflects as 1000), etc.

The fundamental is then: 100 hz.
The carrier is the second harmonic: 200 hz.
The harmonics are:

100, 200, 400, 500, 700, 800, 1000, 1100 hz, etc.

It can be noticed that every third harmonic (300, 600, 900, etc.) is missing. If instead of
using a modulator of 300 hz, a 100 hz is used, the harmonics appearing in the output will
be
100, 200, 300, 400, 500, 600, 700, 800 hz, etc.

In this case, no harmonics are missing, but if the same index value of, say, 4 is used, then
the highest harmonic heard will be 600 hz whereas in the case of a 300 hz modulator, the
highest harmonic heard will be 800 hz, making the sound brighter (higher harmonic
content).

As a general rule of thumb, in order to achieve brighter or sounds with the same index, the
carrier to modulator ratio should be increased, and viceversa.

Csound tape example 32 illustrates this. It contains two sounds, both with a 400 hz carrier.
The first sound has a 400 hz modulator, and the second a 800 hz modulator. In both
cases, the modulation index is 3 (the peak deviation is adjusted according to the modulator
frequency).

It can be noticed that the second sound is brighter and somewhat thinner than the first
since it contains higher and more spaced harmonics. The harmonic content of each of the
sounds can now be calculated.

The modulation index is 3, therefore, the number of partials heard is approximately

2x3 + 1 = 7

There will be 3 partials above and three partials below the fundamental (negative partials
will reflect). In the case of the first sound (c/m = 1/1), the fundamental is 400 hz and the
harmonics are

400, 800, 1200 and 1600 hz

In the case of the second sound (c/m = 1/2) therefore, the harmonics of are

400, 1200, 2000 and 2800 hz

The sounds in example 32 were produced by compiling CS32.ORC and CS32.SC. The
orchestra uses instr 34. The score is given below.

;CS32.SC Same carrier (400 hz) with two different ; modulators (400 and 800 hz)
f1 0 8192 10 1 ;sine wave

; p3 p4 p5 p6 p7 p8 p9 p10
;instr startdurampcarratckdecpeakmodfunc
; freq dev freq

i34 0 1.5 15000 400 .1 .1 1200 400 1
i34 2 2400 800 .

e

10.4.2Inharmonic Spectrum (c/m is not a Ratio of Integers)

When c/m cannot be expressed as a ratio of two small integers, the resulting spectrum will
be inharmonic.

The third sound in Csound example 31 is an illustration of inharmonic spectrum. The
carrier is 200 hz and the modulator 283 hz.

200 1

c/m = ----- ~ -----
283 21/2

The closer c/m is to a ratio of integers, the more harmonic the spectrum. A spectrum that
is almost harmonic has a lively character, as explained in chapter 8, section 8.3.4
 Csound tape example 33 contains three sounds with a carrier of 300 hz and the following
carrier to modulator ratios: 1, 1.003 and 1.4142 (~ 21/2).

The first sound is completely harmonic.

The second is more lively because of its slight inharmonicity, which produces beats
between the partials.

The third sound is completely inharmonic.

The orchestra uses instr 34. The score is listed below.

;CS33.SC carrier = 300 hz
; c/m = 1 (modulator = 300)
; 1.003 (modulator = 300.9)
; 1.4142 (modulator = 424.26)
; index = 2

f1 0 8192 10 1 ;sine wave

; p3 p4 p5 p6 p7 p8 p9 p10
;instr stt durampcarratckdecpeak mod func
; freq dev freq

i34 0 1.5 15000 300 .1 .3 600 300 1
i34 2 601.8 300.9 .

i34 4 848.52 424.26 .

e
In this section, it has been shown how the carrier to modulator ratio determine the values
of frequencies in spectrum of the output.

10.5555 FOSCIL FOSCIL FOSCIL FOSCIL

Now that the concepts of index and carrier to modulator ratio have been clarified, it is
possible to discuss a special oscillator offered by Csound: FOSCIL.

The general form of FOSCIL is

 arfoscilamp, freq, carr, mod , index, func, (, phase)
where

amp is the amplitude.

freq is a common frequency from which the carrier and the modulator can be

obtained by multiplying respectively by carr and mod. For example, if

Freq = 100 hz
carr = 1
mod = 2

the carrier is 100 x 1 = 100 hz
and the modulator is 100 x 2 = 200 hz

This makes it easy to see the carrier to modulator ratio. In this example

carr 1
c/m = ----- = ---
mod 2

carr is a number that multiplies freq in order to obtain the carrier frequency. It
does not have to be an integer.

mod is a number that multiplies freq in order to obtain the modulator frequency. It

does not have to be an integer.

index is the modulation index.

func is the function defining the basic waveform of the carrier and the modulator.

phase is the phase of the waveform. It does not have to be specified, in which

case it is assumed to be 0.

As in the case of OSCIL, there is a more accurate (but slower) statement
that has exactly the same parameters as FOSCIL, called FOSCILI.
However, accuracy can be achieved by using FOSCIL with a large function
table (8192 samples or more).

10.6 Dynamic SpectrumDynamic SpectrumDynamic SpectrumDynamic Spectrum

The big success of FM in its initial days was due to the alternative it offered to the
production of dynamic spectra which did not involve a great number of parameters.
Obviously, the carrier frequency can be made to vary in time, as well as the carrier to
modulator ratio (equivalent to varying the value of the modulator). But the parameter that
produced the real revolution when FM synthesis first appeared was the modulation index.

As the index changes in time, different sidebands become more or less prominent

therefore changing the composition of the spectrum. For example, if we take a 100 hz
carrier, a 100 hz modulator (c/m = 1) and make the index increase from 0 to 4 during 2
seconds, the beginning of the sound will be a pure sine wave of 100 hz, and as time goes
by, the second, third, fourth and fifth harmonics will, respectively, be more prominent. The
following diagram is a qualitative representation of the resulting dynamic spectrum.

Diagram 47 fc = fm = 100 hz

Index changes from 0 to 4 in 2 sec

This sound can be heard in Csound tape example 34, the orchestra and score of which
are given next.

; CS34.ORC - FM synthesis instrument using FOSCIL
; Produces dynamic spectrum by varying
; the modulation index

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 35 ; General FM instrument

;p4 : amplitude
;p5 : pitch (to be converted to frequency)
;p6 : carrier/frequency
;p7 : modulator/frequency
;p8 : maximum index
;p9 : oscillator function (usually a sine wave)
;p10 : index function

icyc = 1/p3 ; one cycle

 ; envelope with attack = decay = .1 sec

 kenv linen p4,.1,p3,.1

 ; index

 kidx oscil p8,icyc,p10

 ; FM oscillator

 a1 foscil kenv,p5,p6,p7,kidx,p9

 ; output

 out a1

endin

;CS34.SC dynamic spectrum index changes
; from 0 to 4 in 2 seconds

f1 0 8192 10 1 ; oscillator function
f2 0 512 7 0 512 1 ; index function

; p3 p4 p5 p6 p7 p8 p9 p10
;inst startdurampfreqcarrmodmaxfunc
; index oscidx

i35 0 2 15000 100 1 1 4 1 2

e

Proper manipulation of the modulation index yields a great diversity of sounds. Some of
them are shown in the next section. It should be pointed out that the following examples
only take advantage of a time varying index, and that more variety can be achieved by
changing the carrier to modulator ratio and the frequency of the carrier, as well as by
mixing more than one FOSCIL module to obtain, for example, formant regions.

10.7 ExamplesExamplesExamplesExamples

The first three examples are all implemented using CS35.ORC and CS35.SC and can be
heard in Csound tape example 35.

10.7.1Bell-like Sounds

One of the easiest sounds to produce with FM are bells. As discussed in Chapter 8,
Section 8.4.3, the main characteristic of bell sounds is that they are initially very
inharmonic, with very high partials that decay quickly leaving the lower partials to resonate.

This can be translated in terms of c/mc/mc/mc/m and index.

Inharmonic spectrum -> c/m irrational. 1.215 is a good approximation.

high partials dominant ->high index = 6

low partials dominant -> low index = 0.2

High partials that are initially dominant and decay very quickly means that the actual index
should be initially high and decay rapidly. An exponential decay matches this quite well.

Therefore, the carrier to modulator ratio can be kept constant at 1.215, while the index
should be a control variable that changes exponentially from 6 to 0.2 through the duration
of the note.

Finally, the whole amplitude envelope that starts abruptly (when the bell is hit) and decays
rapidly in the beginning and slowly afterwards, can also be matched by an exponential.

Diagram 48 Amplitude Envelope and Index for a Bell

10.7.2Drum-like Sounds

In this case a few changes can be made to the bell parameters. The principal change
consists of shortening the duration of the whole sound to 0.5 seconds. This makes it more
percussive in comparison with the slow decaying bell. The amplitude and index envelope
follow exactly the same shape. Finally, the following changes are made:

1.In order to simulate hitting a membrane, which is more flexible than a metallic bell, the

envelope does not start abruptly at its highest value but rather starts from 0 and then
increases for about 0.02 seconds until it reaches its maximum value and then decays
quickly for 0.025 seconds. This produces a softer attack.

2.After it decays, there is some increase in the amplitude and index which corresponds to
the membrane still being deformed after it has been hit, thus producing higher harmonics.

3.The highest value of the index is only 2.5, as compared with 6 for the bell, therefore
lower harmonics are heard, especially after the initial decay. This produces an overall
darker sound which is more characteristic of a drum.

4.c/m = 1/2.21, therefore the harmonics are more spaced, producing a slightly hollower
sound when the index is high.

Diagram 49 Drum-like Sound Amplitude Envelope and Index

10.7.3Knock on Wood

A knock on wood is characterized by being very short and changing very quickly from very
high harmonics to almost the fundamental. In order to achieve this sound:

1.The overall duration of the sound is shortened even further to 0.2 seconds.

2.The amplitude envelope is left to be exponential. Due to the short duration the result is a
very rapid decay.

3.The index falls linearly from 25 to 0 in 0.025 of a second.

Diagram 50 Knock on Wood

The orchestra and score are listed below.

; CS35.ORC - FM synthesis instrument using FOSCIL
; Produces all kinds of percussive sounds

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 36 ; General FM instrument, with envelope changing
 ;according to function table given by p10 and
 ; index changing according to function table given
 ; by p11.

;p4 : amplitude
;p5 : pitch (to be converted to frequency)
;p6 : carrier/frequency
;p7 : modulator/frequency
;p8 : maximum index
;p9 : oscillator function (usually a sine wave)
;p10 : amplitude function
;p11 : index function

 icyc = 1/p3 ; one cycle
 ifreq = cpspch(p5) ; frequency

 ; envelope

 kenv oscil p4,icyc,p10

 ; index

 kidx oscil p8,icyc,p11

 ; FM oscillator

 a1 foscil kenv,ifreq,p6,p7,kidx,p9

 ; output

 out a1

endin

;CS35.SC Different Percussive sounds obtained by changing
; envelopes, index functions and durations of the sounds

f1 0 8192 10 1 ; oscillator function

f2 0 512 5 1 512 .0001 ; amplitude function
f3 0 512 5 1 512 .2 ; index function

; BELLS

; p3 p4 p5 p6 p7 p8 p9 p10 p11
;inst sttduramppitchcarrmodmax functions
; indexoscampidx

i36 0 4 15000 7.11 1 1.215 6 1 2 3
i36 5 . 10000 8.11
i36 6 . 10000 8.07
i36 7 . 10000 8.09
i36 8 . 10000 8.02
i36 10 . 10000 8.02
i36 11 . 10000 8.09
i36 12 . 10000 8.11
i36 13 . 10000 8.07

s

; DRUMS

;index and amplitude function
f2 0 2048 7 0 20 .75 35 .9 35 1 104 .15 64 .1 186 .08 630 .15
964 0

; p3 p4 p5 p6 p7 p8 p9 p10 p11
;inst sttduramppitchcarrmodmax functions
; indexoscampidx

i36 0 .5 15000 5.07 1 2.21 2.5 1 2 2
i36 + .5 15000 6
i36 + .5 15000 6.05

s

; KNOCK ON WOOD

f2 0 512 5 1 512 .0001 ; amplitude function
f3 0 512 7 1 64 0 448 0 ; index function

; p3 p4 p5 p6 p7 p8 p9 p10 p11
;inst sttduramppitchcarrmodmax functions
; indexoscampidx

i36 2 .2 15000 6 1 1.4142 25 1 2 3
i36 2.5 . >
i36 3 . 25000

e

10.7.4Brass-like Sounds

A well know characteristic of a brass sound is that the louder it is played, the higher the
harmonics that will be heard. In fact, the brilliance of the brass is due to higher harmonics
appearing in the spectrum. This can be easily simulated by making the index follow the
same shape as the amplitude envelope as can be seen in the following diagram:

Diagram 51 Brass-like Tone Amplitude Envelope and Index

The spectrum should be harmonic and all the harmonics should be present, therefore c/m
should be close to 1. In order to give the sounds a slightly livelier characteristic, the
spectrum can be slightly detuned by making c/m = 1.001 or 1.002, instead of 1.

The maximum index is usually 5 for low to middle register sounds (middle C to D a ninth
above). For higher sounds a value of 7 is used to give more brightness.

Finally, the initial blow of the attack is achieved by an overshoot in the contours of the
envelope and index.

The instrument used is a modification of the general FM instrument in which the envelope
and index are adapted to this special case. Softer articulation can be achieved by varying
the attack time and fade out can be accomplished by increasing the decay.

The result of using CS36.SC can be heard in Csound tape example 36.

