•	
2	2
8 2	10
8 8 2	18
8 18 8 2	36
8 18 18 8 2	54
8 18 32 18 8 2	86

:

: :

.(He)

•

;

. -3 . -1

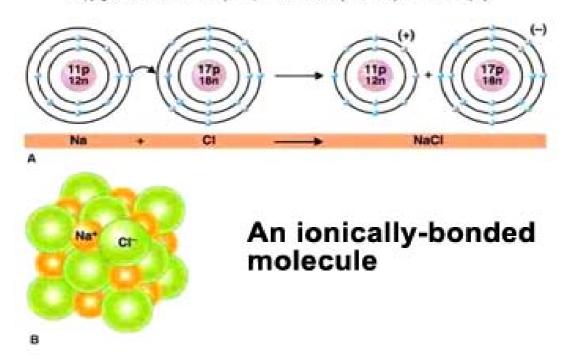
. -4 . -2

: :

. 3.00 =

I	II	III	
0.9	1.2	1.5	
NaCl	MgCl ₂	AlCl ₃	
3-0.9=2.1	3-1.2=1.8	3-1.5=1.5	
			:
810	714	190	0
1465	1412		0

)


1,7

: (1)

:(NaCl)

Cl-

Copyright O The McGrass-HII Companies, Inc. Prinnission required for reproduction or display.

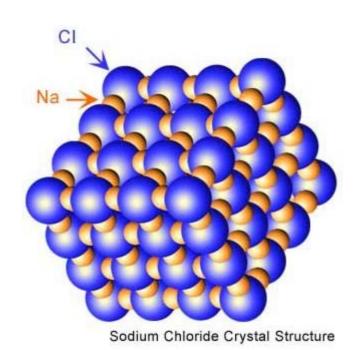
Cl , Na⁺

: (2)

(MgCl₂)

 $.(Mg^{+2})$

 $Mg + 2Cl \rightarrow Mg^{2+} + 2Cl^{-} = MgCl_{2}$ (2,8,2) (2,8,7) (2,8) (2,8,8) Cl^{-} Mg^{2+}


 $MgCl_2 \hspace{3cm} Ar \hspace{3cm} Ne$

":

."

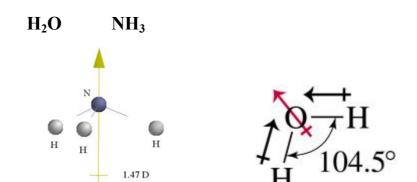
: •

 $${\rm Na}^{\scriptscriptstyle +}$$ () . ${\rm CI}^{\scriptscriptstyle -}$

 Na^+

(Cl⁻) (Na⁺) -1 -2 -3 (1.7 (2.1 2.5 : : (1

(HF)


(2.1) (4)

(δ-)

HF . $(\delta +)$

HCl μ .

) .Debye (D) (

C=0 . CO₂

$$C = 0$$
 $C = 0$
 $C = 0$

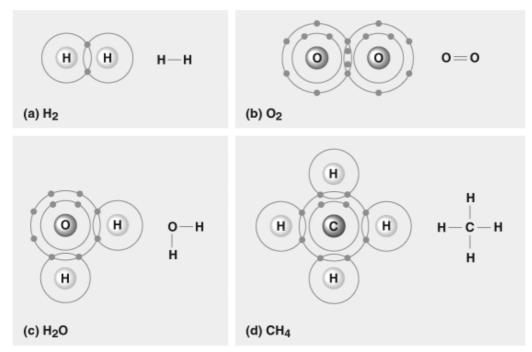
:ĊI:ĊI:

 (H_2) $H \bullet + H \bullet \longrightarrow H \bullet H$

: O₂

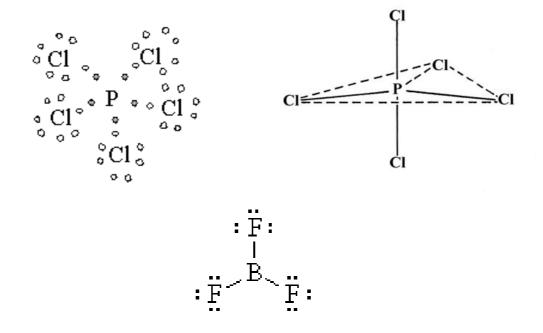
Ne

. CO₂


N₂ N=7

.(

means that they are sharing 6 electrons


Octet Rule:

1916 () ()

©1999 Addison Wesley Longman, Inc.

