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1 Introduction

Vagueness is not undecidability, but undecidability does enter into an ex-
planation of why there is vagueness. My theory, called the Undecidability
Theory of Vagueness, explains vagueness largely as a result of the fact that
we are computationally bound.1 Vagueness is not due to any particularly
human weakness, but due to a weakness that any computationally bound
agent possesses; even HAL from 2001: A Space Odyssey will probably ex-
perience vagueness. Furthermore, I will argue that vagueness is good for
you. I will do so by showing that if you were a computationally bound,
rational alien agent given the task of figuring out what our natural language
predicates mean, you would very probably end up with vagueness. That
is, unless two highly plausible hypotheses are false, it would be rational for
you—i.e., in your best interest—to choose concepts in such a way that they
are vague. Given that you are computationally bound, avoiding vagueness
brings in greater costs than accepting it.
∗This paper appeared in Synthese 120, pp. 345–374, 1999.
†Current address of correspondence can be obtained at http://www.changizi.com, or

by contacting changizi@changizi.com
1Very early ideas of mine along these lines appeared in Changizi ([Cha95]). A paper

on my theory was presented at the 1998 vagueness conference in Bled, Slovenia (Changizi,
[Cha99b]), and at the 1998 Irish Conference on Formal Methods (Changizi, [Cha99a]). The
latter concentrates on logics and semantics of vagueness motivated by the Undecidability
Theory of Vagueness.
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It is useful here in the introduction to present a brief, preliminary run-
through of my theory and how it explains vagueness. The “vagueness is
good for you” arguments will not appear in this introduction. I will take
you to be my example natural language user.

(1) The first hypothesis is the Church-Bound Hypothesis, and it states
that you can compute no more and no less than what a computer can com-
pute. (2) The second hypothesis is the Programs-in-Head Hypothesis, and
it states that what natural language predicates extensionally mean to you
is determined by programs in your head. For example, an object is a dog
to you if and only if your program in the head for ‘dog’ outputs YES when
the (name of the) object is input into the program. It is much less plausible
that many scientific, mathematical and technical predicates get their mean-
ing to you via programs in the head, and this difference is what prevents my
theory from concluding that such predicates, many which are not vague, are
vague. (3) The third and last hypothesis is the Any-Algorithm Hypothesis,
and it states that you allow yourself the choice of any algorithm when choos-
ing programs in the head for determining your natural language predicate
meanings. (An algorithm is a program that halts on every input; programs
sometimes do not halt on some inputs.) Informally and crudely, the three
hypotheses are that (1) you are a computer, (2) you have programs in the
head determining what natural language predicates mean to you, and (3)
you allow yourself the fullest range of possible meanings for natural language
predicates.

If these three hypotheses are true, what follows? The Programs-in-Head
Hypothesis says you choose programs to determine your meanings of natu-
ral language predicates. The Any-Algorithm Hypothesis says that the set
of programs from which you are choosing is a superset of the set of all algo-
rithms. But here is the catch: one of the basic undecidability results implies
that any such set of programs is undecidable. (A set is decidable if and only
if there is program that outputs YES whenever input with an object from
the set and NO whenever input with an object not in the set.) Because
of the Church-Bound Hypothesis, this undecidability is a difficulty for you:
in choosing from the set of programs you cannot always obtain algorithms.
In fact, because picking algorithms is computationally more difficult than
picking non-algorithms, you will “usually” pick non-algorithms; “most” of
your programs determining the meanings of natural language predicates will
not be algorithms. So, in an attempt to acquire a meaning for ‘dog’ via a
program in the head that outputs YES when something is a dog to you and
NO when something is not a dog to you, there will be objects on which your
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program does not halt at all. This does not mean that you will actually run
into an infinite loop; it just means that you will eventually give up when
running the program on such inputs.

What does this have to do with vagueness? Consider the set of objects
for which the program for ‘dog’ does not halt. For any object in this set the
program will neither say YES nor NO; the object will neither be a dog to
you nor not a dog to you. My first theoretical claim is that this is the set of
borderline cases for the predicate. What about higher-order vagueness, the
phenomenon that the boundaries of the borderline region are vague? Con-
sider trying to determine exactly which objects are part of the borderline
region. To determine that some object is in the borderline region of ‘dog’
requires that you determine that your program for ‘dog’ does not halt on
that object. But now we have another catch: possibly the most well-known
undecidability result is the “halting problem,” which says that whether or
not a program will halt on a given input is undecidable. This undecidability
is a difficulty for you because of the Church-Bound Hypothesis: objects in
the borderline region are generally difficult to determine as such, and where
the boundaries of the borderline region are is not generally possible for you
to determine. Imagine moving from ‘dog’ cases to borderline cases. Your
program for ‘dog’ will no longer output YES, and will, in fact, never halt;
but you will not know it will never halt. You will be unable to see the bound-
ary. My second theoretical claim is that this inability is the phenomenon
of higher-order vagueness. This claim appears to have some empirical sup-
port, as discussed in Subsection 3.3. Here is a simple representation of the
behaviour of your program for ‘dog’, where ‘Y’ denotes YES, ‘N’ denotes
NO, and ‘↑’ denotes “does not halt”.

Y Y Y Y Y Y ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ N N N N N N N

{ - - ‘dog’ - - }{- - borderline - - }{- - ‘not dog’ - - }

So, the three hypotheses entail that for “most” of your natural language
predicate meanings there are objects for which your program for that pred-
icate does not halt. Add to this my two theoretical claims just mentioned
and it follows that “most” natural language predicates are vague. That is
the Undecidability Theory of Vagueness in a nutshell. Now to develop and
defend it in more detail. Section 2 presents the Undecidability Theory and
Section 3 discusses how it explains vagueness.
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2 Theory

In this section I discuss the three hypotheses comprising the Undecidability
Theory of Vagueness and show how they lead to what I call the “Thesis,”
which is central to the Undecidability Theory of Vagueness’s characteriza-
tion of vagueness. Here is the Thesis, followed by an explanation of the
terminology used.

Thesis: For “most” natural language predicates R

1. your interpretation of R is determined by a program in the head that
is capable of semideciding but not deciding it,

2. your interpretation of ‘not R’ is determined by a program in your head
that is capable of semideciding but not deciding it, and

3. there are objects neither in your interpretation of R nor in your inter-
pretation of ‘not R’.