; CS36.ORC - Brass-like tones instrument

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 37 ; FM instrument that generates
 ; brass-like tones
;p4 : amplitude
;p5 : pitch (to be converted to frequency)
;p6 : attack
;p7 : decay
;p8 : carrier/frequency
;p9 : modulator/frequency
;p10 : maximum index
;p11 : oscillator function (usually a sine wave)

 ifreq = cpspch(p5) ; frequency
 ihatck = p6*.5 ; half of attack time
 ist1 = p4*.75 ; steady state amplitude 1
 ist2 = p4*.6 ; steady state amplitude 2
 istd = p3-p6-p7 ; duration of steady state

 ; envelope

 kenv linseg 0,ihatck,p4,ihatck,ist1,istd,ist2,p7,0

 ; index

 kidx = kenv*p10/p4

 ; FM oscillator

 a1 foscil kenv,ifreq,p8,p9,kidx,p11

 ; output

 out a1
endin

;CS36.SC Brass-like sounds

f1 0 8192 10 1 ; oscillator function

; p3p4 p5 p6 p7 p8 p9 p10 p11
;inst stt duramp pitchatckdeccarrmod maxosc
; idx func

i37 0 .1 10000 8.01 .05 .04 1 1.002 5 1
i37 + . >
i37 + . >
i37 + .9 15000 . .2 .1 . . 5 .
i37 + .1 10000 . .05 .04 1 1.002 5 1
i37 + . >
i37 + . >
i37 + .9 15000 . .2 .1 . . 5 .
i37 + .1 10000 . .05 .04 1 1.002 5 1
i37 + . >
i37 + . >
i37 + 1.8 18000 8.04 .2 .4 . . 5 .

i37 + .1 12000 8.01 .05 .04 1 1.002 5 1
i37 + . >
i37 + . >
i37 + .9 18000 8.04 .2 .1 . . 5 .
i37 + .1 14000 8.01 .05 .04 1 1.002 5 1
i37 + . >

i37 + . >
i37 + .9 22000 8.04 .2 .1 . . 5 .
i37 + .1 14000 8.01 .05 .04 1 1.002 5 1
i37 + . > 8.04
i37 + . > 8.08
i37 + 2.1 25000 9.01 .2 .2 . 1.001 5 .

s

i37 .15 .15 22000 8.11 .08 .04 1 1.002 5 1
i37 + .8 23000 8.09 .1 .1
i37 + .15 22000 8.08 .08 .04
i37 + .8 23000 8.06 .1 .1
i37 + .15 22000 8.04 .08 .04
i37 + .8 23000 8.09 .1 .1
i37 + .15 22000 8.08 .08 .04
i37 + .8 23000 8.06 .1 .1
i37 + .15 22000 8.04 .08 .04
i37 + .25 22000 8.06 .08 .04
i37 + .25 > 8.09 .08 .04
i37 + .25 > 9.01 .08 .04
i37 + 1.8 28000 9.04 .2 .1 . 1.001 7 .
i37 + .75 > 9.06
i37 + 3 32000 9.09 . 1.5 . 1.0005 . .

e

PART IVPART IVPART IVPART IV

Sound ProcessingSound ProcessingSound ProcessingSound Processing

11. The Phase Vocoder11. The Phase Vocoder11. The Phase Vocoder11. The Phase Vocoder

Sound processing is one of the most exciting areas of computer music. This is especially
true because of the possibilities opened by applications of the Fast Fourier Transform
(FFT) to the analysis and resynthesis of dynamic spectra.

A typical approach consists of analysing a sound, obtaining a numeric description of its
evolving spectrum, which can then be processed and finally resynthesized. This is
schematically described below.

ANALYSIS --->PROCESSING --->RESYNTHESIS

One of the most powerful tools that enable musicians to do precisely this is the Phase
Vocoder. This chapter will discuss its use and some of applications, but in order to do this,
it is worth spending some time on the principles governing the Fast Fourier Transform.
This subject will be treated, as much as it is possible, in a qualitative way in order to avoid
the mathematical complications usually associated with Fourier Analysis, which are not
always fruitful to those interested in making music and for which there is already an
extensive bibliography.

11.1Time Domain and Frequency DomainTime Domain and Frequency DomainTime Domain and Frequency DomainTime Domain and Frequency Domain

There are two ways of describing a digital filter. One is by representing its behaviour after
a very loud and extremely short signal - an impulse - is applied to it. The filter will react to
this signal and will exhibit one and only one characteristic output as time goes by. This
type of representation is called the impulse response, which describes the behaviour of the
filter through time. Therefore, when the impulse response is used, the filter is said to be
characterized in the time domain. An example of this is the famous bullet test, used to
measure the reverberation of a room: in principle, a gunshot is fired and then the
reverberating sound is recorded and measured. The room is considered to be a filter to
which an impulse (the gunshot) is applied.

The second way of representing a filter is by describing how it attenuates or amplifies each
possible frequency. In other words, a diagram is plotted showing the amplitude of the
output when pure sine waves of different frequencies are used separately as inputs. This
is its frequency response and, in this case, the filter is characterized in the frequency
domain. Examples of frequency responses were given when describing the behaviour of
the low-pass, high-pass, band-pass and band-stop basic filters in Chapter 7, Section 7.2.

11.2Discrete Fourier TransformDiscrete Fourier TransformDiscrete Fourier TransformDiscrete Fourier Transform

In the analogue world, an impulse can be visualized as a very quick spike in a voltage
source. A digital impulse would be the sampling of this signal as shown in the diagram 52.

But the analogue impulse has a very particular characteristic: Its spectrum contains all the
frequencies. This means that when the Fourier method is applied to the analogue impulse
in order to find its partials, the result will tell us that it has partials at all possible
frequencies and that the coefficients of those are all 1.

Diagram 52 Analogue and Digital Impulses

Diagram 53 Fourier Components of Analogue Impulse

The immediate conclusion is that applying an analogue impulse to an analogue filter is
equivalent to applying all possible frequencies simultaneously. However, the frequency
response is the behaviour of the filter at all possible frequencies when they are applied
one at the time. Therefore, in the end, the two representations are equivalent. The link
between them is provided by the Fourier decomposition into partials, or, in other words, by
using the Fourier Transform.

Since the digital impulse can be seen as a sampled analogue impulse and the digital
frequency response can be obtained by applying sampled sine waves at all frequencies,
the digital impulse and frequency responses are obtained by using samples of the same
signals that produced their analogue counterparts and it makes sense to find a digital
version of the Fourier Transform that will link between them. It can be formally
demonstrated that there is such a transform. It is called the Discrete Fourier Transform
(DFT), which can be viewed as a sampled version of the analogue transform that turns the
digital impulse response into the digital frequency response.

In order to convert the frequency response into the impulse response a reverse of the DFT
called the Inverse Discrete Fourier Tranmsform (IDFT) is used.

11.3Sampling the Frequency ResponseSampling the Frequency ResponseSampling the Frequency ResponseSampling the Frequency Response

If the digital responses are conceived as being obtained by means of using sampled
versions of corresponding analogue signals, and the DFT is viewed as a sampled version
of the analogue Fourier Transform, then the digital impulse and time responses
themselves can be visualized as a sampled versions of their analogue counterparts.

Each sampled point of the frequency response is produced by calculating the DFT for a

certain frequency value. This means computer time and power used for each calculation,
therefore in order to avoid wasting this time and power the response should not be
oversampled. In other words, a minimum number of samples should be taken such that
information is not lost.

In order to find this minimum, we will imagine a digital impulse applied to a non-recursive
filter. We would like to be able to isolate each component in the output and find out its
amplitude and phase. This will be done by sampling an analogue impulse using a limited
number of samples, then finding what are the maximum and minimum frequencies that
can be represented with that number of samples. The minimum frequency will give the
distance between the values of two adjacent sampled components. As with all sampling,
no information can be gathered between two samples which applies to any frequency
laying in between the values of those sampled components. Consequently, there is no
extra benefit obtainable from trying to gather information to an accuracy of less of the
minimum frequency that can be sampled.

The minimum number of samples of the frequency domain is therefore

maximum freq
Number of sampled frequencies = -------------------- (11.1)

minimum freq

11.3.1 Sampling an Impulse

In practice, when we want to use a computer to calculate the DFT it is impossible to
sample the impulse to infinity. In any case, there is no need to do so because we are
dealing with non recursive filters, which do not feed back their output, therefore after a
while the impulse response becomes zero. It is enough to take as many samples are

necessary to include all the non-zero outputs of the filter. In order to simplify we will
assume a filter that requires only 5 samples, shown in diagram 54, and a sampling rate of
20 samps/sec.

Diagram 54 Filter with 5 sample Impulse Response

11.3.2Finding the Maximum Frequency

Since it was assumed that the input is the sampled version of a real impulse, all the
frequencies should be contained. However, in order to avoid aliasing, only frequencies up
to the Nyquist component (= sampling rate/2) can be sampled. This makes the maximum
frequency equal to 10 hz.

11.3.3Finding the Minimum Frequency

Our main purpose is to be able to find the amplitude and phase of as many partials as we
can. Our limitation is the number of samples of the impulse response, in this case: 5.

If the filter could only let through one frequency out of the whole spectrum the output would
be a sine wave. Now, in order to obtain the information (amplitude and phase), we must be
sure that the number of samples taken contains at least half a cycle of that sine wave (the
other half can be constructed out of the first one because the shape of a sine wave is
known).

In the present example, it is necessary that the 5 samples represent half a cycle.
Therefore, 10 samples portray a whole cycle and since the sampling rate is 20 samps/sec,
there will be two cycles in one second, that is a frequency of 2 hz.

If we try to identify frequencies smaller than 2 hz, it will not be feasible to produce a
complete half cycle, so there is no point in detecting frequencies of less than 2 hz, since
they will not render enough information. This can be seen in diagram 55.

Diagram 55

 Enough Information Not Enough Information

Two conclusions can now be drawn:

1.The minimum frequency that can be made a sampled point and still give useful
information is 2 hz. Thus, it is enough to space the sampling points every 2 hz up to 10 hz.
And from here, the sampled points of the frequency response will be 2, 4, 6, and 8 hz.

2.The number of frequency samples excluding 0 hz is 5 (2, 4, 6, 8 and 10hz), and is equal
to the number of points taken from the impulse response. This is in accordance with
expression (11.1) and should be expected since both, frequency and time domain

representations are equivalent.

If a resolution of 2 hz is not enough, the only way of improving this is by using a filter that
needs more points in order to represent its impulse response. For example, if 10 samples
had been taken, then these 10 could be used to portray half a cycle of a sine wave, 20
samples would portray the whole cycle, and at a sampling rate of 20 samples/sec, this
would mean a frequency of 1 hz. Therefore doubling the length of the impulse response
halves the minimum frequency.

A quick way of finding the minimum frequency is by dividing the Nyquist frequency by the
length in number of samples that are taken at the output of the filter in order to find the
DFT. In general if the filter's impulse response is NNNN samples long, we only need to sample
its frequency response at the following frequency values.

 Nyq 2Nyq 3Nyq (N-1)Nyq
0, ------, -------, ------- , . . . ------------- and Nyq

N N N N

where Nyq is the Nyquist frequency = sampling rate/2

The final conclusion is that for a filter of length NNNN, we only need to take NNNN sampled points
of the frequency response in order to obtain enough information. We will also obtain NNNN
sampled frequencies. In other words, the whole frequency range up to Nyquist is divided
into NNNN equal parts. More sampled points are unnecessary since they do not render any
extra information. Diagram 56 shows the actual frequency response of a 5 point impulse
response filter and the sampled frequency response.

Diagram 56

11.4 DFT of a Digital SignalDFT of a Digital SignalDFT of a Digital SignalDFT of a Digital Signal

The DFT was seen to be very useful when going back and forth between the time and
frequency domain. But there is more to it than just representing filters.

If we examine the procedure we used to arrive at the frequency response by means of the
DFT, it can be noticed that the impulse response of the output of a filter was taken and
used to calculate the sampled points of the frequency response of the filters, and that this
was the same as finding the frequency components of that output.

So, for any arbitrary signal, its frequency components can be calculated by imagining it is
the output of a filter. If NNNN samples of that signal are taken, a filter of length NNNN (its impulse
response has NNNN terms before it turns into 0) can be assumed.

11.5 The Filter Bank ApproachThe Filter Bank ApproachThe Filter Bank ApproachThe Filter Bank Approach

The previous approach for visualizing the DFT of an arbitrary signal was useful in order to
find out how to optimize the calculations in a computer.

Sometimes, it is easier to visualize the DFT of an arbitrary signal as the output of a bank of
band-pass filters that have that signal for an input. This is similar to a graphic equalizer
with centre frequencies at the sampled points and bandwidth at half way between them. If
NNNN points of a signal are taken in order to obtain the DFT, this can be seen as feeding the
signal to a bank of NNNN filters, since this would mean N N N N sampled frequencies.

Diagram 57 shows a filter bank equivalent to a 5 point DFT.

Diagram 57 5 Point DFT Filter Bank Equivalent

It may be noticed that the first channel looks like a low-pass filter and the last like a high-
pass, making the total number add up to 6 filters. While theoretical considerations prove
that these two represent only one filter that wraps around, for practical purposes these can
be viewed as being independent. In other words, if NNNN points are taken then N + 1N + 1N + 1N + 1 filters will
be produced: a low-pass, N N N N ---- 1 1 1 1 band-pass and a high-pass.

If a signal has components within a certain bandwidth, these will show in the output of the
respective filter. Each of those filters is usually called a channel.

Obviously, if there are more filters, the bandwidth will be narrower and the analysis will be
more accurate. But it was seen above that in order to get NNNN meaningful divisions of the
frequency range, it is necessary to analyse a signal that is NNNN samples long. Therefore, in
order to improve the accuracy of the DFT more samples of a signal need to be analysed.

It is worth remembering that a non-ideal filter has ripples and a transition region. This
condition can be improved (but not completely eradicated) when the length of the filter is
increased. Thus, when the DFT produces a bank of filters the neighbouring frequencies
will not be completely filtered out and they will overlap with the results of the other filters.
This is known as spectral leakage and it is shown in diagram 58.

Diagram 58 Spectral Leakage

11.6 The Fast Fourier Transform (FFT)The Fast Fourier Transform (FFT)The Fast Fourier Transform (FFT)The Fast Fourier Transform (FFT)

As stated above, the accuracy of spectral analysis depends on the number of samples that
are analysed. For musical purposes, for example, a 1024 point DFT is a reasonable
compromise.

But a 1024 point requires 1'049,600 additions and sums done by a computer. This means
long computation times even by the quickest machines and DSP processors.