-1

 H_2O

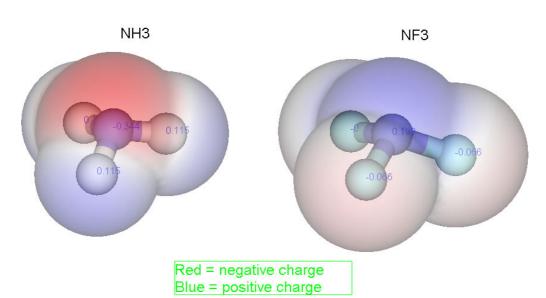
NH₃

 CO_2

. **-O-O**

H₂O SO₂ NO₂

. HClO₄ HClO₃ HClO₂ HClO

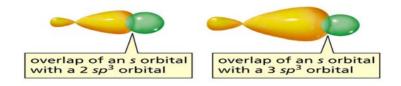

Valence Bond Theory : :

(

90

. NH₃ NF₃

ELECTROSTATIC POTENTIAL MAP and PARTIAL CHARGES


)) N-F

N-H

2S s,p,d,f

. NH_3 NF_3 :

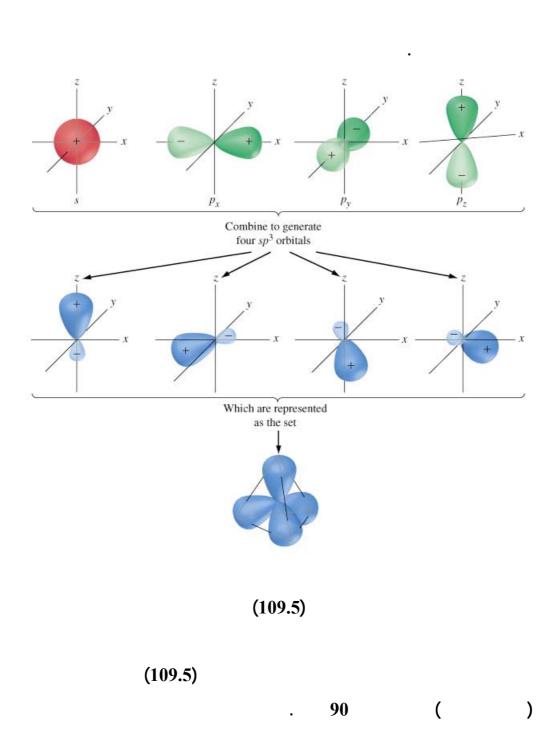
1s (2p)

109 109.5) ((2s)() exited) **(2p)** (state $1s^2, 2s^2, 2p_x^{\ 1} 2p_y^{\ 1} \ 2p_z^{\ 0}$ \rightarrow 1s², 2s¹, 2p_x¹ 2p_y¹ 2p_z¹ **2**s **2s 2**p **1s** 2p **1s** 2p

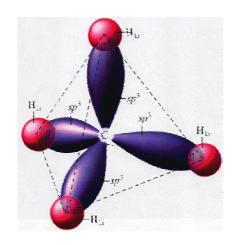
·

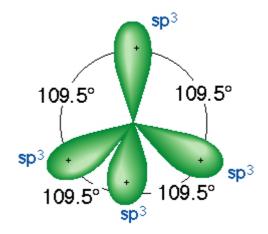
2s

90


109.5

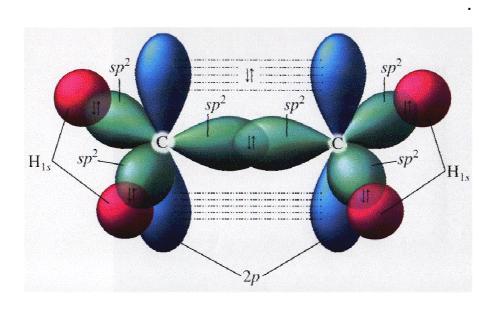
(2p)


(hybridization)

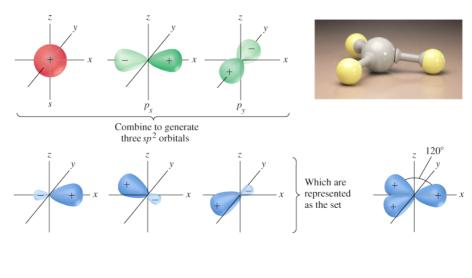

2P 2S)

(3d 4S

(SP³)


-1

-2


-3

(SP²)

