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Abstract

This paper examines the volatility of Taiwan’s stock market by means of the
GARCH and the SWARCH models. Our empirical results conclude that the SWARCH
models do a better job in forecasting than the GARCH models. In addition, for Taiwan
stock market there exists a positive and significant leverage effect such that a stock
price decrease has a greater effect on subsequent volatility than would a stock price
increase of the same magnitude. We have identified every episode causing the high-
volatility state in Taiwan stock market. Our estimates attribute most of the persistence
in stock price volatility to the persistence of low-, medium- and high-volatility regimes.
The high-volatility regime is associated with the business recession at the beginning of
1990s.
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1 Introduction

This paper is concerned with the econometric modeling of volatility of the stock market in

Taiwan. The stock market in Taiwan was established in 1962, the valued-weighted stock

index (Taiex) culminated to highest 12000 in February 1990, then dove downward and hit

the bottom of 2900 in October, 1990. Political events, financial crises and the Gulf War

all contributed to the collapse of the market. From there, Taiex rebound up and down to

the current 6000. By examining the figure for Taiwan stock prices, one can easily find out

there are periods for low-volatility and periods for high-volatility. If we observe the state

more closely, there maybe even exist periods of low-volatility, medium-volatility and high-

volatility in Taiwan stock market, respectively. Understanding the way in which the stock

market volatility changes is crucial to our understanding of Taiwan economy as both are

closely intertwined.

The most commonly used methods to characterize the volatility clustering of the stock

returns are the univariate GARCH models developed by Engle (1982) and Bollerslev (1986).

See Bollerslev, Chou and Kroner (1992) or Bollerslev, Engle and Nelson (1994) and papers

therein. But the high persistence in the GARCH model is difficult to reconcile with the poor

forecasting performance. Diebold (1986) and Lamoureux and Lastrapes (1990) argued that

the high persistence may reflect structural change in the variance process.

Following this line of thought, Hamilton and Susmel (1994) employed switching-regime

ARCH model (SWARCH) to model the the high persistence of variance. The idea of their

SWARCH model is to model changes in regimes as changes in the scale of the ARCH process.

Cai (1994) also parameterized a similar model to analyze the volatility in Treasury bill

yield in the US. See Turner, Startz, and Nelson (1989), Dueker (1997) and Schaller and

Norden (1997) for similar applications to the stock market analysis. Ramchond and Susmel

(1998) also applied bivariate SWARCH model to investigate correlations among major stock

market in the world. Another application of the SWARCH models including Gomez-Puig

2



and Montalvo (1997) and Susmel and Thompson (1998).

Markov-switching models have been successfully used to model level changes for many

economic and financial time series, including aggregate output (Hamilton, 1989; Lam, 1990,

1996; Diebold and Rudebusch, 1996; Hamilton and Lin, 1996; Huang et al., 1998) leading

and coincident indicators (Hamilton and Perez-Quiros, 1996; Lin and Chen, 1998), exchange

rate (Engle and Hamilton, 1990; Engle, 1994), interest rate (Hamilton, 1988; Sola and Drifill,

1994; Garcia and Perron, 1996; Gray, 1996), unemployment rate (Bianchi and Zoega, 1998;

Montgomery et al., 1998), future markets (Chow, 1998), among others. Before concluding

the relevant literature review, it is worth noting that except for Gray (1996) the Markov

switching mechanism is added to ARCH models but not to GARCH model. This is due to

the fact for GARCH models, the path dependence of states make the maximum likelihood

estimate impossible. To be more specific, let us turn to the simple GARCH(1,1) model.

Let ht and εt denote the conditional variance and disturbance term respectively. Then, for

GARCH(1,1), ht = α0 + α1ε2
t−1 + βht−1. Since ht depends upon ht−1, which latter depends

upon ht−2 and so on. Thus, ht depends upon the regimes at time t, t − 1, · · · , 1. To obtain

maximum likelihood estimate, one needs to evaluate the likelihood for 2T cases where T is

the sample size. This is infeasible even for moderate T . Gray (1996) cleverly removed the

path dependence by aggregating the conditional variance for past ht. Thus, ht only depends

only on regime at time t but not t− 1 and further past. However, doing so destroys the AR

representation for ε2
t . How successful is Gray model is yet to be seen.

The primary purpose of this paper is to construct an econometric model which can

adequately account for the volatility of the stock market in Taiwan. We employ the Markov-

switching ARCH model, developed by Hamilton and Susmel (1994), and GARCH-type mod-

els introduced by Engle (1982), Bollerslev (1986) and Nelson (1991). In particular, we are

interested in the following issues: Is there evidence of nonlinearity of volatility in Taiwan

stock market? If yes, could the nonlinearity be characterized by a Markov-switching ARCH
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model and identified regimes explained by relevant market factors? Does the forecasting

performance of the SWARCH models perform better than the GARCH models? Does asym-

metric leverage effect exist in Taiwan stock market?