For this reason, computer scientists found it necessary to produce an algorithm that
reduces dramatically the number of operations done, by avoiding redundancy in the
calculation of the DFT. For obvious reasons, this algorithm is called the Fast Fourier
Transform (FFT).

As a comparison, an implementation of a 1024 FFT requires 'only' 10,240 additions and
multiplications: It is 1000 times faster than the ordinary DFT. As the number of points
increases, the FFT becomes more and more efficient in comparison with the DFT.

It must be stressed that the FFT is not an approximation of the DFT but rather the real
thing. The only constraint it presents is that the number of points NNNN must be a power of 2.

11.7The Phase VocoderThe Phase VocoderThe Phase VocoderThe Phase Vocoder

The Phase Vocoder is one of the most striking musical applications of FFT. The principle
behind it is quite simple: since the Fourier components of sounds with dynamic spectrum
change as time goes by, the spectrum is analysed at successive instants, rather like
snapshots of its state, or like frames from which a moving picture is composed. The
numerical results of the analysis of each frame are stored in the computer as pairs of

amplitude-frequency, corresponding to each channel in the filter bank, which can then be
processed and used for resynthesis.

The reader may ask why is it necessary to store frequency if the centre of each channel
can be easily determined. The answer is that although the centre is known, the frequency
fluctuates above or below this value due to the fact that the phase of each component is
not constant but also changes in time: a sine wave that changes its phase also has to
change its frequency in order to be able to lag behind or leap ahead the normal
development of its cycle. In some cases a channel may even have a frequency value that
is lower than the one preceding it.

The fact that changes in frequency are taken into account in order to describe phase
fluctuations is what makes the Phase Vocoder more accurate in its analysis than its
predecessor, the Channel Vocoder, which only depicts changes in the amplitude of each
component.

11.7.1 Direct Filtering

One of the most straightforward applications of the the Phase Vocoder is its use as a very
sharp filter, by omitting some of the channels in the filter bank when resynthesizing. This is
done with options ----iiii and ----jjjj. The resynthesized sound will only contain the channels starting
at the value indicated by ----iiii and ending at the value indicated by ----jjjj.

PVoc example 1 contains an oboe low C (~261.6 hz) sampled at 44100 samps/sec,
followed by three resynthesized versions:
1.obclow. Only the fundamental was allowed to pass, by implementing a low-pass filter
with ~270 hz cut-off.

2.obcmid. Frequencies between ~270 hz and ~860 hz (second and third harmonics) were
allowed to pass by implementing a band-pass filter.

3.obchigh. Frequencies between ~860 hz and 22050 (Nyquist) - from the fourth harmonic

onwards - were allowed to pass by implementing a high-pass filter of ~860 hz cut-off.

The oboe sound was analysed using 2048 channels, in which case the option ----NNNN, which
indicates twice the number of channels, must be 4096.

In order to calculate the values of the channels corresponding to the frequency values a
formula can be deduced. If 2048
channels are used then it is possible to imagine a bank of 2049 filters, of which one is a
low-pass filter and one is a high-pass (see Section 11.5, diagram 57).

Assuming ideal filters, the bandwidth of each will be

Nyquist 22050
Bw = ----------- = --------- (11.2)

Channels 2048

The low-pass (channel 0) begins at 0 hz and ends at bw/2.

The first band-pass filter (channel 1) has its centre frequency at

cf1 = end of lowpass + bw/2

= bw/2 + bw/2 = bw

The second band-pass (channel 2) at

cf2 = end of first band-pass + bw/2

= 2 x bw

The third band-pass (channel 3) at

cf3 = 3 x bw

The kthkthkthkth band-pass (channel k) at

cfk = k x bw

Therefore, if a frequency ffff is desired as the centre frequency of a channel, then

k x bw/2 = f(11.3)

therefore

 f
k = ---- (11.4)

bw

Replacing (11.2) in (11.4) we obtain

f x channelsf x channelsf x channelsf x channels
kkkk ==== -- (11.5)(11.5)(11.5)(11.5)
 NyquistNyquistNyquistNyquist

In this particular case

1. For 0 hz, k = 0.

 270 x 2048
2. For 270 hz, k = --------------- ~ 25

 22050

860 x 2048
3. For 860 hz, k = --------------- ~ 80
 22050

In order to process these sounds a batchfile containing the following commands was used:
analysis
sfpvoc -N4096 -A obc obc.dat

synthesis
sfpvoc -N4096 -S -i0 -j24 obc.dat obclow
sfpvoc -N4096 -S -i25 -j80 obc.dat obcmid
sfpvoc -N4096 -S -i81 -j2048 obc.dat obchigh

11.7.2Transposition

In several samplers, transposition is achieved by either skipping samples if a sound is to
be transposed upwards or by
interpolating between samples to lower a sound.

This however has the same effect as playing a tape at different speeds, thus affecting the
duration of a sound and is particularly problematic, for example, when willing to mix a
pitched sound and its transpositions to create chords, because the higher transpositions

will have shorter durations.

The Phase Vocoder transposes in the frequency domain by multiplying the fundamental
and all the partials by the same factor before resynthesizing the sound, leaving the original
duration unaltered. There are also options that allow to keep formant regions unchanged.

Pvoc example 2 contains a mlflute, a sampled flute tone, which is followed by a
transposition by a factor of 2.1, first using the Phase Vocoder to produce the soundfile
mflute.tr and then by means of skipping samples using ftrans from the GROUCHO
package to produce the soundfile mflute.ftr. The batchfile used is now listed.

Pvoc Transposition
sfpvoc -N2048 -P2.1 mflute mflute.tr
Ftrans
ftrans mflute mflute.ftr

The transposition produced by skipping samples shortened the sound considerably.

11.7.3Changing the Duration of a Sound

For the reasons mentioned above, if the duration of a sound is altered by skipping or by
interpolating samples its pitch will be affected. On the other hand, the Phase Vocoder
interpolates frames of the spectrum evolution, causing it to evolve at a slower or faster rate
while preserving its contents.

PVoc example 3 contains

1.ahh. A recorded cackle.

2.ahhx4. Time stretch of ahh by a factor of 4.

3.ahhx16. Time stretch of ahhx4 by a factor of 4 (16 times the original duration).

It may be noticed that when the sound is stretched drastically, new artifacts appear, that
the original did not seem to have. However, these are not always undesirable, as may be
gathered from the previous examples. The batchfile used is now listed:

sfpvoc -N4096 -T4.0 ahh ahhx4
sfpvoc -N4096 -T4.0 ahhx4 ahhx16

The Phase Vocoder cannot produce dynamic changes in the duration of a sound
(acceleration or slowing down). However, there is a program written by Trevor Wishart:
specstr, which - given a list of breakpoints containing each a time from the beginning of the
sound and a stretching factor - can be applied to the analysis file of that sound to achieve
this. An example will be given below.

11.7.4Frequency Shifting and Stretching

Two more programs written by Wishart, enable the user to shift some or all of the
components of a sound. This process multiplies some of the frequencies in the spectrum
by the same factor, thus keeping their original ratio.

For example, if a signal of frequencies 100, 200, 300, 400 and 500 hz has its last three
partials (ratio 3:4:5) shifted by a factor of 1.5 (the partials at 100 and 200 hz will remain
untouched), the resulting signal will have components at

100 hz (unchanged)
200 hz (unchanged)

1.5 x 300 = 450 hz

1.5 x 400 = 600 hz

1.5 x 500 = 750 hz

The ratio between the shifted frequencies 450, 600 and 750 is still 3:4:5.

Alternatively, the frequencies could be stretched, which is a process that multiplies
successive components by a factor that increases or decreases with frequency. Therefore
, the components do not preserve their original ratio.

In the previous example, if the last three partials are stretched by a factor of which is
initially 1.3 and increases by 0.3 every 100 hz, the result will be:

100 hz (unchanged)

200 hz (unchanged)

300 x 1.3 = 390 hz

400 x 1.6 = 640 hz

500 x 1.9 = 1800 hz

The ratio between the three stretched frequencies is now 39:64:180 and not 3:4:5.

specsh and spece are used to respectively shift and stretch sounds, by applying them to
the analysis data produced by the Phase Vocoder. Both of these programs allow a time
variable factor.

Pvoc example 4 contains the sound inh4, the end of which is first shifted in 3 different
ways. This is followed by the same end of the file but this time stretched in 3 different
ways.

The process involves the following steps:

1.Cut of beginning and end of inh4, saved respectively as inh4b and inh4e.

2.Analysis of inh4e, saved as inh4e.dat.

3.Shift of spectrum applying specsh to inh4e.dat producing three different versions of data
files: inh4she1.dat, inh4she2.dat, inh4she3.dat. The parameters used correspond to the
following cases:

a.Shift frequencies above channel 15 with a factor that is initially 1 for .1 seconds, then
increases to a maximum of 1.9 for .1 seconds and remains like that.
b.The same but with a maximum factor of 2.4.

c. The same but with a maximum factor of 3.45.

4.Stretch of spectrum applying spece to inh4e.dat producing three different versions of
data files: inh4ste1.dat, inh4ste2.dat, inh4ste3.dat. The parameters used correspond to the
following cases:

a.Stretch frequencies above channel 15 with a factor that is initially 1 for .06 seconds, then
increases for .1 seconds to a value between 1 (for channel 15) to 1.9 (at Nyquist).
It then remains like that.

b.The same but with a maximum factor of 2.4.

c.The same but stretching from channel 4, with a maximum factor of 4.6 at Nyquist.

5.Synthesis of inh4sh1e, inh4sh2e, inh4sh3e, inh4st1e, inh4st2e, inh4st3e, from the
respective analysis files created above.

6.Splice of these endings with inh4b to create inh4sh1, inh4sh2, inh4sh3, inh4st1, inh4st2
and inh4st3.

The batchfile used is shown below:

cut
cut inh4 inh4b 0 2.3
cut inh4 inh4e 2.3 2.7
analysis
sfpvoc -N2048 -A inh4e inh4e.dat
shift
specsh inh4e.dat inh4she1.dat 1 15 1.9 .1 .1 0 0
specsh inh4e.dat inh4she2.dat 1 15 2.4 .1 .1 0 0
specsh inh4e.dat inh4she3.dat 1 15 3.45 .1 .1 0 0
stretch
spece inh4e.dat inh4ste1.dat 0 15 1.9 .06 .1 0 0 .5
spece inh4e.dat inh4ste2.dat 0 15 2.4 .06 .1 0 0 .5
spece inh4e.dat inh4ste3.dat 0 4 4.6 .06 .1 0 0 .5
resynthesis
sfpvoc -N2048 -S inh4she1.dat inh4she1
sfpvoc -N2048 -S inh4she2.dat inh4she2
sfpvoc -N2048 -S inh4she3.dat inh4she3
sfpvoc -N2048 -S inh4ste1.dat inh4ste1
sfpvoc -N2048 -S inh4ste2.dat inh4ste2
sfpvoc -N2048 -S inh4ste3.dat inh4ste3
splice
splice -w0 inh4sh1 inh4b inh4she1
splice -w0 inh4sh2 inh4b inh4she2
splice -w0 inh4sh3 inh4b inh4she3

splice -w0 inh4st1 inh4b inh4ste1
splice -w0 inh4st2 inh4b inh4ste2
splice -w0 inh4st3 inh4b inh4ste3

11.7.5 Spectral Interpolation

Vocinte is another program by Wishart that interpolates between the spectrum of one
sound and another sound, which, if used judiciously can produce a convincing
transformation of one sound into the other.

For instance, Pvoc example 5 shows a transformation of an oboe sound into a cry used in
Los Dados Eternos. First, the oboe sound is played, then the cry, and finally the
transformation.

The process is simple and consists of cutting the transition sections of each of sounds,
then each section is analysed and a new analysis is produced by using the analysed
sections as inputs. Then the interpolated analysis is synthesized. Finally, the latter sound
is splice with the beginning of the first sound and the end of the second.

In this particular case, the soundfiles are obD and alhmix4 and the transition takes 2
seconds. The batchfile used is now listed:

#cuts
cut obD obDs 0 1.2
cut obD obDe 1.2 3.34
cut alhmix4 alhmix4s 0 2.011
cut alhmix4 alhmix4s 2.011 3.75
#analysis
sfpvoc -N4096 -A obDs obDs.dat
sfpvoc -N4096 -A alhmix4s alhmix4s.dat
#interpolation
vocinte obDs.dat alhmix4s.dat otg1m.dat .01 2 .01 2 2 2
#synthesis

sfpvoc -N4096 -S otg1m.dat otg1m
#splices
splice -w0 otg1s obDs otg1m
splice otg1 otg1s alhmix4s

Spectral interpolation does not guarantee perceptually convincing transformations. Care is
needed in order to achieve these. Sometimes a simple solution can solve certain
problems. The next example consists of a double transformation from a high oboe note to
a squeaking door to a revolving sound, also used in Los Dados Eternos.

oboe--> squeaking door --> revolving sound
The initial result was unsuccessful in the first (oboe to door) transformation because of a
region where neither one nor the other sound could be identified. In order to correct this,
this region was cut off with a simple digital cut and splice program, which solved the
problem.

The sounds can be heard in PVoc example 6: First comes the oboe note, then the door,
then the revolving sound. This is followed by the first (unsuccessful) version. The corrected
version is then heard.

A final example of a simultaneous double transformation uses the sounds given in Pvoc
example 7. A mix of the fundamental and the high harmonics of the oboe low C is
converted into one sound while the mid harmonics are converted into another sound. Each
of these transformations is then put into a different stereo channel, and both are played
together. Because of the characteristics of our auditory perception, left and right channels
are added together, so that an oboe sound is heard ... until different harmonics convert
into different sounds giving the impression of splitting the oboe into these, each on a
different speaker.

PVoc example 7 contains the following sounds:

1.Left channel: Oboe fundamental and high harmonics, followed by second sound,
followed by the transformation of one into the other.

2.Right channel: Oboe mid frequencies, followed by another sound followed by the
transformation of one into the other.