I will explain the scare quotes around ‘most’ later. By a “program in the
head” I mean the method used by you to determine whether or not a given
object is in your interpretation of R. One may usefully and informally think
of the program as your intension of the predicate R. The “interpretation
of R (‘not R’) determined by a program” is the set of objects on which the
program in the head for R (‘not R’) outputs YES. A set is decidable by a
program P if and only if for all x, P on input x outputs YES if x is in the set,
and outputs NO otherwise. A set is semidecidable by a program P if and
only if for all x, P on input x outputs YES exactly when it is in the set; if x is
not in the set P may well not halt at all, though. Do not confuse the notion
of a set being semidecidable but not decidable by the program for it with the
notion of an underdefined or incompletely specified set. The former, which
appears in my theory, is a precise set that happens to be computationally
difficult for the program to identify nonmembers, whereas the latter is not
a well-defined set at all. Also, do not confuse a set’s being semidecidable
but not decidable by a program P with a set’s being semidecidable but not
decidable simpliciter. The latter means the set is computationally complex
(in fact, it means it is recursively enumerable but not recursive), but the
former, which appears in my theory, only means that the set is complex as
far as the program P is concerned; P is unable to decide it, even though it
may well be decidable.
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Can the methods your brain uses to classify objects ever really be as
fixed and deterministic as programs? Surely you do not actually have pro-
grams in your head! All that I mean by “program in the head” is that at
some sufficiently high level of explanation your classification methods can
be modeled as ({0, 1}-valued) programs. In reality perhaps your programs
change through time (perhaps even randomly)2 or in different contexts, and
some theories of vagueness depend in part on this.3 If this is true, the hy-
potheses, principles and Thesis presented in this section can be modified to
include “at any time t,” and the Thesis will still imply vagueness at any
one moment. Time and context-dependence are therefore unnecessary to
explain vagueness. Although my theory does not depend on it, I often act
as though the programs are fixed and unchanging in the head.

On a related note there are theories of vagueness that appeal in part to
the claim (which is probably true) that different individuals do not share
precisely the same interpretation of ‘bald’.4 The Thesis upon which my
Undecidability Theory of Vagueness depends explains why you experience
vagueness in “most” of natural language without having to assume anything
about anyone else’s programs. Thus, vagueness still would exist even if we all
shared the same interpretations of natural language predicates. Vagueness
in my theory’s sights is a phenomenon of the individual, not of the masses.
This fits better with the intuitively appealing conjecture that the world
would still seem vague had I been the only man on Earth ever.

There is a simpler, equivalent way of stating the Thesis, one I implicitly
used in the introduction. I had written there about a single program in the
head, call it PR/nonR, doing the work for both a predicate and its natural
language negation: the interpretation of R was the set of objects on which
PR/nonR outputs YES, and the interpretation of ‘not R’ was the set of objects
on which the same program outputs NO. In the Thesis and throughout
the remainder of the paper the single program is treated as two distinct
programs: one program, PR, for R; and another, PnonR, for ‘not R’. The
interpretation of R is the set of objects on which PR outputs YES, and
the interpretation of ‘not R’ is the set of objects on which PnonR outputs
YES. Each of these two programs can output only a YES, if they halt at
all; they do not ever output NO. Realize that there is no difference in these
approaches: running PR/nonR on an input is equivalent to simultaneously

2One may treat a single randomized program as if it is a program randomly changing
to new (but perhaps similar) programs through time.

3See Kamp ([Kam81]), Bosch ([Bos83]), and Burns ([Bur91], pp. 179-180).
4See Burns ([Bur91], p. 179).
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running both PR and PnonR on the input and seeing who halts first (if any);
if PR halts first then PR/nonR would have output YES, but if PnonR halts
first then PR/nonR would have output NO. In terms of a single program,
the Thesis would be the following: for “most” natural language predicates R
there are objects for which PR/nonR does not halt. Although this is simpler
than the statement at the start of this section, the two-programs version
helps to clearly identify distinct aspects of the Thesis.

In the subsections that follow I indulge in a sort of fantasy. I imagine
that you are a rational, computationally bound agent who has entered into
our culture. Your task is to learn language for the first time and to determine
what our natural language predicates mean. We will see that the Thesis is
very likely to be true of any such agent. Such an agent will likely choose to
have vagueness because its costs are less than the costs of avoiding it. I will
also show that it is plausible that the Thesis does, in reality, apply to you.

As part of the fantasy I suppose that the true extensions (as opposed to
your interpretations) of natural language predicates are determinate; that
is, every object is either in the extension of the predicate or its complement.5

I use ‘extension’ to refer to the true meaning of a predicate, and ‘interpre-
tation’ to refer to whatever you mean by the predicate. All capital letters
will be used to signify the extension of a predicate; e.g., ‘bald’ has the set
BALD as its extension, and ‘not bald’ has the complement of BALD as its
extension. In trying to figure out your interpretations for the language in
the fantasy scenario, I suppose that you are presented with examples, some-
how, from the true extensions. What I wish to communicate by this is that
even if the true semantics of natural language predicates were determinate
(via, perhaps, a semantic externalist account), you would still very likely
end up with interpretations as specified in the Thesis (and thereby end up
with vagueness). Thus, while standard classical two-valued logic would be
a correct model of natural language true semantics, we will see that it is
not a correct model of the way we actually interpret natural language predi-
cates. On the question what really is the true semantics of natural language
predicates my theory can remain agnostic.

2.1 Church-bound

The Undecidability Theory of Vagueness applies only to those agents that
are computationally bound. Specifically, it applies only to those agents that

5For defenses of a determinate semantics within the vagueness literature see Campbell
([Cam74]), Cargile ([Car79]), Sorensen ([Sor88], [Sor94]) and Williamson ([Wil94]).
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are “finite” and “sufficiently powerful.”
By a finite agent I mean an agent (i) that has a finite but possibly

unbounded memory, (ii) that has an upper bound on the speed at which
it can compute, (iii) whose primitive computations are simple (e.g., adding
1 to a number), and (iv) who cannot (or at least does not) utilize in its
computing any aspects of the universe allowing it to achieve supertasks (i.e.,
to achieve infinitely many steps in a finite period of time finite “brain”). To
defend my use of the term ‘finite’ in this way, I informally rephrase these
requirements as follows: by a finite agent I mean an agent that is finite in
(i) memory, (ii) speed, (iii) degree of complexity of primitive computations
and (iv) resourcefulness in utilizing nature to achieve supertasks.

Without (i), an agent could have infinitely large look-up tables in the
head. Such an agent could compute any function at all by simply storing
the entire function (i.e., storing every pair 〈x, f(x)〉) in its head, so long
as the function has domain and range with cardinality no greater than the
cardinality of the look-up table. The agent could merely check his look-up
table to see what f(x) is. Without (ii), an agent could compute the first
step of a computation in half a second, the next in a fourth, the next in an
eighth, etc., thereby computing infinitely many steps in one second (such an
agent is called a Plato Machine). Without (iii), an agent may have prim-
itive computations that are themselves as mathematically computationally
difficult as one pleases; of course, from such an agent’s point of view these
computations would seem utterly simple, requiring only the least amount of
“thinking” to compute.6 Finally, without (iv), it is logically possible that
the laws of physics might make it possible to compute supertasks (despite
(ii)).7 Being a finite agent severely constrains what an agent can compute,
as I now describe.