In addition to this introduction, the rest of this paper is organized as follows. Section 2

gives the models specifications, while the data sources and empirical discussions are explained

in Section 3. Section 4 concludes.

2 Model Specification

Let yt denotes the daily stock return measured in percent. We estimate the following model

yt = α0 + α1yt−1 + ut (1)

ut =
√

gstũt (2)

ũt =
√

htvt, vt ∼ Gaussian or Student t distribution (3)

ht = β0 +
q

∑

i=1
βiũ2

t−i + ξdt−1ũ2
t−1 (4)

dt−1 =











0 ũt−1 > 0

1 ũt−1 ≤ 0

st denotes an unobserved random variable that can take values 1, 2, ..., k and is assumed to

be governed by a first order Markov chain with transition probability, pi,j. For example,

k = 2, pi,j, the transition probability from state i, at time t−1 to state j at time t is defined

as:

p(st = 1|st−1 = 1) = p11,

p(st = 2|st−1 = 1) = p12, (5)

p(st = 1|st−1 = 2) = p21,

p(st = 2|st−1 = 2) = p22
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with p11 + p12 = p21 + p22 = 1.

In the absence of a leverage effect (ξ = 0), equation (2)–(4) are called k-state, qth-order

Markov-switching ARCH process, denoted ut ∼ SWARCH(k,q). In the presence of leverage

effects (ξ 6= 0), equation (2)–(4) are denoted ut ∼ SWARCH-L(k,q). The leverage effect

predicts that ξ > 0. Both Gaussian and Student t distributions are investigated.

Following Lo and MacKinlay (1990) and Hamiltion and Susmel (1994), we use AR(1)

specification for the mean return equation.1 Cai (1994) proposed a similar model speci-

fication except that he also allowed the constant in the mean equation governed by the

unobserved state st. The reason we still follow the specification of Hamilton and Susmel

(1994) is that, first, as Hamilton and Lin (1996) pointed out, given the limited predictability

of stock returns, it is surely a mistake to over-parameterize the mean of yt. Second, with

the specification of equations (2)–(4), the scaled ũt follows a standard ARCH(q) process, the

process is therefore multiplied by the constant √gs1 when the process is in the regime repre-

sented by s1, multiplied by the constant √gs2 when the process is in the regime represented

by s2, and so on. And it is easy to interpret the results for this specification. When we

normalize g1 = 1, in which case g2 has the interpretation as the ratio of the average variance

of stock returns when st = 2 compared to that observed when st = 1. Third, the GAUSS

code for estimating the SWARCH models are kindly supported from Hamilton.

It should be noted that the economy depends upon st, st−1, . . . , st−q. To account for this,

construct a new state variable S∗t defined as:

S∗t = 1 + (st − 1)20 + (st−1 − 1)21 + . . . + (st−q − 1)2q.

S∗t takes the value from 1 to N = 2q+1 and the resulting transition probability P ∗ is:

P ∗ = P ∗
ij = prob (S∗t = j|S∗t−1 = i).

1The other reason is that the estimate of the parameter α2 of yt−2 is not significant in all models we

investigate.
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By letting Ξt|s be the probability of S∗t given information up to time s, it can be shown

that yt constitute a stationary process provided there exists a stationary distribution for

P ∗ which is assumed throughout the paper. As a result, the maximum likelihood estimator

amounts to explicitly spelling out the likelihood function. The likelihood function can be

found by summing up the joint likelihood f(yt, S∗t |Yt−1, θ) over S∗t which in turn can be easily

derived using the conditional likelihood function f(yt|Yt−1, S∗t , θ) as in (2)–(4). To sum up,

the estimation algorithm as proposed by Hamilton (1989, 1994), is as shown below.

First of all, we solve the ergodic probability π and set Ξ1|0 = π to start the algorithm.

We then compute the filtering probability by

Ξt|t =
(Ξt|t−1 � ηt)

1′(Ξt|t−1 � ηt)
,

where ηt is the N × 1 vector whose j-th element is the conditional density of

f(yt|yt−1, . . . , y1, S∗t = j)

and � denotes the element by element multiplication. Next, we compute the prediction

probability by

Ξt+1|t = P ∗Ξt|t.

As a side product, the likelihood function can be calculated as:

L(θ) =
T

∑

t=1
log f(yt|Yt−1, θ),

f(yt|Yt−1; θ) = 1′(Ξt|t−1 � ηt).