3.Left and right channel played together. It is worth hearing this while changing the
balance between the speakers.

11.7.6Cross-Synthesis

The last example in this chapter uses a technique by which the formants of one sound are
applied to the spectrum of another. For instance, formants of speech could be imposed on
white noise. a rich sound. Again, a program produced by Wishart, this time called
speccros, can be used to achieve this.

In the current example, from Los Dados Eternos, cross-synthesis, aided by variable time
stretch using specstr, was used in order to produce a voiced sound that sounds like a
small devil distorting the words 'Dominus Deus'.

The process consisted of the following steps:

1.Cross-synthesis of 'Dominus Deus' with a previously processed sampled guiro.

2.Transposition by resampling in order to raise the pitch.

3.Variable time stretch not only to slow down the sound without changing pitch but also in
order to give it more gestural edge.

PVoc example 8 contains the following sounds: 'Dominus Deus', processed guiro, cross-
synthesis of the first sound applied to the second, transposition by resampling, variable
timestretch.

CodaCodaCodaCoda

Computer technology is changing at an increasing pace and its musical applications are
no exception. Most of the techniques covered here were produced in a non-real-time
system. However signs are that the realisation in a real-time system, enabling their use in
performance, is only a few steps away.

New DSP chips are constantly being developed, improving on the previous versions. At
the same time, new computer environments, more friendly and powerful, are making it
possible to get closer, for the first time, to a system in which the composer does not have
to be computer literate to the extent of a programmer or system analyst, unless by choice.

There is one thing, however, that computer technology can do nothing about, and that is
our perception, with its limitations. It is up to the musician to take this into account.
Mathematical principles can be realised by means of sound, but that does not give them
automatically musical sense.

It is the belief of the author that our limitations, far from being a curse, are the most
wonderful devices: because of them, illusions can be created, and what is music without
illusion?

AppendixAppendixAppendixAppendix

Reverberation InstrumentsReverberation InstrumentsReverberation InstrumentsReverberation Instruments
The following two instruments are implementations of Csound that use the REVERB
statement in order to implement instruments that produce dynamic reverberation. In other
words, the reverberation time can be controlled by a function table, thus changing the
characteristics of the environment. instr 37 does this to a mono file, while instr 38 works on
stereo files, with an independent function table controlling each channel.

; REVERBM.ORC Reverberates soundfile in MONO

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 37 ; for MONO files

;p4 : amplitude SCALING FACTOR
;p5 : input file number
;p6 : skip
;p7 : maximum reverberation time
;p8 : reverberation function

 nchnls = 1 ; set channels

 icyc = 1/p3 ; one cycle

 krtime oscil p7,icyc,p8 ; variable reverb time
 ain soundin p5,p6 ; input file
 arev reverb ain,krtime,0 ; reverberate
 out p4*(ain+arev) ; output original + reverb

endin

; REVERBS.ORC Reverberates soundfile in STEREO

sr = 44100
kr = 4410
ksmps = 10
nchnls = 2

instr 38 ; STEREO files

;p4 : amplitude SCALING FACTOR
;p5 : input file number
;p6 : skip
;p7 : reverberation time, left channel
;p8 : reverberation function left channel
;p9 : reverberation time, right channel
;p10: reverberation function left channel

 nchnls = 2 ; set channels

 icyc = 1/p3 ; one cycle

 krtimel oscil p7,icyc,p8 ; variable left reverb time
 krtimer oscil p9,icyc,p10 ; variable left reverb time

 air,ail soundin p5,p6 ; input file
 arevl reverb ail,krtimel ; reverberate left
 arevr reverb air,krtimer ; reverberate right

 ; output original + reverb

 outs p4*(ail+arevl),p4*(air+arevr)

endin

; This is a comment, Csound will ignore it
; CS1.ORC - Simple Oscillator

; NOTE : Clicks will be heard since
; there is no envelope.

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 1

 a1 oscil p4, p5, 1 ; oscillator
 out a1 ; output

endin

; This is a comment, Csound will ignore it
; CS1.SC

f1 0 512 10 1

i1 0 2 8000 440

e

Assignment :Produce a soundfile called CS1.OUT using the orchestra and the score in this
example.

; CS2.ORC Simple Oscillator
; Uses table defined by f1

; NOTE : Clicks will be heard since
; there is no envelope.

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 1

 a1 oscil p4, p5, 1 ; oscillator
 out a1 ; output
endin

; CS2.SC

f1 0 512 10 1

; p3 p4 p5
;instr start dur amp freq

i1 0 5 8000 261.625
i1 1 4 . 329.627
i1 2 3 . 391.995
i1 3 2 . 466.163
i1 5 1 0 0

s

f1 0 512 10 1 0 .5 0 .7 0 .9 0 2

; p3 p4 p5
;instr start dur amp freq

i1 0 5 8000 261.625
i1 1 4 . 329.627
i1 2 3 . 391.995
i1 3 2 . 466.163
i1 5 1 0 0

s

f1 0 512 10 1 .5 .7 .9 .2 .87 .76

; p3 p4 p5
;instr start dur amp freq

i1 0 5 8000 261.625
i1 1 4 . 329.627
i1 2 3 . 391.995
i1 3 2 . 466.163

e

; CS3.ORC - Simple Oscillator
; Uses table defined by function number
; indicated in p6.

; NOTE : Clicks will be heard since
; there is no envelope.

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 2

 a1 oscil p4, p5, p6 ; oscillator
 out a1 ; output

endin

; CS3.SC

f1 0 512 10 1 0 .5 0 .7 0 .9 0 2
f2 0 512 10 1 .5 .7 .9 .2 .87 .76
f3 0 512 10 1 .7 0 .9 0 .87 0 .76
f4 0 512 10 1

t 0 120

; p3 p4 p5 p6
;instr start dur amp freq func no.

i2 0 10 8000 261.625 1

i2 2 8 . 329.627 2
i2 4 6 . 391.995 3
i2 6 4 . 466.163 4

e

Assignment :Use the previous instrument with an envelope table generated by GEN7.

4.4.4.4. EnvelopesEnvelopesEnvelopesEnvelopes

; CS4.ORC - Simple Oscillators
; with envelopes

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 4

; p4: amplitude
; p5: frequency
; p6: attack
; p7: decay
; p8: function table

 k1 linen p4, p6, p3, p7 ; envelope
 a1 oscil k1, p5, p8 ; oscillator
 out a1 ; output

endin

instr 5

; p4: amplitude
; p5: frequency
; p6: function table

 i1 = .05*p3 ;dur1
 i2 = .15*p3 ;dur2
 i3 = .3*p3 ;dur3

 i4 = .5*p3 ;dur4
 k1 linseg 0,i1,p4,i2,.3*p4,i3,.75*p4,i4,0 ; envelope
 a1 oscil k1, p5, p6 ; oscillator
 out a1 ; output
endin

instr 6

; p4: amplitude
; p5: frequency
; p6: function table

 i1 = .05*p3 ;dur1
 i2 = .15*p3 ;dur2
 i3 = .3*p3 ;dur3
 i4 = .5*p3 ;dur4
 k1 expseg .0001,i1,p4,i2,.3*p4,i3,.75*p4,i4,.0001 ; envelope
 a1 oscil k1, p5, p6 ; oscillator
 out a1 ; output
endin

; CS4.SC

f5 0 512 10 1 .5 .7 .9 .2 .87 .76

; p3 p4 p5 p6 p7 p8
;instr start dur amp freq rise decay func

i4 0 2 30000 120 .05 1 5

s

; p3 p4 p5 p6
;instr start dur amp freq func

i5 1 2 30000 120 5

s

; p3 p4 p5 p6
;instr start dur amp freq func

i6 1 2 30000 120 5

e

Assignment :Produce a musical phrase that has more than one voice.

5.Some Useful Devices5.Some Useful Devices5.Some Useful Devices5.Some Useful Devices

; CS5.ORC - Oscillator with variable width
; vibrato and swell.

;p4 amplitude
;p5 frequency
;p6 attack
;p7 decay
;p8 function table

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 7

 i1 = 1/5 ; max swell
 i2 = p5/100 ; max vib width
 i3 = p3/2 ; half a cycle
 k1 linen p4,p6,p3,p7 ; envelope
 k2 line 0, p3, i1 ; swell
 k3 linseg 0, i3, i2, i3, 0 ; vib width
 k4 oscil k3, 5, 1 ; vibrato
 a1 oscil k1*(1+k2), p5+k4, p8 ; oscillator
 out a1 ; output

endin

; CS5.SC
; First two Kyrie Eleison from Palestrina's Missa Papae Marcelli

f1 0 8192 10 1

; SOPRANO
; p3 p4 p5 p6 p7 p8
;instr start dur amp freq attack decay func

i7 1 1.5 4000 587.329 .05 .05 1 ; D
i7 + 0.5 ; D
i7 + 1 ; D
i7 + 0.75 . 783.991 . . . ; G
i7 + 0.25 . 698.456 . . . ; F
i7 + . . 659.255 . . . ; E
i7 + . . 587.329 . . . ; D
i7 + . . 523.251 . . . ; C
i7 + . . 493.883 . . . ; B
i7 + . . 440 . . . ; A
i7 + . . 391.995 . . . ; G
i7 + 1 ; G
i7 + 0.5 . 369.994 . . . ; F#
i7 + 1 . 391.995 . . . ; G

; second phrase
i7 + . . 587.329 . . . ; D
i7 + 0.75 . 493.883 . . . ; B
i7 + 0.25 . 440 . . . ; A
i7 + . . 493.883 . . . ; B
i7 + . . 523.251 . . . ; C
i7 + 0.5 . 587.329 . . . ; D
i7 + 0.75 . 659.255 . . . ; E
i7 + 0.25 . 587.329 . . . ; D
i7 + . . 523.251 . . . ; C
i7 + . . 440 . . . ; A
i7 + 0.75 . 587.329 . . . ; D

i7 + 0.25 . 523.251 . . . ; C
i7 + 1 . 523.251 . . . ; C
i7 + 0.5 . 493.883 . . . ; B
i7 + 2 . 523.251 . . . ; C

; ALTO
; p3 p4 p5 p6 p7 p8
;instr start dur amp freq attack decay func

i7 3 1.5 . 391.995 . . . ; G
i7 + 0.5 ; G
i7 + 1 ; G
i7 + 2 . 523.251 . . . ; C
i7 + . . 493.883 . . . ; B
; second phrase
i7 10.5 1 . 391.995 . . . ; G
i7 + 0.5 ; G
i7 + 1 ; G
i7 + 0.5 . 440 . . . ; A
i7 + 1 . 391.995 . . . ; G
i7 + 0.5 . 349.228 . . . ; F
i7 + 1 . 391.995 . . . ; G
i7 + 2 . 329.627 . . . ; E

; TENOR 1
; p3 p4 p5 p6 p7 p8
;instr start dur amp freq attack decay func

i7 0 1.5 4000 293.664 .05 .05 1 ; D
i7 + 0.5 ; D
i7 + 1 ; D
i7 + 0.75 . 391.995 . . . ; G
i7 + 0.25 . 349.228 . . . ; F
i7 + 0.5 . 329.627 . . . ; E

i7 + . . 293.664 . . . ; D
i7 + 1.5 . 329.627 . . . ; E
i7 + 0.5 . 293.664 . . . ; D
i7 + 1 . 261.625 . . . ; C
; second phrase
i7 + 1 . 293.664 . . . ; D
i7 + 0.5 . 246.941 . . . ; B
i7 + . . 195.997 . . . ; G
i7 + 0.75 . 391.995 . . . ; G
i7 + 0.25 . 349.228 . . . ; F
i7 + 0.5 . 329.627 . . . ; E
i7 + . . 293.664 . . . ; D
i7 + 0.5 . 261.625 . . . ; C
i7 + 1 . 329.627 . . . ; E
i7 + 0.5 . 293.664 . . . ; D
i7 + 0.5 . 329.627 . . . ; E
i7 + 0.25 . 293.664 . . . ; D
i7 + . . 261.625 . . . ; C
i7 + 1 . 293.664 . . . ; D
i7 + 2 . 261.625 . . . ; C

; TENOR 2
; p3 p4 p5 p6 p7 p8
;instr start dur amp freq attack decay func

i7 8 1.5 4000 293.664 .05 .05 1 ; D
i7 + 0.5 ; D
i7 + 1 ; D
i7 + 0.75 . 391.995 . . . ; G
i7 + 0.25 . 349.228 . . . ; F
i7 + . . 329.627 . . . ; E
i7 + . . 293.664 . . . ; D
i7 + . . 261.625 . . . ; C

i7 + . . 246.941 . . . ; B
i7 + 0.5 . 220 . . . ; A
i7 + 0.5 . 246.941 . . . ; B
i7 + 1 . 261.625 . . . ; C

; BASS 1
; p3 p4 p5 p6 p7 p8
;instr start dur amp freq attack decay func

i7 2 1.5 4000 195.997 .05 .05 1 ; G
i7 + 0.5 ; G
i7 + 1 ; G
i7 + 1.5 . 261.625 . . . ; C
i7 + 0.5 . 246.941 . . . ; B
i7 + 1 . 220 . . . ; A
i7 + 2 . 195.997 . . . ; G

; last chord
i7 16 2 . 130.812 . . . ; C

; BASS 2
; p3 p4 p5 p6 p7 p8
;instr start dur amp freq attack decay func

i7 9 1.5 4000 195.997 .05 .05 1 ; G
i7 + 0.5 ; G
i7 + 1 ; G
i7 + 1.5 . 261.625 . . . ; C
i7 + 0.5 . 246.941 . . . ; B
i7 + 1 . 220 . . . ; A
i7 + 3 . 195.997 . . . ; G

e

; CS6.ORC - Oscillator with variable width
; vibrato and swell.
; Accepts pitch and converts to frequency.