We have an informal, pre-theoretic notion of what it is to compute some-
thing. Such an intuitive notion of a computation typically connotes that
there be only a finite number of steps involved, that the amount of mem-
ory (and scratch paper) required also be finite, that each primitive step be
relatively simple (enough to understand), and that one cannot engage in
supertasks. That is, the intuitive notion of a computation exactly corre-
sponds to those computations a finite agent can compute. We are inclined
to say that a function f from the natural numbers to the natural numbers
is intuitively computable if, for each natural number n, f(n) is intuitively

6See Copeland ([Cop98]).
7See Earman and Norton ([EN93], [EN96]) and Hogarth ([Hog94].

7



computable.
The Turing machine formalism provides an abstract, precise notion of

what a computation is and leads to a particular set of functions on the nat-
ural numbers as the set of Turing-computable functions. Any computation
a modern computer can do, a Turing machine can, in principle, do also; and
vice versa. There is the well known hypothesis that the set of functions that
are intuitively computable just is the set of Turing-computable functions;
this hypothesis is referred to as Church’s Thesis (or the Church-Turing The-
sis).

The hypothesis is not a mathematical assertion; it refers to our intu-
itions and it does not make sense to ask whether it has been mathematically
proven. Nearly everyone believes in Church’s Thesis, though, as do I. One
reason for this is that no one has yet provided a convincing case of an intu-
itively computable function that is not Turing-computable; the longer we go
without such a case being found, the higher our inductive probability goes
toward one that the sets are identical.8 A second, more slippery, reason
nearly everyone believes in Church’s Thesis is that half a dozen very differ-
ent formalizations of computation have been concocted by different people
and each leads to precisely the same set of computable functions.

If a finite agent can compute a function on the natural numbers, then
the function must be intuitively computable. But then by Church’s Thesis
that function must be Turing-computable. Therefore, the only functions on
the natural numbers a finite agent can possibly compute are those that are
Turing-computable.

But any finite agent worth considering carries out computations on ob-
jects besides the natural numbers. What constraints are these computations
under? Although there are objects besides natural numbers that are objects
of such computations (i.e., such an agent computes functions over objects
besides the natural numbers), we can encode all of the objects the finite
agent can grasp—including natural numbers—onto the natural numbers.
Supposing each different possible state of the finite agent’s mind is finitely
describable, the set of all such finite descriptions can be bijectively encoded
onto the natural numbers (hopefully in an intuitively computable fashion).
(Such an encoding is bijective if and only if each object gets assigned to a
unique natural number and each natural number is used in the encoding.)
‘4’ may now be the code for mental state p1 which holds the information of
the finite agent’s mother, ‘37’ the code for mental state p2 which holds the

8One may refer to my [CB98] for references to the induction literature.
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information of a particular fist fight the finite agent once witnessed, ‘18’ the
code for mental state p3 which holds the information of the feeling of love-at-
first-sight the finite agent felt upon meeting its spouse, ‘103’ the code for the
mental state p4 which holds the information of the natural number 5, ‘1000’
for the mental state p5 which holds the information of the finite agent’s
favorite shade of blue, etc. Intuitively, every possible dog, every possible
shade of color, every possible action, etc., is given its own natural number.
With such an encoding, all of the finite agent’s computations may be in-
terpreted as computations on the natural numbers, and the finite agent’s
computational power is constrained in such a way that it can compute only
the Turing-computable functions on this set of codings.

One should not find this too fantastic, given that the same sort of thing
is true about every computer. In a physical computer, as opposed to an
abstract model, there are no numbers actually input into the machine nor
output from the machine; numbers are abstract objects. Rather, an input
or output is some physical state and it encodes certain information. Each
physical state is finitely describable and can be coded onto the natural num-
bers. ‘4’ may be the code for physical state p1 which holds the information
of a black and white picture of a rooster, ‘37’ may be the code for physical
state p2 which holds the information of natural number 5, ‘18’ may be the
code for physical state p3 which holds the information of the sentence “Press
any key to continue,” etc. It is only through such means that one can mean-
ingfully say that computers are subject to the same ultimate computational
constraints as Turing machines, and it is also only through such means that
one can meaningfully say that a finite agent is subject to the same ultimate
computational constraints as Turing machines.

Worries over which coding is being employed for the finite agent are
sometimes raised. For example, what if the coding makes intuitively un-
computable problems computable by having a non-intuitively computable
coding? Or, is there a privileged coding and, if so, what determines it?
I wish to sidestep all such issues. To whatever extent these are legitimate
worries, they are worries for anyone claiming that even computers are bound
by Church’s Thesis. This latter claim is uncontroversial, however, and so I
am under no special obligation to explain or address issues of coding with
respect to finite agents.

One might complain that the universe has uncountably many possible
objects, and so no bijection is possible onto the natural numbers. Supposing
for the moment that there are indeed uncountably many possible objects,
I only care about what possible objects the finite agent can hold before
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its mind. Since it is finite, it can only entertain countably many possible
objects. Its universe is countable, regardless of the cardinality of the real
universe. This brings in its own trouble: if the universe is uncountable
and the finite agent’s universe countable, is not it going to have a false
model of the world? The Downward Lowenheim-Skolem Theorem can help
to alleviate this worry to an extent: as long as the finite agent notices only
first-order properties of the universe, it is possible for its model to be such
that the set of all truths is the same as God’s (whose model is the true
uncountable one). Should we, however, believe that it is confined to first-
order properties? Perhaps, perhaps not; there are many things that can be
said on this issue, but I have no need to pursue them here since nothing
hinges on the agent’s model being true.

Thus, I am confining discussion to finite agents, which means that I
am confining discussion to agents capable of computing only the Turing-
computable.

By “sufficiently powerful” I mean that the finite agent is capable of
computing at least the Turing-computable.

Together, “finite” and “sufficiently powerful” imply that the computa-
tional powers of the agents I wish to discuss are bound by Church’s Thesis
and only bound by Church’s Thesis. I sometimes say “Church-bound” in-
stead of “finite and sufficiently powerful.” I record this as the Church-Bound
Constraint.

Church-Bound Constraint: The agent can compute any function (over
natural numbers coding mental states, which in turn represent objects in the
world) so long as it is Turing-computable.

Related to this constraint is the Church-Bound Hypothesis, which states
that you are under the Church-Bound Constraint. The Church-Bound Hy-
pothesis is, by assumption, true of the fantasy you. Is it true of the real
you? Yes, and here is why. It is plausible that you are finite in the four
senses discussed above,9 and so cannot compute the Turing-uncomputable.
Furthermore, you are, in principle, able (given enough time and scratch pa-
per) to compute any Turing-computable function. We know this because
any of us can easily mimic the simple actions of a Turing machine as long
as we please.

9Although see Penrose ([Pen90]).
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2.2 Programs in the head

Suppose that you, in the fantasy, are exposed to enough examples of things
you have reason to believe are in the true extension of ‘bald’ (BALD) and
others that are not that you acquire an educated guess as to what BALD
is. Your guess determines some set as your “shot” at BALD, and this is
your interpretation of ‘bald’. In what can such a guess consist? There are
infinitely many (possible) objects in your universe, infinitely many of them
are bald and infinitely many are not. You are not, then, able to simply guess
what the extension is, for you cannot store the extension since you are finite.