Finally, the smoothing probability can be obtained by

Ξt|T = Ξt|t � {P ′Ξt+1|T � Ξt+1|t]}.

where � denotes the element by element division. We start the algorithm from t = T − 1,

and then proceed backward until t = 1.
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The persistence of the ARCH component of a SWARCH process can be obtained from

the largest eigenvalue of the following matrix






























(β0 + ξ
2) β1 . . . βq−1 βq

1 0 . . . 0 0

0 1 . . . 0 0
...

...
...

...

0 0 . . . 1 0































For detailed derivation of the persistence and m-period-ahead forecast of u2
tm , see Hamil-

ton and Susmel (1994). It is worth noting that yt is nonlinear but nevertheless stationary

processes and hence conventional asymptotic results apply.

3 Empirical Results

Taiex is taken from the AREMOS data bank. The original data are daily from January 4,

1990 to October 2, 1998, which amounts to 2491 observations. We take logarithm transfor-

mation to get the daily stock index return (denoted by yt) for analysis. The scatter plot of

yt is presented in the top panel of the Figure 1.

3.1 Empirical Results of GARCH

To compare with the performance of the SWARCH models, we first estimate the traditional

GARCH family models. The basic GARCH-L(p,q) model is as follow:

yt = α0 + α1yt−1 + ut

ut =
√

htvt, vt ∼ Gaussian or Student t distribution

ht = β0 +
q

∑

i=1
βiu2

t−i +
p

∑

i=1
δiht−i + ξdt−1u2

t−1 (6)
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dt−1 =











0 ut−1 > 0

1 ut−1 ≤ 0

The parameter ξ is accounted for the leverage effect, that is, a stock price decrease has a

greater effect on subsequent volatility than would a stock price increase of the same mag-

nitude. This parameterizations of the leverage effect was first proposed by Glosten, Jagan-

nathan and Runkle (1993). We also estimate the EGARCH model, which was introduced

by Nelson (1991), to take the leverage effect into account.

Since most empirical implementations of GARCH(p,q) models adopt low orders for the

lag length p and q and such small numbers of parameters seem sufficient to model the

variance over very long sample periods, we set p = q = 1 for the GARCH models and

set q = 2 for the ARCH-L model. And vt is set to be Gaussian or Student t distribution,

respectively. The empirical results are summarized in Table 1 and Table 2. Like previous

empirical works, see Bollerslev, Chou and Kroner (1992) and papers therein, we get high

persistence in the Gaussian or the Student t GARCH(1,1), the GARCH-L(1,1) and the

EGARCH(1,1) models. For example, any change in the stock market today will continue

to have nonnegligible consequence of (0.99)182 = 0.16 a half year later and (0.99)365 = 0.03

a full year later. The leverage effect is also positive and significant in the Gaussian or the

Student t EGARCH(1,1) models. The results also confirm the findings of early works that

stock price increase lead to a smaller increase in volatility than would a stock price decrease

of the same magnitude, The residual diagnostics for the standardized residuals, including

of the coefficient of skewness, kurtosis and the Ljung-Box test for the 24 serial correlations,

Jarque-Bera Normality test and LM test for no ARCH(4) effect, are summarized in Table 5.

It is noteworthy that the Gaussian and Student t ARCH-L(2), GARCH(1,1) and Student t

EGARCH(1,1) models for the conditional variance does not provide a sufficient fit in that

the null hypothesis of no ARCH effect in the standardized residuals are rejected at 5%

significant level. The sample kurtosis coefficient of the standardized residuals of all models
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are still greater than 3. The rejection of the conditional normality assumption is frequently

encountered in applications of the ARCH model, see Bera and Higgins (1993). We postpone

the discussion of forecast performance in later section.

3.2 Empirical Results of SWARCH

The estimation results for equations (2)–(4) described in Section 2 are summarized in Ta-

bles 3 and 4. For example, the estimated Student t SWARCH-L(2,2) and SWARCH-L(3,2)

equations with standard errors in parentheses are as below:

SWARCH-L(2,2) with Student t distribution:

yt = 0.003
(0.014)

+ 0.045
(0.023)

yt−1,

ut =
√

gst ũt,

ũt =
√

htvt,

vt ∼ Student t unit variance and 7.648
(1.300)

d.f.,

ht = 1.143
(0.076)

+ 0.010
(0.038)

ũ2
t−1 + 0.198

(0.037)
ũ2

t−2 + 0.085
(0.058)

dt−1ũ2
t−1,

g1 = 1, ĝ2 = 6.619
(0.694)

,

P̂ =









0.994 0.013
(0.002) (0.005)
0.006 0.987

(0.002) (0.005)









.