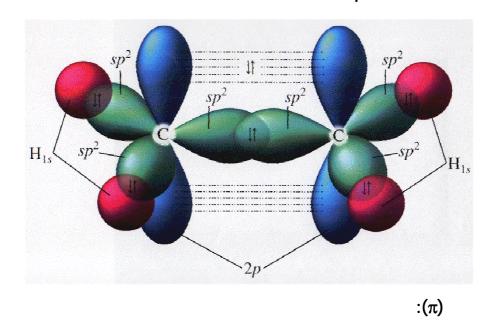
(SP²)

(2S) (2P) .(SP²)

 $(2P_z) .120^0$ $(SP^2) .$

:

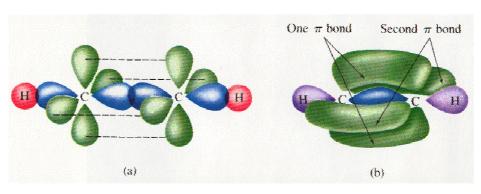
One π bond Second π bond


H C C H

(a) (b)

:(σ)

:


 (SP^2) (SP^2) (SP^2) (SP^2)

(2Pz) (2Pz)

 (C_2H_2)

:

$$1S + 1(2P) \rightarrow 2(SP)$$

. 180

2Py)

: (2Pz,

:(σ) -

(SP)

(1S) (SP)

:(π) –

(2Pz) (2Py)

· : -1

· :

·

•

$$\overset{H}{\overset{\circ}{:}} \circ : + H^{\dagger} \longrightarrow \begin{bmatrix} H : O : H \\ H : D : H \end{bmatrix}^{\dagger}$$

$$NH_3$$
) (BF₃)

	()	
98	1	
150	2	
660	3	

:

•

Intermolecular forces

- - .

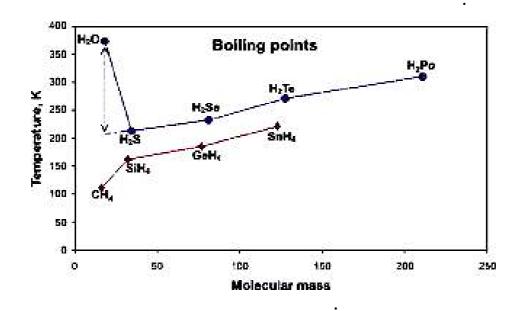
. (220) 920 . (9.7) 40.7

:

-1

1.49µ) (17 16)

. ICI

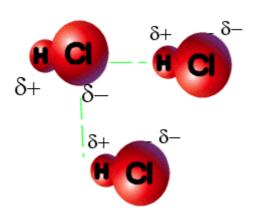

```
-2
```

```
-3
(
N,O,F
)
(
```

:

 $H_2O~(100^{\circ}),\,H_2S(-61^{\circ})~,\,H_2Se~(-41^{\circ})~,\,H_2Te~(-2^{\circ})$

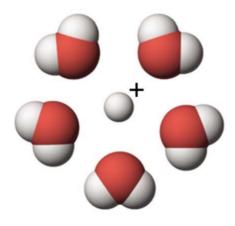
) .(2)

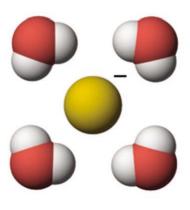


Dipole-Dipole Attraction:

Polar

-1


Na⁺Cl⁻

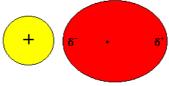

Ion-Dipole Attraction:

$$\mathbf{Mg}^{++} \mathbf{Na}^{+} \mathbf{K}^{+}$$
:

-2



Water surrounding
a cation
© 2003 Thomson - Brooks/Cole



Water surrounding an anion

: -3

Spherical atom with no dipole. The dot indicates the location of the nucleus.

Upon approach of a charged ion, electrons in the atom respond and the atom develops a dipole.

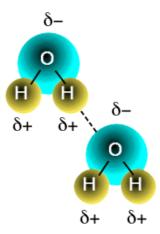
:() -4

 (H_2,N_2,O_2, Cl_2)


()

.

H₂Te H₂Se H₂S


Hydrogen Bond: -5

$$\mathbf{H}^{\delta+}$$
 $\mathbf{H}^{\delta+}$
 $\mathbf{H}^{\delta+}$
 $\mathbf{H}^{\delta+}$
 $\mathbf{H}^{\delta+}$
 $\mathbf{H}^{\delta+}$
 $\mathbf{H}^{\delta+}$
 $\mathbf{H}^{\delta+}$

:

$$(100^{0})$$
 -1 (100) (100) (61-) (34)

-2

-3 .()

() C=O -

. C=O N-H

فسر:

سكر القصب مادة بلورية قد تتفحم قبل أن يظهر عليها أثر الانصهار. ؟؟؟

(