You must employ some sort of intension. You need to find some finite
description of the set that determines your interpretation of ‘bald’ and your
educated guess at BALD, and some finite description of ‘not bald’. Recalling
that these sets may be considered to be sets of natural numbers, one may
wonder whether your interpretation of ‘bald’ can be described “in your head”
as, say, a first-order sentence in the language of arithmetic (such sets are
called arithmetically definable). For example, you may interpret ‘bald’ to
be the set {n | ∃x∀y P (n, x, y)}, where P (n, x, y) is some recursive formula
without quantifiers. The problem with this is that although it is indeed
a finite description, the set is not recursively enumerable and since you
are Church-bound it is generally too difficult for you to handle. (A set
is recursive if and only if it is decidable by some program. A formula is
recursive if and only if the set of objects satisfying it is recursive. A set is
recursively enumerable if and only if it is semidecidable by some program.)

The same is true for any arithmetically definable set. . . except those that
are recursively enumerable. For a recursively enumerable set it is possible
for you to have a program in the head that says YES when and only when
presented with objects in the set (although the program may never halt at
all when presented with objects not in the set), but sets any more compu-
tationally difficult than recursively enumerable are beyond your reach. A
program in your head, then, is what you must be employing to determine
your interpretation of ‘bald’ if you wish to have an interpretation that is
accessible to you. Your interpretation would then be the set of objects for
which the program for ‘bald’ outputs YES, and this is recursively enumer-
able. This motivates the first rationality principle.

Principle of Program-Favoring: Without good reason to the contrary,
you should assume that the extension of natural language predicate R and its
natural language negation ‘not R’ are capable of being correctly determined
using programs in the head.
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This does seem to be a compelling principle of rationality: why choose
interpretations that are not generally possible for you to actually use unless
you have a good reason?

Supposing we believe that the Principle of Program-Favoring really is a
constraint on rationality, is there good reason for believing that programs
will not suffice to correctly interpret natural language predicates and their
natural language negations? For example, in mathematics there is good rea-
son for believing that programs do not suffice for certain predicates because
there are predicates with interpretations that you know are not recursively
enumerable. Consider the predicate ‘not a theorem of Peano Arithmetic’,
for example. You know its extension is not recursively enumerable (since its
complement is known to be recursively enumerable but not recursive). Your
interpretation of ‘not a theorem of PA’ is set to its extension, regardless of
the fact that you are incapable of generally recognizing things that are not
theorems of PA. “To me, something is not a theorem of PA exactly if it
does not follow from Peano’s Axioms; I have no program for it, though.”
You might acquire a program in the head as a heuristic device aimed to
approximately semidecide your interpretation of ‘not a theorem of PA’, but
you are not confused into conflating your heuristic with your interpretation;
you know that no such heuristic can possibly be the extension. Thus, you
as a mathematician do have predicates for which you have good reason to
believe the extension is not determinable via a program in the head, and
your interpretations are, accordingly, not determined using programs in the
head. (This is, in passing, why mathematical predicates such as ‘not a the-
orem of PA’ are not vague.) Given that you can acquire good reasons to
believe programs are inadequate and can have interpretations that are not
recursively enumerable, what reason is there for you not to do the same for
natural language predicates?

The answer is that in the case of such a mathematical predicate you know
what the definition of the extension is, and so you set your interpretation
accordingly. For a natural language predicate, however, you have no God’s
eye view of its extension. The extension of ‘bald’ is learned via induction;
you infer your interpretation of ‘bald’ from seeing objects you have reason
to believe (somehow) are in BALD or its complement. You cannot easily
acquire the definition for BALD, and as many examples of BALDness and
its complement you might confidently find, you still will not have access to
its definition in the way you have access to that of ‘not a theorem of PA’, for
you have no luxury of setting your interpretation to that determined by the
definition written on paper before you as you do for mathematical predicates
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(and this has nothing to do with the fact that you are Church-bound). Given
that you cannot have access to BALD in the way you have access to the
extension of ‘not a theorem of PA’, it is also reasonable to suppose that you
cannot learn that BALD is not recursive enumerable (supposing this were
indeed true) in the way you learn that the extension of ‘not a theorem of
PA’ is not recursively enumerable. I cannot discount the logical possibility
of you, a Church-bound agent, learning (in the fantasy) through time that
no recursively enumerable interpretation of ‘bald’ seems to fit the examples
of BALD and its complement, and in this way assigning high probability
to the hypothesis that BALD is not recursively enumerable, and therefore
no program in the head is sufficient. The reasonable hypothesis, though,
seems to be that for most (if not all) natural language predicates you have
no good reason for believing that programs will not work. I record this as
the following hypothesis.

No-Good-Reason-for-Non-Programs Hypothesis: For most natu-
ral language predicates R and their natural language negation ‘not R’ you
have no good reason to believe that programs in the head are inadequate for
correctly determining their interpretation.

The No-Good-Reason-for-Non-Programs Hypothesis together with the
Principle of Program-Favoring imply the following hypothesis.

Programs-in-Head Hypothesis: For most natural language predicates
R and their natural language negation ‘not R’, their interpretations are
determined by you using programs in the head.

You in the fantasy scenario are, then, very likely to fall under the
Programs-in-Head Hypothesis. “Very likely” because it is very likely that
the No-Good-Reason-for-Non-Programs Hypothesis is true, and given that
you are rational you will follow the Principle of Program-Favoring and thus
fall under the Programs-in-Head Hypothesis.

Does the Programs-in-Head Hypothesis apply to the real you? Here is
an intuitive reason to think so. For most natural language predicates R you
are capable of recognizing, given enough time, any cases of R and ‘not R’.
E.g., given enough time you are capable of recognizing, for any bald-to-you
person, that he is bald to you; and, for any not-bald-to-you person, that
he is not bald to you. To suppose otherwise would imply, implausibly, that
there is a person that is bald (not bald) to you, but you are utterly incapable
of recognizing him as such. The only way for you, who are Church-bound,
to have this recognition capability is to have programs in the head doing the
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work.

2.3 Any algorithm

By the Programs-in-Head Hypothesis you have for most natural language
predicates a program in the head as the intension determining your recur-
sively enumerable interpretation of the predicate, and this interpretation is
your attempt to fit the extension of the predicate. You would like to have
a single program in the head capable of determining your interpretation of
both ‘bald’ and ‘not bald’; that is, a program that not only says YES exactly
when an object is in your interpretation of ‘bald’, but says NO exactly when
an object is not in your interpretation of ‘bald’. This is just to say that you
would like to have a program to decide the interpretation of ‘bald’, not just
semidecide it. Such a program would be an algorithm since it would halt on
every input, and the corresponding recursively enumerable interpretation of
‘bald’ would be recursive.