SWARCH-L(3,2) with Student t distribution:

yt = 0.011
(0.020)

+ 0.042
(0.019)

yt−1,

ut =
√

gst ũt,

ũt =
√

htvt,

vt ∼ Student t unit variance and 8.666
(1.689)

d.f.,

ht = 0.476
(0.095)

+ 0.000
(0.013)

ũ2
t−1 + 0.182

(0.036)
ũ2

t−2 + 0.078
(0.035)

dt−1ũ2
t−1,

g1 = 1, ĝ2 = 2.650,
(0.535)

ĝ3 = 16.653
(3.663)

,
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P̂ =

















0.991 0 0.002
(0.010) (0.002)
0.009 0.993 0.014

(0.010) (0.003) (0.006)
0 0.007 0.984

(0.003) (0.008)

















.

We estimate models with k = 2, 3 states and q = 2, 3 ARCH terms. When k = 3,

we initially impose no constraints on any of the transition probabilities pij other than the

conditions that 0 ≤ pij ≤ 1 and
∑k

j=1 pij = 1. We also encounter the same problem as in

Hamilton and Susmel (1994) that several of these unrestricted MLE’s fell on the boundary

pij = 0, which is another violation of the regularity condition. In particular, p21 = 1.256e−05

and p13 = 1.566e− 05 for the Student t SWARCH-L(3,2) model, respectively. So we impose

p21 = 0 and p13 = 0 and treat this parameter as a known constant for purpose of calculating

the second derivatives of the log-likelihood and obtain the standard errors.

When k = 2, st = 1 denotes the low-volatility state and st = 2 denotes the high-volatility

state. If k = 3, st = 1, 2, 3 represent low-, medium-, and high-volatility state, respectively.

Note that ĝ2 is about 6.6, for all cases with Gaussian and Student t innovations, and with

or without the leverage effect ξ. The same results are also appeared in k = 3, which ĝ2 is

about 2.8 and ĝ3 = 17.7 for Gaussian innovation and ĝ3 = 16.4 for Student t innovation.

The coefficient estimate of ĝ2 suggests that, when k = 2, variance in the high-volatility state

is more than seven times that in the low-volatility state. When we divide the state finer,

i.e., k = 3, the variance in the medium-volatility state is more than three times that in the

low-volatility state, while variance in the high-volatility state is more than eighteen times

that in the low-volatility state. The Figures 1 and 2 show the smoothed probabilities for

Student t SWARCH-L(2,2) and Student t SWARCH-L(3,2), respectively.2

As can be seen from Figure 1, SWARCH models captures the volatility very well if

2We plot smoothed probabilities for all cases and find the same pattern for k = 2 and k = 3 SWARCH

models. So we choose the one based on minimum one-period-ahead forecast which is summarized in the

Table 9.
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we divide the state into low and high-volatility state. The shaded areas are contraction

periods determined by the Council for Economic Planning and Development (CEPD) in our

empirical length. Basically, the Student t SWARCH-L(2,2) identifies seven high-volatility

states, which are, 90:1–91:8, 92:9–92:10, 93:1–93:4, 93:12–94:1, 95:7–95:8, 96:4 and 97:10–

97:11. It appears that high stock market volatility is related with business recession at the

beginning in 1990s. From Figure 2, we note that low-, medium-, and high-volatility states

Switching ARCH models also perform as well as 2-state SWARCH models in modeling

the volatility. Similarly, high-volatility match the business contraction at the beginning in

1990s. It is apparent that most observations come from the medium-volatility, while the

low-volatility state describes the quiet period from August 1996 to February 1997. The

Student t SWARCH-L(3,2) identifies nine high-volatility as follows: 90:1–91:5, 91:7–91:10,

92:9–92:10, 93:1–93:4, 93:12–94:1, 94:10, 95:7–95:8, 96:4, 97:10–97:11.3 By closely examining

the history of political and economical events in Taiwan, we find that every high-volatility

state in Student t SWARCH-L(3,2) is accompanied by some important policy changes or

financial crises in Taiwan or other critical events in the international economy. For example,

The financial event, “Horsen Event”, which occurred in September and October 1992, was

responsible for the high-volatility in Taiwan stock market. The collapses in the Taiwan stock

market in July 1995, August 1995 and March 8–15, 1996 respectively resulted from the three

missile crises exerted by China. The currency crisis of Southeast Asia in early July 1997

was responsible for the collapse in Taiwan stock market in October, November 1997. We

summarize every critical events in Table 6. Basically, Taiwan stock market is very sensitive

to exogenous shocks.