;p4 amplitude
;p5 frequency
;p6 attack
;p7 decay
;p8 function table

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 9
 i0 = cpspch(p5) ; pitch to freq
 i1 = 1/5 ; max swell
 i2 = i0/100 ; max vib width
 i4 = p3/2 ; half a cycle
 k1 linen p4,p6,p3,p7 ; envelope
 k2 line 0, p3, i1 ; swell
 k3 linseg 0, i3, i2, i3, 0 ; vib width
 k4 oscil k3, 3, 1 ; vibrato
 a1 oscil k1*(1+k2), i0+k4, p8 ; oscillator
 out a1 ; output

endin

; CS6.SC
; First two Kyrie Eleison from Palestrina's Missa Papae Marcelli

f1 0 8192 10 1

; SOPRANO
; p3 p4 p5 p6 p7 p8
;instr start dur amp PCH attack decay func

i9 1 1.5 4000 9.02 .05 .05 1 ; D
i9 + 0.5 ; D
i9 + 1 ; D
i9 + 0.75 . 9.07 . . . ; G
i9 + 0.25 . 9.05 . . . ; F
i9 + . . 9.04 . . . ; E
i9 + . . 9.02 . . . ; D
i9 + . . 9.00 . . . ; C
i9 + . . 8.11 . . . ; B
i9 + . . 8.09 . . . ; A
i9 + . . 8.07 . . . ; G
i9 + 1 ; G
i9 + 0.5 . 8.06 . . . ; F#
i9 + 1 . 8.07 . . . ; G
; second phrase
i9 + . . 9.02 . . . ; D
i9 + 0.75 . 8.11 . . . ; B
i9 + 0.25 . 8.09 . . . ; A
i9 + . . 8.11 . . . ; B
i9 + . . 9.00 . . . ; C
i9 + 0.5 . 9.02 . . . ; D
i9 + 0.75 . 9.04 . . . ; E
i9 + 0.25 . 9.02 . . . ; D
i9 + . . 9.00 . . . ; C
i9 + . . 8.09 . . . ; A
i9 + 0.75 . 9.02 . . . ; D
i9 + 0.25 . 9.00 . . . ; C
i9 + 1 . 9.00 . . . ; C
i9 + 0.5 . 8.11 . . . ; B

i9 + 2 . 9.00 . . . ; C

; ALTO
; p3 p4 p5 p6 p7 p8
;instr start dur amp PCH attack decay func

i9 3 1.5 . 8.07 . . . ; G
i9 + 0.5 ; G
i9 + 1 ; G
i9 + 2 . 9.00 . . . ; C
i9 + . . 8.11 . . . ; B
; second phrase
i9 10.5 1 . 8.07 . . . ; G
i9 + 0.5 ; G
i9 + 1 ; G
i9 + 0.5 . 8.09 . . . ; A
i9 + 1 . 8.07 . . . ; G
i9 + 0.5 . 8.05 . . . ; F
i9 + 1 . 8.07 . . . ; G
i9 + 2 . 8.04 . . . ; E

; TENOR 1
; p3 p4 p5 p6 p7 p8
;instr start dur amp PCH attack decay func

i9 0 1.5 4000 8.02 .05 .05 1 ; D
i9 + 0.5 ; D
i9 + 1 ; D
i9 + 0.75 . 8.07 . . . ; G
i9 + 0.25 . 8.05 . . . ; F
i9 + 0.5 . 8.04 . . . ; E
i9 + . . 8.02 . . . ; D
i9 + 1.5 . 8.04 . . . ; E
i9 + 0.5 . 8.02 . . . ; D

i9 + 1 . 8.00 . . . ; C
; second phrase
i9 + 1 . 8.02 . . . ; D
i9 + 0.5 . 7.11 . . . ; B
i9 + . . 7.07 . . . ; G
i9 + 0.75 . 8.07 . . . ; G
i9 + 0.25 . 8.05 . . . ; F
i9 + 0.5 . 8.04 . . . ; E
i9 + . . 8.02 . . . ; D
i9 + 0.5 . 8.00 . . . ; C
i9 + 1 . 8.04 . . . ; E
i9 + 0.5 . 8.02 . . . ; D
i9 + 0.5 . 8.04 . . . ; E
i9 + 0.25 . 8.02 . . . ; D
i9 + . . 8.00 . . . ; C
i9 + 1 . 8.02 . . . ; D
i9 + 2 . 8.00 . . . ; C

; TENOR 2
; p3 p4 p5 p6 p7 p8
;instr start dur amp PCH attack decay func

i9 8 1.5 4000 8.02 .05 .05 1 ; D
i9 + 0.5 ; D
i9 + 1 ; D
i9 + 0.75 . 8.07 . . . ; G
i9 + 0.25 . 8.05 . . . ; F
i9 + . . 8.04 . . . ; E
i9 + . . 8.02 . . . ; D
i9 + . . 8.00 . . . ; C
i9 + . . 7.11 . . . ; B
i9 + 0.5 . 7.09 . . . ; A
i9 + 0.5 . 7.11 . . . ; B

i9 + 1 . 8.00 . . . ; C

; BASS 1
; p3 p4 p5 p6 p7 p8
;instr start dur amp PCH attack decay func

i9 2 1.5 4000 7.07 .05 .05 1 ; G
i9 + 0.5 ; G
i9 + 1 ; G
i9 + 1.5 . 8.00 . . . ; C
i9 + 0.5 . 7.11 . . . ; B
i9 + 1 . 7.09 . . . ; A
i9 + 2 . 7.07 . . . ; G
; last chord
i9 16 2 . 7.00 . . . ; C

; BASS 2
; p3 p4 p5 p6 p7 p8
;instr start dur amp PCH attack decay func

i9 9 1.5 4000 7.07 .05 .05 1 ; G
i9 + 0.5 ; G
i9 + 1 ; G
i9 + 1.5 . 8.00 . . . ; C
i9 + 0.5 . 7.11 . . . ; B
i9 + 1 . 7.09 . . . ; A
i9 + 3 . 7.07 . . . ; G

e

; CS7.ORC - Oscillator with variable width
; vibrato and swell.
; Accepts pitch and converts to frequency.
; and squeezes or expands the octave above ; and below
middle C

;p4 amplitude
;p5 frequency
;p6 attack
;p7 decay
;p8 function table
;p9 squeeze/expansion factor

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 10

 ist = int(p5)*12 + frac(p5)*100 - 96 ; semitones
above ; middle C
 itot = 96 + ist*p9 ; total semitones
 ioc = int(itot/12) ; octave
 ist = itot - ioc*12 ; semitones above
 ; middle C
 i0 = ioc+ist/100 ; to PCH notation
 i0 = cpspch(i0) ; PCH to freq
 i1 = 1/5 ; max swell
 i2 = i0/100 ; max vib width
 i3 = p3/2 ; half a cycle
 k1 linen p4,p6,p3,p7 ; envelope
 k2 line 0, p3, i1 ; swell
 k3 linseg 0, i3, i2, i3, 0 ; vib width

 k4 oscil k3, 3, 1 ; vibrato
 a1 oscil k1*(1+k2), i0+k4, p8 ; oscillator
 out a1 ; output

endin

; CS8.ORC - Oscillator with variable width
; vibrato and swell.
; Accepts pitch and converts to frequency.
; and squeezes or expands the octave above and
; below a centre pitch given by p10

;p4 amplitude
;p5 frequency
;p6 attack
;p7 decay
;p8 function table
;p9 squeeze/expansion factor
;p10 centre pitch

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 11

 icst = int(p10)*12 + frac(p10)*100
 ; semitones of
 ; centre pitch
 ist = int(p5)*12 + frac(p5)*100 - icst ; semitones
above ; middle C
 itot = icst + ist*p9 ; total semitones
 ioc = int(itot/12) ; octave
 ist = itot - ioc*12 ; semitones above
 ; middle C
 i0 = ioc+ist/100 ; to PCH notation
 i0 = cpspch(i0) ; PCH to freq
 i1 = 1/5 ; max swell
 i2 = i0/100 ; max vib width
 i3 = p3/2 ; half a cycle
 k1 linen p4,p6,p3,p7 ; envelope
 k2 line 0, p3, i1 ; swell
 k3 linseg 0, i3, i2, i3, 0 ; vib width
 k4 oscil k3, 3, 1 ; vibrato
 a1 oscil k1*(1+k2), i0+k4, p8 ; oscillator
 out a1 ; output

endin

Assignment :
1.Produce a score for instrument 11 in which a short musical phrase is played without
squeezing/stretching the intervals and then the same phrase with different
squeezing/stretching factors.(1 week from now)

2.Produce an instrument that, given a frequency 'fans out' for half of its duration and then
'fans in' for the other half using 3 upper and 3 lower glissandi to frequencies determined by
a factor given in the score. (2 weeks from now)

For example, if 400 hz and a factor of .1 are given, the upper glissandi will 'fan' to
440 hz x 1.1 =484 hz
484 hz x 1.1 =532.4 hz
532.4 hz x 1.1 =585.64 hz

and the lower will 'fan' to
484 hz / 1.1 =400 hz
400 hz / 1.1 =363.64 hz
363.64 hz / 1.1 =330.58 hz

Produce a short musical passage using this instrument.

5.Additive Synthesis5.Additive Synthesis5.Additive Synthesis5.Additive Synthesis

; CS10.ORC
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 3 ; Simple Oscillator
 ; Uses table defined by function number
 ; indicated in p8.

 k1 linen p4, p6, p3, p7 ; envelope
 a1 oscil k1, p5, p8 ; oscillator
 out a1 ; output
endin

instr 14 ; Inharmonic oscillator. Up to 7 partials.

;p4: overall amplitude
;p5: fundamental frequency
;p6, p8, p10, p12, p14, p16, p18: relative amplitudes of partials
;p7, p9, p11, p13, p15, p17, p19: relative frequencies of partials
 i1 = p5*p7 ; 1 partial freq
 i2 = p5*p9 ; 2 partial freq
 i3 = p5*p11 ; 3 partial freq
 i4 = p5*p13 ; 4 partial freq
 i5 = p5*p15 ; 5 partial freq
 i6 = p5*p17 ; 6 partial freq
 i7 = p5*p19 ; 7 partial freq
 k1 linen p4, .1, p3, .1 ; envelope
 a1 oscil p6, i1, 1 ; 1 partial
 a2 oscil p8, i2, 1 ; 2 partial

 a3 oscil p10, i3, 1 ; 3 partial
 a4 oscil p12, i4, 1 ; 4 partial
 a5 oscil p14, i5, 1 ; 5 partial
 a6 oscil p16, i6, 1 ; 6 partial
 a7 oscil p18, i7, 1 ; 7 partial

 ; mix and output

 out k1*(a1+a2+a3+a4+a5+a6+a7)/7 endin

;CS10.SC

f1 0 4096 10 1
f2 0 4096 9 1 1 0 1.41 .8 0 1.89 .9 0 2.3 .7 0 2.6 .65 0 3.2 .93 0 3.5 .94 0

; p3 p4 p5 p6 p7 p8
;instr start dur amp freq rise decay func

i3 0 2 20000 300 .1 .1 2
s

; p3 p4 p5 p6,p8... p18 p7,p9... p19
;instr start dur amp fund relative relative
; overall freq amplitudes frequencies

i14 2 2 20000 300 1 1
 .8 1.41
 .9 1.89
 .7 2.3
 .65 2.6
 .93 3.2
 .94 3.5

e

; CS11.ORC

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 15 ; Inharmonic oscillator. Up to 7 partials with ; vibrato shape
determined by function 2

;p4 : overall amplitude
;p5 : fundamental frequency
;p6, p8, p10, p12, p14, p16, p18: relative amplitudes of partials
;p7, p9, p11, p13, p15, p17, p19: relative frequencies of partials
;p20 : envelope shaper
;p21 : function table

 i1 = p5*p7 ; 1 partial freq
 i2 = p5*p9 ; 2 partial freq
 i3 = p5*p11 ; 3 partial freq
 i4 = p5*p13 ; 4 partial freq
 i5 = p5*p15 ; 5 partial freq
 i6 = p5*p17 ; 6 partial freq
 i7 = p5*p19 ; 7 partial freq
 ifrq1 = 1/p3 ; freq = 1/dur
 ; overall envelope
 k1 linseg 0,p3-.7*p20,p4/4,.3*p20,p4,.4*p20,0
 ; frequency vibrato envelope
 k2 line 1, p3, 0
 k3 oscil k2*p5/10, 10, 2 ; frequency change

 a1 oscil p6, i1+k3, p21 ; 1 partial
 a2 oscil p8, i2+k3, p21 ; 2 partial
 a3 oscil p10, i3+k3, p21 ; 3 partial
 a4 oscil p12, i4+k3, p21 ; 4 partial
 a5 oscil p14, i5+k3, p21 ; 5 partial
 a6 oscil p16, i6+k3, p21 ; 6 partial
 a7 oscil p18, i7+k3, p21 ; 7 partial

 ; mix and output
 out k1*(a1+a2+a3+a4+a5+a6+a7)/7 endin

;CS11.SC

f1 0 4096 10 1
f2 0 4096 10 1
f3 0 4096 10 1 .5 .6 .9 1 .3 .4 .2

t 0 80

; p3 p4 p5 p6..p18 p7..p19 p20 p21
;instr start dur amp fund relat. relat. env func
; overall freq amps freqs shaper

i15 0 .5 10000 300 1 1 .8 1.41
 .9 1.89
 .7 2.3
 .65 2.6
 .93 3.2
 .94 3.5 .15 1

i15 1.3 .7 10000 300 1 1 .8 1.41
 .9 1.89
 .7 2.3
 .65 2.6
 .93 3.2
 .94 3.5 .15 1

i15 1.8 .5 15000 900 1 1 .8 1.41
 .9 1.89
 .7 2.3
 .65 2.6
 .93 3.2
 .94 3.5 .15 1

i15 1.9 3 19000 40 1 1 .8 1.41
 .9 1.89
 .7 2.3
 .65 2.6
 .93 3.2
 .94 3.5 .8 1

i15 4.4 2 19000 600 1 1 .8 1.41
 .9 1.89

 .7 2.3
 .65 2.6
 .93 3.2
 .94 3.5 1 3

e

;CS12.ORC This produces a simple oscillator with an
; envelope needed to produce RISSET'S beating
; harmonics
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 3