But alas, you are Church-bound, and a well-known undecidability result
says that there is no algorithm for algorithmhood; there is no general proce-
dure by which either you or a Turing machine can always choose programs
(from the set of all possible programs) that are algorithms. It is not, then,
generally the case that your programs in the head are algorithms, and your
corresponding interpretations for natural language predicates and their nat-
ural language negations may generally be only semidecided by the programs
for them.10 If the interpretation of ‘bald’ (‘not bald’) is determined by a
program in the head that semidecides but not decides it, then supposing that
‘bald’ (‘not bald’) is one of the predicates covered by the Programs-in-Head
Hypothesis, that program cannot be what is determining the interpretation
of ‘not bald’ (‘bald’). This is because the Programs-in-Head Hypothesis
states that ‘not bald’ (‘bald’) must have a program semideciding its inter-
pretation, and the program for ‘bald’ (‘not bald’) cannot possibly be that
program. Thus, ‘not bald’ (‘bald’) must have its own program in the head.
I have now shown 1 and 2 of the Thesis.

How about 3 from the Thesis? It is possible for the interpretation of
‘bald’ and that of ‘not bald’ to cover every object, but by the Church-Bound
Hypothesis this is not generally possible for you to accomplish. If it were
generally possible, then the two programs semideciding each interpretation

10And in fact things are even worse than this, for a related undecidability result says
that the corresponding interpretations are not generally even recursive; semidecide is all
that any possible program can do in these cases.
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could serve as a single algorithm (run both programs simultaneously until
one halts), and you could therefore always acquire algorithms. But this is
impossible. Thus, it is not generally the case that your interpretation of
‘bald’ and that of ‘not bald’ cover every object.

Notice that none of this hinges on either interpretation being non-recursive;
what matters is the program for the interpretation semideciding but not de-
ciding it. Predicates with finite interpretations (arguably ‘small natural
number’) are therefore subject to the same conclusion just made concerning
‘bald’.

Except for the use of “most” in the statement of the Thesis, I now seem
to have shown that you are subject to the Thesis. Concerning “most,”
it is easier to acquire non-algorithms than algorithms, since in order to
achieve algorithmic status the program must halt on every input, whereas
to achieve non-algorithmic status there needs to be only one input on which
the program does not halt.11 This observation makes it convenient and
informally true to say that for “most” natural language predicates your
corresponding programs are not algorithms. This is really just elliptical
for the proposition that you are not generally able to acquire algorithms
and that it is more difficult to acquire algorithms than non-algorithms. To
differentiate this use of ‘most’ (or ‘usually’) with genuine uses of it, I always
put scare quotes around it.

With this it appears I have now shown you are subject to the Thesis.
There is just one remaining problem. I wrote above (second paragraph of
this subsection) that “there is no general procedure by which either you or
a Turing machine can always choose programs (from the set of all possible
programs) that are algorithms.” The parenthetic remark merits some ex-
amination. Why should you be required to choose from among the set of
all possible programs? Although the set of all algorithms is not recursively
enumerable, there do exist proper subsets of the set of all algorithms that
are recursively enumerable, and even recursive. Could you be choosing your
programs from one of these subsets? For example, the set of primitive re-
cursive programs is recursive, and perhaps you are choosing from this. If
so, you can be sure that every program you choose is an algorithm, and
thus that every one of your interpretations for natural language predicates
is decidable by the program responsible for it (and is therefore recursive).

11More formally and in recursion theoretic terminology, this is captured by the fact
that the set of algorithms is Π2, and the set of non-algorithms Σ2; the relative difficulty
of acquiring algorithms versus non-algorithms is analogous to the relative difficulty of
determining cases where a program does not halt versus when it does.
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The Thesis would, then, not follow after all.
There is a good reason for the fantasy you not to confine yourself in such a

fashion. Your interpretations of natural language predicates are a result of a
learning process of some sort. You see cases you have reason to believe are in
the extension of ‘bald’ (i.e., you are guided by the true semantics somehow),
and you make an educated guess at the extension with your interpretation.
A priori , you have no reason to believe that all concepts of the world can
be correctly determined (or even adequately approximated) with algorithms
from some recursively enumerable subset of the set of algorithms. Why
should you believe that all extensions may be correctly determined with, say,
primitive recursive interpretations? This motivates the following rationality
principle.

Principle of No-R.E.-Subsets-of-Algorithms: Without good reason to
the contrary, you should not presume that there is a recursively enumerable
subset of the set of all algorithms such that for all natural language predicates
R (or ‘not R’), algorithms from this subset supply the best interpretation for
R (‘not R’).

This is a compelling principle: why purposely choose a language with less
rich interpretations without good reason? In fact, any recursively enumer-
able subset of the set of all algorithms is, in a certain real mathematical
sense, infinitely less rich than the set of all algorithms.

Supposing we believe that the Principle of No-R.E.-Subsets-of-Algorithms
is a constraint on rationality, is there good reason to believe that there are
recursively enumerable subsets of the set of all algorithms sufficiently rich
for natural language predicate interpretations? Although I am willing to
suppose that it may be logically possible for you to acquire high probability
in such a hypothesis (after, say, many years of searching for uses of algo-
rithms outside of this recursively enumerable subset and not finding one),
there would not appear to be actual evidence for such a supposition. This
goes to support the following hypothesis.

No-Good-Reason-for-R.E.-Subsets-of-Algorithms Hypothesis: There
is no good reason for you to presume that there is a recursively enumerable
subset of the set of all algorithms such that for all natural language predi-
cates R (‘not R’), algorithms from this subset supply the best interpretation
for R (‘not R’).

One might wonder whether there is nevertheless the following good prag-
matic reason for confining algorithm choice to a recursively enumerable sub-
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set of the set of all algorithms: by so confining oneself one does indeed
avoid the Thesis (and vagueness). The solution comes with a painful price,
though. For all you know there are algorithms that can provide the correct
interpretation. Yes, not confining yourself to a recursively enumerable sub-
set of the set of all algorithms brings with it the cost of there being objects
in neither the interpretation of R nor the interpretation of ‘not R’. However,
it is possible for the interpretations to be only “finitely mistaken,” where
by this I mean that they are complements save for finitely many objects
in neither interpretation. Constraining yourself to a recursively enumerable
subset of the set of algorithms only for the pragmatic reason of avoiding
the Thesis runs the risk that there are predicates, perhaps many, that are
not only not correctly interpretable using algorithms from that subset, but
will be infinitely mistaken. For example, if one constrains oneself to the
set of primitive recursive functions without reason to believe that no pred-
icates should best be interpreted using non-primitive recursive algorithms,
then in all those cases where a predicate should be best interpreted using
a non-primitive recursive algorithm you are guaranteed to incorrectly clas-
sify the objects on infinitely many occasions. Worse than this, it may be
that no primitive recursive algorithm even “comes close” to the best algo-
rithm for the predicate. It might be like using the set of odd numbers as an
approximation to the prime numbers.

The No-Good-Reason-for-R.E.-Subsets-of-Algorithms Hypothesis conjoined
with the Principle of No-R.E.-Subsets-of-Algorithms imply the following hy-
pothesis.