Note that our maximum likelihood estimate is that the low-volatility state is never pre-

3The smoothed probabilities in Figure 2 are under the constraint of p21 = 0 and p13 = 0. In fact, the

unconstrained Student t SWARCH-L(3,2) model has the similar pattern of smoothed probabilities as in

Figure 2.
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ceded by the medium-volatility state (p̂21 = 0) and the low-volatility state is never followed

by the high-volatility state (p̂13 = 0). Hamilton and Susmel (1994) also found similar results.

The market was in the quiet state 1 for only a single episode from August 1996 to February

1997 in the sample, which episode was preceded by state 3 and followed by state 2. One

reason for this period belongs to low-volatility state is that the level of domestic interest

rate in the market is low in that period, most of the fund are running into the bond market,

causing the trade volumes in the security market shrinks. Comparing the Figure 1 with

Figure 2, we observe that the low-volatility state of 2-state is the combination of low and

medium-volatility state of 3-state.

The expected duration for each state are summarized in Table 7. For the case of two

states (k = 2), the low-volatility is expected to last for (1− p̂11)−1 = 167 days, while high-

volatility typically (1− p̂22)−1 = 77 days for the Student t SWARCH-L(2,2). For the case of

three states (k = 3), the low-, medium- and high-volatility are expected to last for 111, 143

and 63 days, respectively, for the Student t SWARCH-L(3,2). Although the states are highly

persistent, the underlying fundamental ARCH-L(2) process for ũt is much less so, with decay

parameter estimated to 0.472 for 2-state and 0.447 for 3-state. Note that (0.472)8 = 0.002,

(0.447)7 = 0.004, meaning that the volatility effects captured by ũt die out almost completely

after 8 days and 7 days for 2-state and 3-state, respectively. The residual diagnostics are

summarized in Table 5. It is clear that only Ljung-Box statistics is significant at 5% level

for Student t SWARCH models, but is insignificant at 1% level.

3.3 Comparison between GARCH and SWARCH

Table 8 reports the model selection statistics proposed by Akaike (1976) and Schwarz (1978).

Hamilton and Susmel (1994) suggested that the average squared forecast error such as MSE,

MAE is probably an unfair standard for judging the specification, since it is based on the

fourth moments of the actual data yt. The unconditional fourth moment would fail to
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exist if (6) were the data-generating process. So we evaluate the one-period-ahead forecast

performance based on [LE]2 and |LE| summarized in the Table 9.4 According to the AIC

and the Schwarz criteria, it is apparent that the Student t GARCH-L(1,1) perform best,

which also has the minimum one-period-ahead forecast among the GARCH models. Among

the SWARCH models, The AIC and the Schwarz criteria also approximately lead to same

chosen models. Since our ultimate criterion is based on the forecast performance, we select

the Student t GARCH-L(1,1) among the GARCH models, the Student t SWARCH-L(2,2)

among 2-state SWARCH models and the Student t SWARCH-L(3,2) among 3-state models.

By examining the one-period-ahead forecast in Table 9, we make the following observations.

• The Student t SWARCH models perform better than the corresponding Gaussian

SWARCH models in forecasting.

• Leverage factor improves forecasting performance in the SWARCH models.

• The three states SWARCH model perform better than two states SWARCH, and the

Student t SWARCH-L(3,2) performs the best among the other models, and the Student

t SWARCH-L(2,2) performs the best among 2-state SWARCH models.

• The SWARCH models do a better job in forecasting than the GARCH models.

Finally we plot the estimated conditional variance of the Student t GARCH-L(1,1),

SWARCH-L(2,2) and SWARCH-L(3,2) in Figure 3, respectively. All three panels show

the similar pattern, and it is clear that each clustering of large deviations, of either sign, in

the returns is associated with a rise in the conditional variance. By closely examining the

4The loss functions are defined as follow:

[LE]2 = T−1
T

∑

t=1

(ln(ũ2
t )− ln(ht))2, |LE| = T−1

T
∑

t=1

| ln(ũ2
t )− ln(ht)|
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panel for Student t SWARCH-L(3,2) and the Student t SWARCH-L(2,2) we find that the

conditional variance in the low-volatility state are relative smooth but are relative volatile

in high-volatility state.