;p4 : amplitude
;p5 : fundamental

 k1 linen p4, .5, p3, .5 ; envelope
 a1 oscil k1, p5, 1 ; oscillator
 out a1
endin

; ORRISS.SC
; This produces the original Risset gliding harmonics

f1 0 8192 10 1 1 1 1 1 1 1 1 1 1 1 1

; p3 p4 p5

;instr start dur amp fund

i3 0 35 3500 110
i3 . . . 110.03
i3 . . . 110.06
i3 . . . 110.09
i3 . . . 110.12
i3 . . . 109.97
i3 . . . 109.94
i3 . . . 109.91
i3 . . . 109.88

e

6.Subtractive Synthesis6.Subtractive Synthesis6.Subtractive Synthesis6.Subtractive Synthesis

; CS13.ORC - Use of RAND, RANDH, RANDI

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 16 ; uses RAND

;p4 : amplitude
;p5 : not used
;p6 : attack
;p7 : decay

 k1 linen p4, p6, p3, p7 ; envelope
 a1 rand k1 ; noise source
 out a1 ; output
endin

instr 17 ; uses RANDH

;p4 : amplitude
;p5 : random oscillator frequency
;p6 : attack
;p7 : decay

 k1 linen p4, p6, p3, p7 ; envelope
 a1 randh k1,p5 ; noise source
 out a1 ; output
endin

instr 18 ; uses RANDI

;p4 : amplitude
;p5 : random oscillator frequency
;p6 : attack
;p7 : decay

 k1 linen p4, p6, p3, p7 ; envelope
 a1 randi k1,p5 ; noise source
 out a1 ; output
endin

;CS13.SC Noise Generators

; p3 p4 p5 p6 p7 ;instr start dur amp freq attack decay ;
; RAND
i16 0 2 10000 0 .1 .1

; RANDH 400 hz
i17 3 2 10000 400 .1 .1

; RANDI 400 hz
i18 6 2 10000 400 .1 .1

e

; CS14.ORC - Use of BUZZ

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 19

;p4 : amplitude
;p5 : fundamental
;p6 : attack
;p7 : decay
;p8 : number of partials

 k1 linen p4, p6, p3, p7 ; envelope
 a1 buzz k1, p5, p8, 1 ; oscillator

 out a1 ; output
endin

; CS14.SC

f1 0 8192 10 1

; p3 p4 p5 p6 p7 p8
;instr start dur amp freq attack decay No. of
; parts

i19 0 2 30000 40 .1 .1 5
i19 3 2 . 40 .1 .1 15
i19 6 2 . 40 .1 .1 45

e

Assignment :Produce a pulse with inharmonic spectrum using BUZZ.

; CS15.ORC - Use of GBUZZ

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 20

;p4 : amplitude
;p5 : fundamental
;p6 : attack
;p7 : decay
;p8 : lowest amplitude multiplier
;p9 : highest amplitude multiplier
;p10 : lowest partial number
;p11 : total number of partials

 k2 line p8, p3, p9 ; changing multiplier k1 linen p4, p6, p3, p7 ;
envelope
 a1 gbuzz k1, p5, k2, p10,p11,1 ; oscillator
 out a1 ; output
endin

;CS15.SC

f1 0 8192 9 1 1 90

; p3 p4 p5 p6 p7 p8 p9 p10 p11
;ins start dur amp freq atck decay min max lowest partls
; fact fact part

i20 0 4 25000 30 .1 .5 .7 1.7 5 30

e

; CS16.ORC - FILTERED NOISE
; White noise is passed through a band-pass filter
; with varying centre frequency and bandwidth.

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 21

;p4 : amplitude
;p5 : attack
;p6 : decay
;p7 : minimum centre frequency
;p8 : maximum centre frequency
;p9 : minimum bandwidth in %
;p10 : maximum bandwidth in %

 i1 = 1/p3 ; one cycle
 i2 = p9*p7/100 ; minimum bandwidth
 i3 = p10*p8/100 ; maximum bandwidth
 k1 linen p4, p5, p3, p6 ; envelope
 k2 oscil p8-p7, i1, 1 ; varying centre freq
 k3 oscil i3-i2, i1, 2 ; varying bandwidth a1 rand 1 ; random
numbers
 a2 reson a1, p7+k2, i2+k3, 4 ; filter
 a2 balance a2,a1 ; power balance

 out k1*a2 ; output
endin

;CS16.SC

; FROM PITCH TO NOISE SLIDING UP

f1 0 1024 7 0 512 .3 512 1
f2 0 1024 5 .001 512 1 512 .4

; p3 p4 p5 p6 p7 p8 p9 p10
;ins start dur amp atck decay min max min max
; centre centre BW BW
; freq freq in % in %

i21 0 2 10000 .5 .7 260 650 .1 20
i21 2.9 .1 0

s

; FROM NOISE TO PITCH SLIDING DOWN

f1 0 1024 7 1 512 .3 512 0
f2 0 1024 5 .4 512 1 512 .001

i21 0 2 10000 .7 .5 260 650 .1 20

e

; CS17.ORC - FILTERED PULSE WITH FORMANTS
;A pulse is passed through 4 parallel bandpass ;filters with varying centre frequency and
;bandwidth.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 22

;p4 : amplitude
;p5 : fundamental
;p6 : attack
;p7 : decay
;p8 : minimum frequency of RANDI
;p9 : maximum frequency of RANDI

 ip3 = 1/p3 ; one cycle
 ipfl = p5/5 ; pitch fluctuation
 iffl = p9-p8 ; freq fluctuation of RANDI
 inh = int(sr/2/(p5+ipfl)) ; maximum harmonics

 kenv linen p4,p6,p3,p7 ; envelope

 krand oscil .5, ip3, 2 ; oscil between -.5 and .5
 krand = krand + .5 ; correct between 0 and 1

 kfrnd = p8+iffl*krand ; actual frequency of RANDI
 kprnd = p5+ipfl*krand ; variable pitch

 a1 buzz 1,kprnd,inh,1 ; pulse
 abal oscil 1,p5,1 ; balancing sine wave

 k1 randi 1,kfrnd,.12 ; random generator k2 randi 1,kfrnd,.23 ; for each

filter
 k3 randi 1,kfrnd,.34 ; each with a k4 randi 1,kfrnd,.45 ; different seed
 k5 randi 1,kfrnd,.56 ;
 a2 reson a1, 500+k1*100, 30*(1+k1), 0 ; 500 hz bandpass
 a3 reson a1, 1000+k2*200, 40*(1+k2), 0 ; 1000 hz bandpass
 a4 reson a1, 2000+k3*300, 80*(1+k3), 0 ; 2000 hz bandpass
 a5 reson a1, 3500+k4*500, 200*(1+k4), 0 ; 3500 hz bandpass
 a6 reson a1, 4800+k5*800, 400*(1+k5), 0 ; 4800 hz bandpass

 a7 = a2+a3+a4+a5+a6 ; mix
 a7 balance a7,abal ; balance intensity
 out kenv*a7 ; output
endin

;CS17.SC

f1 0 4096 10 1
f2 0 512 7 0 50 .6 50 .8 50 .3 50 .7 50 .9 50 .4 50 .1 50 .01 62 .2

; p3 p4 p5 p6 p7 p8 p9
;ins start dur amp fund. attack decay min max
; freq random freqs.

i22 0 .5 5000 70 .1 .1 10 15

i22 1 5 2500 490 4 .5 40 45
i22 1 5 2500 615 4 .5 40 45
i22 3.5 7 2500 60 .5 1.5 3 50

e

; CS18.ORC
; Filters the output of BUZZ and gives it an amplitude envelope

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 23

;p4 : amplitude factor
;p5 : fundamental
;p6 : number of partials
;p7 : frequency of envelope
;p8 : envelope function
;p9 : centre frequency of band-pass filter
;p10: bandwidth as a percentage of centre frequency

 ibw = p8*p7/100 ; % bandwidth to hz
 kenv oscil p4, p7, p8 ; envelope
 ain buzz 20000, p5, p6, 2; pulse generator
 afilt reson ain, p9, p10, 1 ; filter
 out kenv*afilt
endin

; CS18.SC-Uses f1 as an envelope

f1 0 1024 9 0.001 1 0 1 2 90 2 2 90 3 2 90 4 2 90
;f2 0 8192 10 1
f2 0 512 10 1

; p3 p4 p5 p6 p7 p8 p9 p10
;ins start dur ampl fund No of envel envel centre bw in ; factor freq part
freq func freq % of ; centre

i23 0 35 100 20 250 .03 1 100 1
i23 06 . 200 .
i23 09 . 300 .
i23 12 . 400 .
i23 15 . 500 .
i23 18 . 600 .
i23 21 . 700 .
i23 24 . 800 .
i23 27 . 900 .
i23 30 . 1000 .
e

; CS19.ORC ; Filter soundfile SOUNDIN.NNN and gives it an envelope.
; The bandwidth of the filter fluctuates according to function 2

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 24

;p4 : skip
;p5 : frequency of envelope
;p6 : envelope function
;p7 : centre frequency of band-pass filter
;p8 : minimum bandwidth
;p9 : maximum bandwidth
;p10: scaling of filter
;p11: input file

 icyc = 1/p3 ; one cycle
 iminbw = p8*p7/100 ; min % bandwidth to hz
 imaxbw = p9*p7/100 ; max % bandwidth to hz
 kenv oscil p10, p5, p6 ; envelope
 kbw oscil imaxbw-iminbw, icyc, 2 ; bandwidth fluctuation
 ain soundin p11, p4 ; input soundfile
 afilt reson ain, p7, iminbw+kbw, 1 ; filter
 out kenv*afilt

endin

8.Amplitude Modulation (AM)8.Amplitude Modulation (AM)8.Amplitude Modulation (AM)8.Amplitude Modulation (AM)

; CS20.ORC - Linear and Non-linear amplifiers

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 25 ; linear amplifier y = Ax

;p4 : amplitude
;p5 : frequency
;p6 : attack
;p7 : decay
;p8 : function
;p9 : amplitude factor A

 kenv linen 1,p6,p3,p7 ; envelope
 ain oscil 1,p5,p8 ; oscillator
 aout = p4*ain ; y = Ax
 out kenv*aout ; output
endin

instr 26 ; 2
 ; non-linear amplifier y = Ax

;p4 : amplitude factor A
;p5 : frequency
;p6 : attack
;p7 : decay
;p8 : function

 kenv linen 1,p6,p3,p7 ; envelope
 ain oscil 1,p5,p8 ; oscillator
 ; 2
 aout = p4*ain*ain ; y = Ax
 out kenv*aout ; output
endin

;CS20.SC

f1 0 8192 10 1

; p3 p4 p5 p6 p7 p8
;instr start dur amplif freq attack decay func
; factor
;linear amplifier
i25 0 2 25000 440 .3 .3 1

;non-linear amplifier
i26 3 2 25000 440 .3 .3 1

e

; CS21.ORC - Amplitude Modulator

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 3 ; Used to play pure sinewaves

 k1 linen p4, p6, p3, p7 ; envelope
 a1 oscil k1, p5, p8 ; oscillator
 out a1 ; output
endin

instr 27 ; Side bands only

;p4 : amplitude
;p5 : carrier
;p6 : attack
;p7 : decay
;p8 : modulator
;p9 : function

 kenv linen p4, p6, p3, p7 ; envelope
 acarr oscil 1, p5, p9 ; carrier
 amod oscil 1, p8, p9 ; modulator
 aout = kenv*acarr*amod ; modulation
 out aout ; output
endin

; CS21.SC

f1 0 4096 10 1

;SECTION 1 carrier 300 hz, modulator 15 hz

; p3 p4 p5 p6 p7 p8
;instr start dur amp carr. attack decay func

i3 0 2 25000 300 .3 .3 1
i3 3 2 25000 15 .3 .3 1

; p3 p4 p5 p6 p7 p8 p9
;instr start dur amp carr. attack decay mod. func.

i27 6 2 25000 300 .3 .3 15 1
s

;SECTION 2 carrier 300 hz, modulator 110 hz

; p3 p4 p5 p6 p7 p8
;instr start dur amp carr. attack decay func

i3 1 2 25000 300 .3 .3 1
i3 4 2 25000 110 .3 .3 1

; p3 p4 p5 p6 p7 p8 p9
;instr start dur amp carr. attack decay mod. func.

i27 7 2 25000 300 .3 .3 110 1
s

;SECTION 3 carrier 300 hz, modulator 310 hz

; p3 p4 p5 p6 p7 p8
;instr start dur amp carr. attack decay func

i3 1 2 25000 300 .3 .3 1
i3 4 2 25000 310 .3 .3 1

; p3 p4 p5 p6 p7 p8 p9
;instr start dur amp carr. attack decay mod. func.

i27 7 2 25000 300 .3 .3 310 1
s

;SECTION 4 carrier 300 hz, modulator 500 hz

; p3 p4 p5 p6 p7 p8
;instr start dur amp carr. attack decay func

i3 1 2 25000 300 .3 .3 1
i3 4 2 25000 500 .3 .3 1

; p3 p4 p5 p6 p7 p8 p9
;instr start dur amp carr. attack decay mod. func.

i27 7 2 25000 300 .3 .3 500 1

e

; CS22.ORC - Amplitude Modulator

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 28 ; Side bands and carrier
 ; carrier and modulator with ; different generating functions

;p4 : amplitude
;p5 : carrier
;p6 : attack
;p7 : decay
;p8 : modulator frequency
;p9 : percentage of carrier to be modulated
;p10 : carrier function table
;p11 : modulator table

 imod = p9/100.00 ; modulated percentage
 inomod = 1 - imod ; unmodulated percentage

 kenv linen p4, p6, p3, p7 ; envelope

 acarr oscil 1, p5, p10 ; carrier
 amod oscil 1, p8, p11 ; modulator

 aoutm = acarr*amod*imod ; modulated signal
 aoutnm = acarr*inomod ; unmodulated signal
 out kenv*(aoutm + aoutnm) ; output
endin