No-R.E.-Subsets-of-Algorithms Hypothesis: You do not confine your
choice of programs to a recursively enumerable subset of the set of all algo-
rithms when interpreting natural language predicates and their natural lan-
guage negations.

You in the fantasy scenario are, then, very likely to fall under the No-
R.E.-Subsets-of-Algorithms Hypothesis. “Very likely” because it is very
likely that the No-Good-Reason-for-R.E.-Subsets-of-Algorithms Hypothesis
is true, and given that you are rational you will follow the Principle of
No-R.E.-Subsets-of-Algorithms and thus fall under the No-R.E.-Subsets-of-
Algorithms Hypothesis.

Does the No-R.E.-Subsets-of-Algorithms Hypothesis apply to the real
you? There are reasons to think so. In fact, there is reason to think that
the real you is subject to the following hypothesis.

Any-Algorithm Hypothesis: You are free to choose from the set of
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all algorithms when interpreting natural language predicates or their natural
language negations.

If the Any-Algorithm Hypothesis is true of you, then so is the No-R.E.-
Subsets-of-Algorithms Hypothesis. This is because any set containing the
set of all algorithms is not a recursively enumerable subset of the set of all
algorithms.

What reasons are there to think that the Any-Algorithm Hypothesis is
true of the real you? It is difficult to tell a plausible story about how (the
real) you could have come to restrict program choice to exclude some algo-
rithms, especially since by the Church-Bound Hypothesis you are capable of
computing any algorithm. The man on the street does not know recursion
theory, and even if he does, as I do, I cannot imagine attempting to restrict
myself to, say, primitive recursive intensions for every new interpretation I
acquire. Nor does it seem plausible to suppose that we humans might have
evolved to exclude certain algorithms. It is, in fact, very difficult to avoid
allowing yourself the choice of any algorithm since once you allow yourself
the use of ‘while’ loops—i.e., the ability to implement programs including
statements like “while such and such is true, continue doing blah”—you are
able to build, in principle, any algorithm (presuming you can also carry out
some trivial basic operations).

To avoid this conclusion you would have to ban the use of ‘while’ loops,
using only ‘for’ loops—i.e., the ability to implement programs including
statements like “for i becomes equal to 1 to n do blah”, or “do blah n
times”—which is very restrictive. One could argue that your ‘while’ loops
are in reality bounded since you do not (and cannot) let them run forever;
thus, it is not the case that every algorithm can be implemented. But this
does not mean that the proper representation of your program does not use a
‘while’ loop. No real computer, after all, can actually implement unbounded
‘while’ loops, but it would be a mistake to say they cannot run unbounded
‘while’ loops and any algorithm.

It can be noted that the idea of animals employing ‘while’ loops has
some empirical support, namely in the Sphex ichneumoneus wasp, which
has been observed to enter into what is plausibly represented as an infinite
loop. Consider the following often quoted excerpt from Woolridge.12

When the time comes for egg laying, the wasp Sphex builds a
burrow for the purpose and seeks out a cricket which she stings in

12[Woo63], p. 82.
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such a way as to paralyze but not kill it. She drags the cricket into
the burrow, lays her eggs alongside, closes the burrow, then flies away,
never to return. In due course, the eggs hatch and the wasp grubs
feed off the paralyzed cricket, which has not decayed, having been
kept in the wasp equivalent of deep freeze. To the human mind, such
an elaborately organized and seemingly purposeful routine conveys a
convincing flavor of logic and thoughtfulness—until more details are
examined. For example, the Wasp’s routine is to bring the paralyzed
cricket to the burrow, leave it on the threshold, go inside to see that
all is well, emerge, and then drag the cricket in. If the cricket is moved
a few inches away while the wasp is inside making her preliminary
inspection, the wasp, on emerging from the burrow, will bring the
cricket back to the threshold, but not inside, and will then repeat the
preparatory procedure of entering the burrow to see that everything is
all right. If again the cricket is removed a few inches while the wasp
is inside, once again she will move the cricket up to the threshold and
re-enter the burrow for a final check. The wasp never thinks of pulling
the cricket straight in. On one occasion this procedure was repeated
forty times, always with the same result.

I am not suggesting that you are possibly subject to such infinite loops. I am
only suggesting that ‘while’ loops are plausibly part of your computational
grammar. In fact, one might say that the wasp has a “concept” of ‘readied
burrow’ which is determined by the following program:

WHILE burrow not ready do
IF burrow is clear and cricket has not moved when I emerge
THEN burrow is ready;

As an example showing that you regularly engage in ‘while’ loops (or an
equivalent) as well, in order to determine if the bath temperature is good,
you may well keep increasing the hot until it is comfortable or too hot; if
the latter then you keep decreasing until comfortable; and so on. That is,
you implement the following program:

WHILE temperature not comfortable do
IF temperature too cold
THEN increase hot water;
ELSE decrease hot water;

‘while’ loops seem to be an integral part of your (and my) computational
grammar. And if this is true, the Any-Algorithm Hypothesis is sure to apply
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to the real you. Thus, the No-R.E.-Subsets-of-Algorithms Hypothesis also
applies to the real you.

What does the No-R.E.-Subsets-of-Algorithms Hypothesis tell us? There
is a set of all possible programs you can attain (and this is recursively enu-
merable since you are bound by Church’s Thesis). This set is not a subset of
the set of all algorithms, as the No-R.E.-Subsets-of-Algorithms Hypothesis
requires. This means you are not generally capable of choosing algorithms.
In particular, if the Any-Algorithm Hypothesis is true, then since the set
of all algorithms is undecidable, you are not generally capable of choos-
ing algorithms. We saw above that the Church-Bound Hypothesis and the
Programs-in-Head Hypothesis “almost” imply the Thesis. What was miss-
ing was some reason to believe that the set of algorithms from which you
determine your interpretations is not recursively enumerable. The No-R.E.-
Subsets-of-Algorithms Hypothesis finishes the argument, and these three
hypotheses together entail the Thesis.

2.4 Thesis

In this subsection I bring together the previous three subsections. Here is
the Thesis again.

For “most” natural language predicates R

1. your interpretation of R is determined by a program in your head that
is capable of semideciding but not deciding it,

2. your interpretation of ‘not R’ is determined by another program in
your head that is capable of semideciding but not deciding it, and

3. there are objects neither in your interpretation of R nor in your inter-
pretation of ‘not R’.

There are two ways of arguing toward the Thesis. The first is via the
fantasy scenario and is largely but not entirely prescriptive, concluding that
the Thesis, and thus vagueness, follows largely but not entirely from ratio-
nality considerations alone (and the Church-Bound Constraint). The second
is via the real you scenario and is descriptive, concluding that the Thesis
follows from hypotheses that are true about us. The first would be rather
worthless without the second, because a theory that claims that vagueness
would exist in the fantasy scenario but says nothing about the real us would
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be incomplete at best, since it is us who experience vagueness, not some
idealized, rational fantasy agents. The second, however, is made more in-
teresting by the first. The Thesis, and thus vagueness, does not follow from
some human irrationality or quirk, but is, on the contrary, something to
which nearly any rational, sufficiently powerful, finite agent will converge.