3.4 Testing of No Regime-Switching

Does stock index return in Taiwan really follows a SWARCH model? Note that Student

t ARCH-L(2) is the nested model of the Student t SWARCH-L(K,2) with K = 1. The

usual likelihood ratio is −2(4690.689 − 4782.779) = 184.18. The conventional likelihood

ratio test would suggest that the null hypothesis of no regime switching be rejected since

the critical value for χ2
0.05(3) is 7.815. In other words, the Student t SWARCH-L(2,2) is

supported. Unfortunately, the usual asymptotic distribution theory does not hold for this

case since the nuisance parameters p11 and p22 are unidentified under the null hypothesis

that g1 = g2. For these reasons, standard likelihood ratios are inappropriate and can only be

used as a rough approximation. Hansen (1992, 1996) had proposed asymptotically valid test

by the standardized likelihood statistic, but their application here would be quite difficult

numerically and time-consuming. Following Hamilton and Susmel (1994), we still regard the

result as a useful descriptive summary of the fit of alternative models. As for the Student t

ARCH-L(2) and SWARCH-L(3,2) models, the associate log-likelihood values are −4782.779

and −4684.174, respectively. The likelihood ratio statistic is −2(4684.174 − 4782.779) =

197.21, standard likelihood ratio test also reject the ARCH-L(2) model.

Finally, comparing the log-likelihood function of the Student t SWARCH-L(2,2) and

SWARCH-L(3,2) models, standard likelihood ratio tests is 2(−4684.174+4690.689) = 13.03,

compare it with usual χ2
0.05(1) = 3.841, which implies that the three-regime specification is

supported. Again, we should point out the usual asymptotic distribution theory does not

hold for this case, because under the null hypothesis of k − 1 states, the parameters that

describe the kth state are unidentified. Since the improvement in the likelihood value is
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significant, so we still take it as a strong indication of a three-state model.

4 Conclusions

This paper employs the GARCH and SWARCH models to analyze the stock market volatility

in Taiwan. The empirical findings are as follows. First, the stock returns in Taiwan can

be adequately characterized by SWARCH model. Secondly, we have identified episodes

responsible for causing the high-volatility in stock market. Thirdly, our estimates attribute

most of the persistence in stock price volatility to the persistence of low-, medium- and

high-volatility regimes. The high-volatility regime is associated with the business recession

at the beginning of 1990s. Fourth, there exists a positive and significant leverage effect such

that a stock price decrease has a greater effect on subsequent volatility than would a stock

price increase of the same magnitude. Finally, the SWARCH models perform better than

the GARCH models in forecasting.
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Table 1: Empirical Results of Gaussian GARCH-Family
Gaussian Gaussian Gaussian Gaussian

ARCH-L(2) GARCH(1,1) GARCH-L(1,1) EGARCH(1,1)

α0 −0.009 0.018 −0.008 −0.014

(0.031) (0.027) (0.028) (0.027)

α1 0.056 0.047 0.052 0.050

(0.020) (0.022) (0.022) (0.021)

β0 1.654 0.044 0.052 0.027

(0.053) (0.008) (0.008) (0.004)

β1 0.224 0.079 0.052 0.181

(0.032) (0.007) (0.008) (0.013)

β2 0.329

(0.031)

δ1 0.906 0.900 0.979

(0.007) (0.007) (0.003)

ξ 0.024 0.062 0.252

(0.046) (0.012) (0.046)

κ 0.553 0.985 0.983 0.979

Table 2: Empirical Results of Student t GARCH-Family
Student t Student t Student t Student t

ARCH-L(2) GARCH(1,1) GARCH-L(1,1) EGARCH(1,1)

α0 0.008 0.026 0.006 0.004

(0.027) (0.026) (0.026) (0.026)

α1 0.043 0.039 0.044 0.041

(0.020) (0.021) (0.021) (0.020)

β0 1.583 0.038 0.047 0.020

(0.131) (0.012) (0.013) (0.024)

β1 0.258 0.099 0.067 0.199

(0.057) (0.014) (0.015) (0.022)

β2 0.445

(0.066)

δ1 0.894 0.885 0.986

(0.013) (0.014) (0.004)

ξ 0.054 0.075 0.227

(0.078) (0.020) (0.061)

DF 4.159 6.497 6.688 6.507

(0.448) (0.879) (0.924) (0.906)

κ 0.703 0.993 0.990 0.986
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Table 3: Empirical Results of Gaussian SWARCH
Gaussian Gaussian Gaussian Gaussian

SWARCH(2,2) SWARCH(3,2) SWARCH-L(2,2) SWARCH-L(3,2)

α0 0.015 0.021 0.012 0.020

(0.132) (0.019) (0.070) (0.056)

α1 0.052 0.051 0.051 0.050

(0.040) (0.020) (0.020) (0.022)

β0 1.052 0.418 1.050 0.417

(0.132) (0.067) (0.083) (0.072)

β1 0.027 0.011 0.006 0.000

(0.101) (0.024) (0.045) (0.020)

β2 0.165 0.155 0.164 0.155

(0.039) (0.031) (0.033) (0.033)