; CS22.SC

f1 0 4096 10 1

; p3 p4 p5 p6 p7 p8 p9 p10 p11
;ins start dur amp carr. atck decay mod mod % carr mod
; func func

i28 0 2 25000 600 .3 .3 15 90 1 1
i28 3 10 1 1

e

;CS23.SC

f1 0 4096 10 1
f2 0 4096 10 1 .8 .7 .6 .5

; p3 p4 p5 p6 p7 p8 p9 p10 p11
;ins start dur amp carr. atck decay mod mod % carr mod
; func func

i28 0 2 25000 300 .3 .3 212 100 1 2

e

; CS24.ORC - Amplitude Modulator

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 29 ; Side bands and carrier
 ; carrier and modulator with ; different generating functions
;p4 : amplitude
;p5 : carrier
;p6 : attack
;p7 : decay
;p8 : carrier to modulator ratio. Should not be 0.
;p9 : percentage of carrier to be modulated
;p10 : carrier function table
;p11 : modulator table

 imod = p9/100.00 ; modulated percentage
 inomod = 1 - imod ; unmodulated percentage

 imf = p5/p8 ; modulator frequency

 kenv linen p4, p6, p3, p7 ; envelope

 acarr oscil 1, p5, p10 ; carrier
 amod oscil 1, imf, p11 ; modulator

 aoutm = acarr*amod*imod ; modulated signal
 aoutnm = acarr*inomod ; unmodulated signal
 out kenv*(aoutm + aoutnm) ; output
endin

;CS24.SC

f1 0 4096 10 .9 1 .78 .07 .24 .53 .09 .46
f2 0 4096 10 1 .46 .56 .87 .35

; p3 p4 p5 p6 p7 p8 p9 p10 p11
;ins start dur amp carr. atck dec c/m mod % carr mod
; func func

i29 0 1.5 25000 250 .1 1 .5 95 1 2
i29 2.5 2 . . .
i29 5 501 . . .
i29 7.5 35355 . . .

e

; CS25.ORC - Ring Modulator

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 30 ; Variable parameter amplitude modulation
 ; instrument.
 ; The following can be made to change in time:
 ; overall amplitude, carrier frequency,
 ; c/m ratio, percentage of the carrier to ; be modulated. ;p4 :
max amplitude
;p5 : highest carrier pitch
;p6 : max carrier to modulator ratio (c/m)
;p7 : function table controlling amplitude
;p8 : function table controlling carrier pitch
;p9 : function table controlling c/m ratio
;p10 : function table controlling modulation percentage

 ; one cycle
 ip3 = 1.0/p3

 ; pitch frequency convertion
 ifr = cpspch(p5)

 ; envelopes
 kamp oscil p4,ip3,p7 ; amplitude
 kcar oscil ifr,ip3,p8 ; carrier freq
 kcmr oscil p6,ip3,p9 ; c/m
 kmp oscil 1,ip3,p10 ; modulation percentage

 acarr oscil 1, kcar, 10 ; carrier
 amod oscil 1, kcar/kcmr,11 ; modulator

 aoutm = acarr*amod*kmp ; modulated signal
 aoutnm = acarr*(1-kmp) ; unmodulated signal

 ; mix and output
 out kamp*(aoutm+aoutnm)
endin

; CS25.SC

;SECTION 1

t 0 120 4 120 6 140 6 250 8.6 40 8.8 60

; percussive sound functions

f1 0 512 7 0 32 1 64 .3 384 0
f2 0 512 7 1 512 1 f3 0 512 7 0.6799 32 .6799 160 1 384 .9808
f4 0 512 7 1 32 .1 414 .11

; carrier and modulator functions

f10 0 4096 10 1 ; carrier
f11 0 4096 10 1 .9 .8 .7 .6 .5 .6 .7 .8 ; modulator

; p3 p4 p5 p6 p7 p8 p9 p10
;ins start dur max highest max amp carr c/m mod %
; amp carr. c/m func func func func
; pitch

i30 0 .1 5000 9.03 3 1 2 3 4
i30 .2 . 1000 . 3
i30 .4 . > . 3
i30 .6 . > . 3

i30 .8 . > . 3

i30 1 . 25000 . 3

i30 2 . . 10.02 3

i30 3.5 . 15000 9.07 3
i30 3.7 . 15000 . 3
i30 3.85 . 15000 . 3

i30 4 . 15000 10.04 3
i30 4.4 . > 9.10 3
i30 4.8 . > 10.06 3
i30 5.2 . > 10.02 3
i30 5.6 . > 10.08 3

i30 6 . 32000 11.01 3
i30 6.2 . . . 3
i30 6.4 . . . 3
i30 6.6 . > . 3
i30 6.8 . > . 3
i30 7.0 . > . 3
i30 7.2 .09 > . 3
i30 7.4 .085 > . 3
i30 7.6 .08 > . 3
i30 7.8 .075 > . 3
i30 8.0 .07 > . 3
i30 8.2 .065 > . 3
i30 8.4 .06 > . 3
i30 8.6 .05 8000 . 3

s

;SECTION 2

; low 'bounce' functions

f1 0 1024 7 0 32 1 64 .6 128 .3 800 0
f2 0 512 7 1 512 1 f3 0 512 7 .7057 64 .8982 64 1 384 .9980
f4 0 512 7 1 64 .6 64 .3 128 0

; gliss and fan sound functions

f5 0 512 7 0 128 0.2 64 1 32 0.8 96 0.7 192 0
f6 0 512 7 1 64 1.02 64 .95 64 0.8 64 0.6 256 0.64 f7 0 512 7 1 128 1 0
0.7001 384 0.7
f8 0 512 7 0 64 1 64 0 192 1 64 0.8 128 1

; carrier and modulator functions

f10 0 4096 10 1 ; carrier
f11 0 4096 10 1 .9 .8 .7 .6 .5 .6 ; modulator

; p3 p4 p5 p6 p7 p8 p9 p10
;ins start dur max highest max amp carr c/m mod %
; amp carr. c/m func func func func
; pitch

i30 1 1 30000 6.01 1 1 2 3 4
i30 1.75 9 30000 9.01 1 5 6 7 8

s

; SECTION 3

f1 0 2048 7 0 4 1 128 .6 280 .2 1200 0
f2 0 512 7 1 512 1 f3 0 512 7 1 512 1

f4 0 512 7 1 100 .65 100 .4 312 .05

; carrier and modulator functions

f10 0 4096 10 1 ; carrier
f11 0 4096 10 1 .9 .8 .7 .6 ; modulator

; p3 p4 p5 p6 p7 p8 p9 p10
;ins start dur max highest max amp carr c/m mod %
; amp carr. c/m func func func func
; pitch

i30 1 4 30000 8.06 1.4142 1 2 3 4

e

9.9.9.9. WaveshapingWaveshapingWaveshapingWaveshaping

; CS26.ORC - Waveshaper

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 31 ; Basic Waveshaping instrument

;p4 : amplitude
;p5 : frequency
;p6 : attack
;p7 : decay
;p8 : oscillator function
;p9 : waveshaping function

 ioffset = .499 ; offset
 k1 linen p4, p6, p3, p7 ; envelope
 a1 oscil ioffset, p5, p8 ; oscillator
 awsh table a1,p9,1,ioffset ; waveshaping value
 out k1*awsh ; output
endin

; CS26.SC

; oscillator

f1 0 8192 10 1

; waveshaping functions

f2 0 8193 7 -1 8193 1
f3 0 8193 7 -1 2048 -0.7 4097 0.7 2048 1
f4 0 8193 7 -1 2048 -0.5 0 -0.3 2048 0.1 0 0.4 2048 0.5 0 0.7 2049 1
f5 0 8193 9 1 1 180 2 .9 180 3 .8 180 4 .7 180 5 .6 180
f6 0 8193 9 1 1 90 2 .9 90 3 .8 90 4 .7 90 5 .6 90
 ; p3 p4 p5 p6 p7 p8 p9
;ins start dur amp freq attack decay osc wsh
; func func

i31 0 1 32000 440 .1 .1 1 2
i31 1.5 1 . . .1 .1 1 3
i31 3 1 . . .1 .1 1 4
i31 4.5 1 . . .1 .1 1 5
i31 6 1 . . .1 .1 1 6

e

; CS27.ORC

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 3 ; Simple Oscillator

 k1 linen p4, p6, p3, p7 ; envelope
 a1 oscil k1, p5, p8 ; oscillator
 out a1 ; output
endin

instr 31 ; Basic Waveshaping instrument

;p4 : amplitude
;p5 : frequency
;p6 : attack
;p7 : decay
;p8 : oscillator function
;p9 : waveshaping function

 ioffset = .5 ; offset
 k1 linen p4, p6, p3, p7 ; envelope
 a1 oscil ioffset, p5, p8 ; oscillator
 awsh table a1,p9,1,ioffset ; waveshaping value
 out k1*awsh ; output
endin

; CS27.SC

; Use of GEN13 to produce a harmonic series out of a sine wave

f1 0 8192 10 1 ; sine wave

f2 0 8193 13 1 1 1 ; DC
f3 0 8193 13 1 1 0 1 ; 1 harmonic (fund)
f4 0 8193 13 1 1 0 0 1 ; 2 harmonic
f5 0 8193 13 1 1 0 0 0 1 ; 3 harmonic
f6 0 8193 13 1 1 0 0 0 0 1 ; 4 harmonic
f7 0 8193 13 1 1 0 0 0 0 0 1 ; 5 harmonic
f8 0 8193 13 1 1 0 0 0 0 0 0 1 ; 6 harmonic
f9 0 8193 13 1 1 0 0 0 0 0 0 0 1 ; 7 harmonic
f10 0 8193 13 1 1 0 0 0 0 0 0 0 0 1 ; 8 harmonic
f11 0 8193 13 1 1 0 0 0 0 0 0 0 0 0 1 ; 9 harmonic

; SINE WAVE

; p3 p4 p5 p6 p7 p8
;instr start dur amp first attack decay func
; freq

i3 0 1 25000 200 .1 .1 1

; HARMONICS

; p3 p4 p5 p6 p7 p8 p9
;ins start dur amp freq attack decay osc wsh
; func func

i31 1 .5 25000 200 .1 .1 1 2
i31 + 3
i31 + 4
i31 + 5
i31 + 6
i31 + 7
i31 + 8
i31 + 9
i31 + 10
i31 + 11

e

; CS28.ORC

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 32 ; Dynamic Waveshaping instrument
 ; Distortion index changes according to
 ; function indicated by p11
;p4 : amplitude

;p5 : frequency
;p6 : oscillator function
;p7 : waveshaping function
;p8 : envelope (distortion index) function

 ifr = cpspch(p5) ; pitch to freq
 ip3 = 1/p3 ; one cycle
 ioffset = .5 ; offset
 k1 oscil 1, ip3, p8 ; envelope (dist index)
 a1 oscil ioffset, ifr, p6 ; oscillator
 awsh table k1*a1,p7,1,ioffset ; waveshaping value
 out k1*p4*awsh ; max amp & output
endin

; CS28.SC

f1 0 8192 10 1 ; sine wave
f2 0 8193 13 1 1 0 1 .7 -.8 -.3 .1 .8 -.9 -1 1 ; waveshaper
f3 0 512 7 0 64 1 64 .2 184 .5 152 1 48 0 ; dist idx env

; p3 p4 p5 p6 p7 p8
;instr start dur amp pitch osc wsh index
; func func func

i32 0 1 15000 7.06 1 2 3
i32 + 0.5 . 8.00 . . .
i32 + 0.25 . 7.01 . . .
i32 + 0.25 . 6.02 . . .
i32 2.5 2.5 20000 5.08 . . .

e

; CS29.ORC

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 33 ; Dynamic Waveshaping instrument
 ; changes linearly between two different
 ; transfer functions that waveshape the same
 ; signal

;p4 : amplitude
;p5 : frequency
;p6 : oscillator function
;p7 : beginning waveshaping function
;p8 : final waveshaping function
;p9 : index function
;p10 : c/m ratio
 ip3 = 1/p3 ; one cycle
 icarr = cpspch(p5) ; carrier freq
 imod = icarr*p10 ; modulator freq
 ioffset = .5 ; offset

 k1 oscil 1, ip3, p9 ; envelope
 kmix line 1, p3, 0 ; mix proportions

 acarr oscil .5, icarr, 1 ; carrier
 amod oscil 1, imod,p6 ; modulator
 a1 = acarr*amod ; modulated signal

 awsh1 table k1*a1,p7,1,ioffset ; 1 waveshaping value
 awsh2 table k1*a1,p8,1,ioffset ; 2 waveshaping value

 ; mix output
 out k1*p4*(kmix*awsh1 + (1-kmix)*awsh2)
endin

; CS29.SC

f1 0 8192 10 1 ; carrier
f2 0 8192 10 1 .7 .3 .8 .4 ; modulator

f3 0 8193 13 1 1 0 1 -.9 -.8 .7 .6 -.5 -.4 .3 .2 ; waveshaper 1
f4 0 8193 13 1 1 0 .1 .1 .2 1 .3 .2 .1 ; waveshaper 2

f5 0 1024 9 .5 1 0 ; envelope

; p3 p4 p5 p6 p7 p8 p9 p10
;ins strt dur amp pitch mod first last index ring
; func wsh wsh func c/m
; func func (env)

i33 0 5 25000 7.08 2 3 4 5 .35355
i33 6 2 . 7.06 354
i33 7 6 . 8.05 35355
e

10.10.10.10. Frequency ModulationFrequency ModulationFrequency ModulationFrequency Modulation

; CS30.ORC Basic FM instrument

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 34 ; Basic FM instrument

;p4 : carrier amplitude
;p5 : carrier frequency
;p6 : attack
;p7 : decay
;p8 : peak deviation
;p9 : modulator frequency
;p10 : oscillator function

 kenv linen p4,p6,p3,p7 ; envelope
 amod oscil p8,p9,p10 ; modulator
 aout oscil kenv,p5+amod,p10 ; modulated carrier
 out aout ; output
endin