I finish this section by (i) cataloguing the premises of both the prescrip-
tive (fantasy you) and the descriptive (real you) argument, (ii) reminding us
that the premises of the prescriptive argument entail those of the descriptive
argument, and (iii) summarizing how the Thesis follows from the descriptive
argument (and thus by (ii) also from the prescriptive argument). Below are
the two arguments.

Descriptive Argument (Real you) Prescriptive Argument (Fantasy you)

Church-Bound Hypothesis. Church-Bound Constraint.

Programs-in-Head Hypothesis. Principle of Program-Favoring.

No-Good-Reason-for-Non-Programs Hypothesis.

No-R.E.-Subsets-of-Algorithms Hypothesis. Principle of No-R.E.-Subsets-of-Algorithms.

No-Good-Reason-for-R.E.-Subsets-of-Algorithms Hypothesis.

The prescriptive argument says that any rational (Principles of Program-
Favoring and No-R.E.-Subsets-of-Algorithms), Church-bound (Church-Bound
Constraint) agent is subject to the Thesis so long as (a) he has no good rea-
son to believe that the extensions of most natural language predicates are
not recursively enumerable (No-Good-Reason-for-Non-Programs Hypothe-
sis), and (b) he has no good reason to presume that there is a recursively
enumerable subset of the set of all algorithms that suffices for adequate
interpretations of natural language predicates (No-Good-Reason-for-R.E.-
Subsets-of-Algorithms Hypothesis). Because (a) and (b) are very difficult
to imagine being false, the Thesis follows “largely” from the Church-Bound
Constraint and the two principles of rationality. Supposing (a) and (b) are
true, the Thesis (and thus vagueness) is good for you, fantasy and real.

The descriptive argument says that (α) we humans are Church-bound
(Church-Bound Hypothesis), (β) for most natural language predicates and
their natural language negations we use programs in the head to determine
our interpretations of them (Programs-in-Head Hypothesis), and (γ) any
algorithm may possibly be used by us as a determiner of the interpretations
of natural language predicates or their natural language negations (Any-
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Algorithm Hypothesis), and thus we do not confine ourselves to a recur-
sively enumerable subset of the set of all algorithms for interpreting natural
language predicates or their natural language negations (No-R.E.-Subsets-
of-Algorithms Hypothesis).

The prescriptive premises (for the fantasy scenario) imply the descriptive
premises in the following sense. If you satisfy the Church-Bound Constraint
then the Church-Bound Hypothesis is true. If you follow the Principle of
Program-Favoring and the No-Good-Reason-for-Non-Programs Hypothesis
is true, then the Programs-in-Head Hypothesis is true; the converse is not
true. If you follow the Principle of No-R.E-Subsets-of-Algorithms and the
No-Good-Reason-for-R.E.-Subsets-of-Algorithms Hypothesis is true, then
the No-R.E.-Subsets-of-Algorithms Hypothesis is true; the converse is not
true.

The descriptive premises entail the Thesis as follows. The Programs-in-
Head Hypothesis states that you use programs in the head to determine most
of your interpretations of natural language predicates and their natural lan-
guage negations. Most of your interpretations are therefore semidecidable
by the programs responsible for them. The No-R.E.-Subsets-of-Algorithms
Hypothesis states that the set of programs at your disposal for natural lan-
guage predicate interpretations is not a recursively enumerable subset of the
set of all algorithms. This entails that the set of algorithms from which you
can possibly choose is not recursively enumerable. The Church-Bound Hy-
pothesis states that you can only compute the Turing-computable, and thus
you cannot generally choose programs for your interpretations of natural
language that are algorithms (even if your interpretations are recursive, or
even finite). For “most” of your interpretations of natural language predi-
cates R (or ‘not R’) your program for it will be able to semidecide but not
decide it. Since “most” predicates can only semidecide their interpretation,
this means that for “most” predicates there must be one program for R, and
another program for ‘not R’, and each can only semidecide the interpretation
for which it is responsible. We have so far concluded that “most” natural
language predicates satisfy 1 and 2 of the Thesis. Your interpretations of
R and ‘not R’ cannot cover every object, because if they could be then it
would be possible to take the two programs and use them as one algorithm
to simultaneously decide the interpretations, and this would contradict the
impossibility of generally acquiring algorithms. Thus, “most” of the time
your interpretations of predicates and their natural language negations do
not cover all objects; there are objects in neither interpretation. We now
have that “most” predicates satisfy 1, 2 and 3; the Thesis follows from the
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three hypotheses.
It is important to note that the Thesis is an important claim about

natural language whether or not one believes that the Thesis has anything
to do with vagueness. If it is true, then, informally, our concepts have
“unseeable holes” in them. As for vagueness, my theory’s characterization
of vagueness is that a predicate is vague if and only if it satisfies 1, 2 and 3
from the Thesis; the truth of the Thesis implies that “most” natural language
predicates are indeed vague, as we know they are.

3 Vagueness

In this section I demonstrate how the Undecidability Theory of Vagueness
explains vagueness. Recall that the theory’s characterization of vagueness
from Subsection 2.4 is as follows: Predicate R is vague to you if and only if

1. your interpretation of R is determined by a program in your head that
is capable of semideciding but not deciding it,

2. your interpretation of ‘not R’ is determined by a program in your head
that is capable of semideciding but not deciding it, and

3. there are objects in neither your interpretation of R nor your interpre-
tation of ‘not R’.

The Thesis stated that “most” natural language predicates satisfy 1, 2 and
3, i.e., “most” natural language predicates are vague. In terms of a single
program PR/nonR that outputs YES whenever an object is R and outputs
NO whenever an object is ‘not R’, the characterization is that a predicate
R is vague to you if and only if there are objects on which your program
PR/nonR does not halt. The corresponding Thesis is that “most” natural
language predicates have a region of objects for which the program does not
halt. In what follows the Thesis is assumed to be true.

Please notice that in my theory’s characterization of vagueness, vague
predicates are not in any way required to be computationally complex. I
have a great deal of difficulty with people thinking that my theory some-
how equates non-recursiveness with vagueness. The only appeal to non-
recursiveness has been to the non-recursiveness of the set of algorithms and
the halting set (the set of all pairs of programs and inputs such that the pro-
gram halts on that input), not to the non-recursiveness of natural language
predicate interpretations. The interpretations of vague predicates may well
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be recursive, and even finite, and vagueness is unscathed. And even if a
predicate’s interpretation is not recursive, the vagueness comes not from
this but, as we will see, from the facts that the interpretations do not cover
all objects and that the programs are not algorithms.

3.1 Borderline region

Your interpretations of R and ‘not R’ do not cover all objects; there are
objects c such that the natural language sentences ‘c is R’ and ‘c is not
R’ are both false. These objects comprise the borderline region. This fits
well with the datum of a borderline region: that there are objects which do
not seem to fit neatly into just one category. The development in Section
2 served in part to show that (i) any rational, Church-bound agent in the
fantasy is very likely to have a borderline region for “most” natural language
predicates, and (ii) you do, in fact, have such a borderline region for “most”
natural language predicates.