ξ 0.050 0.040

(0.032) (0.040)

p11 0.985 0.985 0.986 0.986

(0.005) (0.013) (0.004) (0.012)

p22 0.972 0.983 0.972 0.983

(0.010) (0.005) (0.009) (0.005)

p33 0.968 0.969

(0.012) (0.011)

g2 6.671 2.825 6.689 2.806

(1.021) (0.480) (0.604) (0.502)

g3 17.976 17.742

(3.248) (3.306)

κ 0.421 0.404
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Table 4: Empirical Results of Student t SWARCH
Student t Student t Student t Student t

SWARCH(2,2) SWARCH(3,2) SWARCH-L(2,2) SWARCH-L(3,2)

α0 0.008 0.016 0.003 0.011

(0.012) (0.022) (0.014) (0.020)

α1 0.046 0.044 0.045 0.042

(0.022) (0.023) (0.023) (0.019)

β0 1.147 0.475 1.143 0.476

(0.079) (0.101) (0.076) (0.095)

β1 0.054 0.042 0.010 0.000

(0.026) (0.031) (0.038) (0.013)

β2 0.200 0.184 0.198 0.182

(0.037) (0.037) (0.037) (0.036)

ξ 0.085 0.078

(0.058) (0.035)

p11 0.994 0.991 0.994 0.991

(0.002) (0.007) (0.002) (0.010)

p22 0.987 0.993 0.987 0.993

(0.005) (0.003) (0.005) (0.003)

p33 0.984 0.984

(0.008) (0.008)

g2 6.489 2.667 6.619 2.650

(0.651) (0.558) (0.694) (0.535)

g3 16.388 16.653

(3.677) (3.663)

DF 7.550 8.552 7.648 8.666

(1.306) (1.717) (1.300) (1.689)

κ 0.472 0.447
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Table 5: Residual diagnostics for various specifications
Model Skewness Kurtosis LB(24) Normality ARCH(4)

Gaussian ARCH-L(2) −0.347 4.999 28.928 464.147 9.221

(0.182) (0.000) (0.000)

Gaussian GARCH(1,1) −0.287 4.470 36.866 258.383 3.578

(0.033) (0.000) (0.006)

Gaussian GARCH-L(1,1) −0.271 4.467 38.727 253.930 2.055

(0.021) (0.000) (0.084)

Gaussian EGARCH(1,1) −0.266 4.397 39.951 231.526 4.652

(0.015) (0.000) (0.001)

Student t ARCH-L(2) −0.361 5.215 28.317 562.682 7.957

(0.204) (0.000) (0.000)

Student t GARCH(1,1) −0.302 4.632 37.403 314.248 2.721

(0.029) (0.000) (0.028)

Student t GARCH-L(1,1) −0.286 4.639 38.944 312.397 1.746

(0.020) (0.000) (0.137)

Student t EGARCH(1,1) −0.272 4.544 40.979 278.066 4.277

(0.012) (0.000) (0.002)

Gaussian SWARCH(2,2) −0.388 4.883 35.437 429.867 1.390

(0.062) (0.000) (0.235)

Gaussian SWARCH(3,2) −0.353 4.585 36.127 312.136 1.232

(0.053) (0.000) (0.295)

Gaussian SWARCH-L(2,2) −0.381 4.870 35.155 421.244 1.492

(0.066) (0.000) (0.202)

Gaussian SWARCH-L(3,2) −0.349 4.585 35.720 310.892 1.406

(0.058) (0.000) (0.229)

Student t SWARCH(2,2) −0.382 4.931 40.241 446.825 1.716

(0.020) (0.000) (0.143)

Student t SWARCH(3,2) −0.356 4.638 39.392 330.506 1.553

(0.025) (0.000) (0.184)

Student t SWARCH-L(2,2) −0.370 4.900 40.134 430.610 2.032

(0.021) (0.000) (0.087)

Student t SWARCH-L(3,2) −0.370 4.900 39.265 320.064 1.854

(0.026) (0.000) (0.116)
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Table 6: Some Critical Events Occurred in 1990–1997
Date Critical Events

90:1–91:5 Political instability occurred from February to April, 1990 in Taiwan.

Gulf War occurred in August 1990.

Gulf War ended and the recovery of Taiwan economy.

91:7–91:8 A large number of new banks was founded in the late 1991.

92:9–92:10 The financial event, “Horsen Event”, occurred in November 1992.

93:1–93:4 The stock transaction tax was reduced from 0.6% to 0.3% in January 1993.

93:12–94:1 The Central Bank released the monetary base.

The Central Bank dismissed the limitations of foreign direct investment in

Taiwan security market.