; CS30.SC Modulation of a 400 hz sine wave by a ; 440 hz sinewave and
different deviation ; values

f1 0 8192 10 1 ;sine wave

; p3 p4 p5 p6 p7 p8 p9 p10
;ins start dur amp carr atck decay max mod func

; freq dev freq

i34 0 1.5 15000 400 .1 .1 0 440 1
i34 2 10 . .
i34 4 100 . .
i34 6 800 . .
i34 8 1600 . .
e

; CS31.SC Different carrier-modulator combinations

f1 0 8192 10 1 ;sine wave

; p3 p4 p5 p6 p7 p8 p9 p10
;ins start dur amp carr atck decay max mod func
; freq dev freq

i34 0 1.5 15000 400 .1 .1 400 200 1
i34 2 . . 200 . . 800 400 .
i34 4 . . 200 . . 566 283 .
e

; CS32.SC Same carrier (400 hz) with two different
; modulators (400 and 800 hz)

f1 0 8192 10 1 ;sine wave

; p3 p4 p5 p6 p7 p8 p9 p10
;ins start dur amp carr atck decay max mod func
; freq dev freq

i34 0 1.5 15000 400 .1 .1 1200 400 1
i34 2 2400 800 .
e

; CS33.SC carrier = 300 hz
; c/m = 1 (modulator = 300)
; 1.003 (modulator = 300.9)
; 1.4142 (modulator = 424.26)
; index = 2

f1 0 8192 10 1 ;sine wave

; p3 p4 p5 p6 p7 p8 p9 p10
;ins start dur amp carr atck decay max mod func
; freq dev freq

i34 0 1.5 15000 300 .1 .3 600 300 1
i34 2 601.8 300.9 .
i34 4 848.52 424.26 .

e

; CS34.ORC - FM synthesis instrument using FOSCIL
; Produces dynamic spectrum by varying
; the modulation index

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 35 ; General FM instrument

;p4 : amplitude
;p5 : pitch (to be converted to frequency)
;p6 : carrier/frequency
;p7 : modulator/frequency
;p8 : maximum index
;p9 : oscillator function (usually a sine wave)
;p10 : index function

 icyc = 1/p3 ; one cycle

 ; envelope with attack = decay = .1 sec
 kenv linen p4,.1,p3,.1

 ; index
 kidx oscil p8,icyc,p10

 ; FM oscillator
 a1 foscil kenv,p5,p6,p7,kidx,p9

 ; output
 out a1
endin

; CS34.SC dynamic spectrum index changes ; from 0 to 4 in 2 sec

f1 0 8192 10 1 ; oscillator function
f2 0 512 7 0 512 1 ; index function

; p3 p4 p5 p6 p7 p8 p9 p10
;ins start dur amp freq carr mod max functions
; idx osc idx

i35 0 2 15000 100 1 1 4 1 2

e

; CS35.ORC - FM synthesis instrument using FOSCIL
; Produces all kinds of percussive sounds

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 36 ; General FM instrument, with envelope changing
 ; according to function table given by p10 and
 ; index changing according to function table given
 ; by p11.
;p4 : amplitude
;p5 : pitch (to be converted to frequency)
;p6 : carrier/frequency
;p7 : modulator/frequency
;p8 : maximum index
;p9 : oscillator function (usually a sine wave)
;p10 : amplitude function

;p11 : index function

 icyc = 1/p3 ; one cycle
 ifreq = cpspch(p5) ; frequency

 ; envelope
 kenv oscil p4,icyc,p10

 ; index
 kidx oscil p8,icyc,p11

 ; FM oscillator
 a1 foscil kenv,ifreq,p6,p7,kidx,p9

 ; output
 out a1
endin

; CS35.SC Different Percussive sounds obtained by changing
; envelopes, index functions and durations of the ; sounds

f1 0 8192 10 1 ; oscillator function
f2 0 512 5 1 512 .0001 ; amplitude function
f3 0 512 5 1 512 .2 ; index function

; BELLS

; p3 p4 p5 p6 p7 p8 p9 p10 p11
;ins start dur amp pitch carr mod max functions
; idx osc amp idx

i36 0 4 15000 7.11 1 1.215 6 1 2 3

i36 5 . 10000 8.11 i36 6 . 10000 8.07 . . .

. . . i36 7 . 10000 8.09 i36 8 . 10000 8.02 .

. i36 10 . 10000 8.02 i36 11 . 10000
8.09 i36 12 . 10000 8.11 i36 13
. 10000 8.07
s

; DRUMS

;index and amplitude function
f2 0 2048 7 0 20 .75 35 .9 35 1 104 .15 64 .1 186 .08 630 .15 964 0

; p3 p4 p5 p6 p7 p8 p9 p10 p11
;ins start dur amp pitch carr mod max functions
; idx osc amp idx

i36 0 .5 15000 5.07 1 2.21 2.5 1 2 2
i36 + .5 15000 6
i36 + .5 15000 6.05
s

; KNOCK ON WOOD

f2 0 512 5 1 512 .0001 ; amplitude function
f3 0 512 7 1 64 0 448 0 ; index function

; p3 p4 p5 p6 p7 p8 p9 p10 p11
;ins start dur amp pitch carr mod max functions
; idx osc amp idx

i36 2 .2 15000 6 1 1.4142 25 1 2 3
i36 2.5 . >
i36 3 . 25000

e

; CS36.ORC - Brass-like tones instrument

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 37 ; General FM instrument, generates
 ; brass-like tones
;p4 : amplitude
;p5 : pitch (to be converted to frequency)
;p6 : attack
;p7 : decay
;p8 : carrier/frequency
;p9 : modulator/frequency
;p10 : maximum index
;p11 : oscillator function (usually a sine wave)

 ifreq = cpspch(p5) ; frequency
 ihrise = p6*.5 ; half of rise time
 ist1 = p4*.75 ; steady state amplitude 1
 ist2 = p4*.6 ; steady state amplitude 2
 istd = p3-p6-p7 ; duration of steady state

 ; envelope
 kenv linseg 0,ihrise,p4,ihrise,ist1,istd,ist2,p7,0

 ; index
 kidx = kenv*p10/p4

 ; FM oscillator
 a1 foscil kenv,ifreq,p8,p9,kidx,p11

 ; output
 out a1
endin

; CS36.SC Brass-like sounds

f1 0 8192 10 1 ; oscillator function

; p3 p4 p5 p6 p7 p8 p9 p10 p11
;ins stt dur amp pitch atck dec carr mod max osc
; idx func

i37 0 .1 10000 8.01 .05 .04 1 1.002 5 1
i37 + . >
i37 + . >
i37 + .9 15000 . .2 .1 . . 5 .

i37 + .1 10000 . .05 .04 1 1.002 5 1
i37 + . >
i37 + . >
i37 + .9 15000 . .2 .1 . . 5 .

i37 + .1 10000 . .05 .04 1 1.002 5 1
i37 + . >
i37 + . >
i37 + 1.8 18000 8.04 .2 .4 . . 5 .

i37 + .1 12000 8.01 .05 .04 1 1.002 5 1
i37 + . >
i37 + . >
i37 + .9 18000 8.04 .2 .1 . . 5 .

i37 + .1 14000 8.01 .05 .04 1 1.002 5 1
i37 + . >
i37 + . >
i37 + .9 22000 8.04 .2 .1 . . 5 .

i37 + .1 14000 8.01 .05 .04 1 1.002 5 1
i37 + . > 8.04
i37 + . > 8.08
i37 + 2.1 25000 9.01 .2 .2 . 1.001 5 .

s

i37 .15 .15 22000 8.11 .08 .04 1 1.002 5 1
i37 + .8 23000 8.09 .1 .1 i37 + .15 22000 8.08 .08 .04 .
. . .
i37 + .8 23000 8.06 .1 .1
i37 + .15 22000 8.04 .08 .04
i37 + .8 23000 8.09 .1 .1
i37 + .15 22000 8.08 .08 .04
i37 + .8 23000 8.06 .1 .1
i37 + .15 22000 8.04 .08 .04

i37 + .25 22000 8.06 .08 .04
i37 + .25 > 8.09 .08 .04
i37 + .25 > 9.01 .08 .04

i37 + 1.8 28000 9.04 .2 .1 . 1.001 7 .
i37 + .75 > 9.06
i37 + 3 32000 9.09 . 1.5 . 1.0005 . .

e

Assignment :Produce an FM instrument with the following characteristics:

1.The amplitude is controlled by a function table.

2.The index is controlled by a function table.

3.The instrument has two formants at 1300 and 2500 hz.

Produce a short nmuxical fragment in which this instrument is used to play brass-like tones
and also non-pitched sounds.

11.The Phase Vocoder11.The Phase Vocoder11.The Phase Vocoder11.The Phase Vocoder

Pvoc 1

analysis
sfpvoc -N4096 -A obc obc.dat

synthesis
sfpvoc -N4096 -S -i0 -j24 obc.dat obclow
sfpvoc -N4096 -S -i25 -j80 obc.dat obcmid
sfpvoc -N4096 -S -i81 -j2048 obc.dat obchigh

Pvoc 2

Pvoc Transposition
sfpvoc -N2048 -P2.1 mflute mflute.tr
Ftrans
ftrans mflute mflute.ftr

Pvoc 3

sfpvoc -N4096 -T4.0 ahh ahhx4
sfpvoc -N4096 -T4.0 ahhx4 ahhx16

Pvoc 4

cut
cut inh4 inh4b 0 2.3
cut inh4 inh4e 2.3 2.7
analysis

sfpvoc -N2048 -A inh4e inh4e.dat
shift
specsh inh4e.dat inh4she1.dat 1 15 1.9 .1 .1 0 0
specsh inh4e.dat inh4she2.dat 1 15 2.4 .1 .1 0 0
specsh inh4e.dat inh4she3.dat 1 15 3.45 .1 .1 0 0
stretch
spece inh4e.dat inh4ste1.dat 0 15 1.9 .06 .1 0 0 .5
spece inh4e.dat inh4ste2.dat 0 15 2.4 .06 .1 0 0 .5
spece inh4e.dat inh4ste3.dat 0 4 4.6 .06 .1 0 0 .5
resynthesis
sfpvoc -N2048 -S inh4she1.dat inh4she1
sfpvoc -N2048 -S inh4she2.dat inh4she2
sfpvoc -N2048 -S inh4she3.dat inh4she3
sfpvoc -N2048 -S inh4ste1.dat inh4ste1
sfpvoc -N2048 -S inh4ste2.dat inh4ste2
sfpvoc -N2048 -S inh4ste3.dat inh4ste3
splice
splice -w0 inh4sh1 inh4b inh4she1
splice -w0 inh4sh2 inh4b inh4she2
splice -w0 inh4sh3 inh4b inh4she3
splice -w0 inh4st1 inh4b inh4ste1
splice -w0 inh4st2 inh4b inh4ste2
splice -w0 inh4st3 inh4b inh4ste3

Pvoc 5

#cuts
cut obD obDs 0 1.2
cut obD obDe 1.2 3.34
cut alhmix4 alhmix4s 0 2.011
cut alhmix4 alhmix4s 2.011 3.75
#analysis
sfpvoc -N4096 -A obDs obDs.dat
sfpvoc -N4096 -A alhmix4s alhmix4s.dat
#interpolation
vocinte obDs.dat alhmix4s.dat otg1m.dat .01 2 .01 2 2 2
#synthesis
sfpvoc -N4096 -S otg1m.dat otg1m
#splices
splice -w0 otg1s obDs otg1m
splice otg1 otg1s alhmix4s

References and SoftwareReferences and SoftwareReferences and SoftwareReferences and Software

Atkins M. C.The Soundfile System. Software and Manual. Composers' Desktop Project.
1990.

Backus J.The Acoustical Foundations of Music.
W. W. Norton & Company, Inc. 1977

Beauchamp J.Brass Tone Synthesis by Spectrum Evolution Matching with Nonlinear
Functions. pp 35-43. Computer Music Journal 3(2). 1979.

Bentley A.GROUCHO. Programs for Processing Sounds in the Electronic Music Studio,
Using the CDP Soundfile System. Composers' Desktop Project. 1987.

Chowning, J MThe Synthesis of Complex Audio Spectra by Means of Frequency
Modulation. pp 46-54. Computer Music Journal 1(1), 1977.

Dodge C., Jerse T. A.Computer Music Synthesis Composition and Performance. Schirmer.
1985.

Fischman R.The Graphic Desktop. Composers' Desktop Project. 1987.

Orton R.ADSYN DRAW. Software and Manual. Composers' Desktop Project. 1988.

Snell J. (Ed.),Computer Music Journal. MIT Press. 1977 Abott C. (Ed.), - 1991
Strawn J. (Ed.)
Kaske S. (Ed.)
Roads C. (Ed.) Travis Pope S. (Ed.)

Roads C. (Ed.),Foundations of Computer Music. MIT Strawn J. (Ed.)Press. 1985.

Strawn J. (Ed)Digital Audio Signal Processing - An Anthology. Wm Kaufmann, Inc. 1985

Vercoe B., Payton W.Csound (Atari Version). Software and Manual. Composers' Desktop
Project. 1989.

Williams C. S.Designing Digital Filters. Prentice-Hall Inc. 1986.

Wishart T.On Sonic Art. Trevor Wishart. York, 1985.

Wishart T.The Phase Vocoder. Software and Programs. Composers' Desktop Project
Manual. 1986-89.

	Preface 2006
	contents
	Prefacio 2006 (castellano)
	Preface
	Part I Introduction to Csound
	1. Fundamental Concept
	2. Sintax of the orchestra
	3. Syntax of the score
	4. Envelopes
	5. Some useful devices

	Part II Linear Synthesis Techniques
	6. Additive synthesis
	7. Substractive synthesis

	Part III Non-Linear Synthesis Techniques
	8. Amplitude Modulation (AM)
	9.Waveshaping
	10. Frequency Modulation (FM)

	Part IV Sound Processing
	11. The phase vocoder

	Coda
	Appendix
	Some useful devices
	Additive Synthesis
	Subtractive Synthesis
	Amplitude Modulation (AM)
	Waveshaping
	Frequency Modulation (FM)
	The phase vocoder
	References and software