94:10 The financial event, “Honfu Event”, occurred in October 5–7,1994.

95:7–95:8 The first missile crisis occurred in July 1995.

The second missile crisis occurred in August 1995.

96:4 The third missile crisis occurred in March 8–15, 1996.

The Morgan Stanley company declared that it would include 75 preferred stock

of Taiwan in its new free market index since November 2, 1996.

97:10–97:11 The currency crisis of the Southeast Asia occurred in July 1997.

Table 7: Expected duration
Model (1− p̂11)−1 (1− p̂22)−1 (1− p̂33)−1

Gaussian SWARCH(2,2) 66.667 35.714

Gaussian SWARCH(3,2) 66.667 58.826 31.250

Gaussian SWARCH-L(2,2) 71.428 35.714

Gaussian SWARCH-L(3,2) 71.428 58.823 35.258

Student t SWARCH(2,2) 166.667 76.923

Student t SWARCH(3,2) 111.111 142.857 62.500

Student t SWARCH-L(2,2) 166.667 76.923

Student t SWARCH-L(3,2) 111.111 142.857 62.500
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Table 8: Summary statistics for various specifications
Model Param. L(θ) AIC Schwarz

Gaussian ARCH-L(2) 6 −4884.263 −4878.263 −4907.719

Gaussian GARCH(1,1) 5 −4716.292 −4711.292 −4735.840

Gaussian GARCH-L(1,1) 6 −4705.902 −4699.902 −4729.360

Gaussian EGARCH(1,1) 6 −4709.341 −4703.341 −4732.799

Student t ARCH-L(2) 7 −4782.779 −4775.779 −4810.145

Student t GARCH(1,1) 6 −4666.618 −4660.618 −4690.075

Student t GARCH-L(1,1) 7 −4658.834 −4651.834 −4686.201

Student t EGARCH(1,1) 7 −4662.182 −4655.182 −4689.549

Gaussian SWARCH(2,2) 8 −4708.240 −4700.240 −4739.514

Gaussian SWARCH(3,2) 11 −4696.562 −4684.562 −4743.472

Gaussian SWARCH-L(2,2) 9 −4707.331 −4698.331 −4742.514

Gaussian SWARCH-L(3,2) 12 −4695.840 −4683.840 −4742.750

Student t SWARCH(2,2) 9 −4692.631 −4683.631 −4727.813

Student t SWARCH(3,2) 12 −4686.010 −4674.010 −4732.920

Student t SWARCH-L(2,2) 10 −4690.689 −4680.689 −4729.781

Student t SWARCH-L(3,2) 13 −4684.174 −4671.174 −4734.994

Table 9: One-period-ahead forecasts
Model [LE]2 |LE|
Gaussian ARCH-L(2) 9.497 2.211

Gaussian GARCH(1,1) 8.075 2.022

Gaussian GARCH-L(1,1) 8.080 2.007

Gaussian EGARCH(1,1) 8.689 2.032

Student t ARCH-L(2) 9.116 2.221

Student t GARCH(1,1) 8.448 2.035

Student t GARCH-L(1,1) 7.918 1.996

Student t EGARCH(1,1) 7.929 1.998

Gaussian SWARCH(2,2) 8.617 2.076

Gaussian SWARCH(3,2) 7.890 2.025

Gaussian SWARCH-L(2,2) 8.343 2.066

Gaussian SWARCH-L(3,2) 7.905 2.022

Student t SWARCH(2,2) 8.230 2.061

Student t SWARCH(3,2) 8.220 2.036

Student t SWARCH-L(2,2) 7.971 2.046

Student t SWARCH-L(3,2) 7.774 2.016
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(a) Stock index return
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Figure 1: The top panel denotes the scatter plot of the stock index return. The second and third panels denote the smoothed
probabilities of low-, and high-volatility states, respectively, of the Student t SWARCH-L(2,2) model. The shaded areas are the
contraction periods determined by the CEPD.
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(a) Stock index return
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(d) Smoothed probability for prob(s=3)
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Figure 2: The top panel denotes the scatter plot of the stock index return. The second to fourth panels denote the smoothed
probabilities of the low-, medium- and high-volatility states, respectively, of the Student t SWARCH-L(3,2) model. The shaded
areas are the contraction periods determined by the CEPD.
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(a) Conditional variance of Student t GARCH-L(1,1)
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(b) Conditional variance of Student t SWARCH-L(2,2)
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(c) Conditional variance of Student t SWARCH-L(3,2)
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Figure 3: The first to third panels denote the estimated conditional variance of Student t GARCH-L(1,1), Student t
SWARCH-L(2,2) and Student t SWARCH-L(3,2) models, respectively.
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