In epistemic theories of vagueness the borderline region is characterized
differently than merely “not fitting neatly into just one category.” Rather,
for epistemicists the borderline region is comprised of those objects for which
knowledge of membership is unattainable, where “membership” refers to
membership in the true extension. The Undecidability Theory explains this
sort of borderline region as well. Suppose that BALD is the true extension
of ‘bald’. You are not generally capable of acquiring a program in the
head that decides BALD, even if BALD is decidable, because you are not
generally capable of acquiring algorithms. Your interpretation of ‘bald’ is
semidecidable but not generally decidable by the program responsible for it,
and even if you are so lucky to correctly interpret it (i.e., your interpretation
is equal to the extension BALD), if you want to be able to respond to queries
about ‘not bald’ you must acquire a second program in the head, and this
program will not generally correctly interpret ‘not bald’ (i.e., the ‘not bald’
program will not semidecide the complement of BALD). Your interpretations
of ‘bald’ and ‘not bald’ do not cover every object, and the programs for
each only semidecide them. There are therefore objects for which you are
incapable of determining or even knowing, using your programs in your head,
whether or not it is a member of BALD.
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3.2 Higher-order vagueness

Although you cannot draw a sharp line between ‘bald’ and ‘not bald’, can
you draw a sharp line between ‘bald’ and ‘borderline bald’? There is, in
fact, a sharp line here posited by my theory, but are you generally capa-
ble of drawing it? No. The two programs in the head for baldness (one for
‘bald’ and one for ‘not bald’) are not powerful enough to determine the lines.
To see this intuitively, imagine starting in the ‘bald’ region and moving to-
ward the borderline bald region. While in the ‘bald’ region your program
for ‘bald’ halts and says YES and the program for ‘not bald’ never halts.
When you move into the borderline region the program for ‘not bald’ still
does not halt, but the program for ‘bald’ suddenly now never halts as well.
You are not, though, generally able to know that the program for ‘bald’ will
never halt—you cannot generally know when you have crossed the line. This
seems to be consistent with our observations of higher-order vagueness (see
also Subsection 3.3), and it solves the problem without having to postulate
semantically distinct higher-order borderline regions. This latter aspect is
good since it puts a stop to the regress of higher and higher order semanti-
cally distinct borderline regions, all which amount to nothing if when one is
finished there is still a knowable sharp line between the definite region and
the non-definite region.

Can this phenomenon really be the phenomenon of higher-order vague-
ness? In my theory what does it “feel like” to not be capable of determining
the boundaries of the borderline region? Well it feels like whatever it feels
like to attempt to decide a set using a program that only semidecides it.
One might try to make the following criticism: Let us take the set of even
numbers and supply you with a program that only says YES exactly when
a number is even, and is otherwise silent. Do the evens now seem vague
through the lens of this program? There are a number of problems with
such a criticism as stated. First, it is not enough that the program simply
says YES when an input is even and is silent otherwise. When we say that
the program semidecides but does not decide the set of evens we mean that
if the program is silent we are not sure whether it will at any moment con-
verge and say YES. The program’s silence is not translatable to NO. Second,
it is difficult to judge our intuitions with a predicate like ‘even’ for which
we already have a program in the head for deciding it. We should imagine
instead that it is some new predicate R for which we have no intuitions. The
third problem is that even with these fixes the question the critic needs to
ask is not whether R-ness seems vague, but whether R-ness seems to have
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whatever feel higher-order vagueness has. This is because R is not vague
according to my theory since it does not satisfy part 2 of the characteri-
zation of vagueness (i.e., we are not given a program for semideciding ‘not
R’). On this modified question it is unclear that we have any compelling
intuitions that the answer is NO. When using the given program to attempt
to decide the extension of R, you will be incapable of seeing where exactly
the boundary is, and therefore you will be unable to classify many objects.
These objects plausibly are just like the borderline borderline objects (i.e.,
second-order borderline objects).

Another critic may ask the following: Let us suppose that you have two
programs that only semidecide their respective interpretations, and let us
also suppose that the interpretations do not cover every object. If these
programs are for some predicate R and ‘not R’ then is R-ness necessarily
vague? For example, let us take the predicate ‘theorem of arithmetic’, whose
extension is not even recursively enumerable. You are surely capable of de-
termining some theorems and some non-theorems, and you must therefore
utilize a program in the head for ‘theorem’ and another for ‘not theorem’.
But surely ‘theorem’ is not now vague! There is a difference between this
case and vague natural language predicates. You as a mathematician are
conscious that you are not actually deciding theoremhood with your pro-
grams. You understand that they are only heuristics, and it is possible that
each might even occasionally be incorrect, e.g., saying that a theorem is not
a theorem. That is, your programs for theoremhood do not determine what
you mean by ‘theorem’. You mean by ‘theorem of arithmetic’ whatever fol-
lows from its definition. 1 and 2 from the characterization of vagueness are
not satisfied.

3.3 Experiment

In addition to claiming the Undecidability Theory fits our pre-theoretic in-
tuitions concerning the phenomenon of vagueness, I have carried out two
experiments, one to record how genuine vagueness looks and the other to
test my theory against the results of the first experiment.

In the first experiment I presented subjects with a sorites series of 27
color patches from red to yellow. For each color patch subjects were asked
to write whether they believed it was red, borderline red (or gray area),
or not red. In addition, for each response subjects were asked to give a
confidence rating of 1, 2 or 3 indicating how confident they were of their
answer (3 being highly confident). Of 17 subjects the average borderline
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region consisted of 5 (plus or minus 3) color patches. This is hard evidence
that there is indeed a borderline region; borderline vagueness exists. (In pilot
data I have found that subjects given the same task but not given the option
of answering “borderline red” give low confidence ratings throughout a large
region, which seems best interpreted as a borderline region. Thus, existence
of the “borderline red” option does not seem to be creating a borderline
region.) The typical subject begins at the red patch with an answer of “red,
3”, i.e., “red with highest confidence”. Then at the subject’s transition from
“red” to “borderline red” the confidence ratings are low. At the center of
what a subject calls the borderline region the confidence rating increases
from that at the transition. At the subject’s transition from “borderline
red” to “not red” the confidence ratings are again low. Finally, at the 27th
color patch the answer is “not red” with highest confidence. For the 17
subjects involved in this experiment the mean confidence ratings for the five
distinguished points (just mentioned) across the subjects is shown below;
standard deviations are shown in parentheses. (The “transition” numbers
are obtained by taking the mean of all subjects’ confidence ratings on either
side of the transition.)

Red: 3.00 (0.00)
Red-borderline transition: 2.11 (0.69)
Borderline: 2.62 (0.55)
Borderline-not red transition: 2.21 (0.84)
Not red: 3.00 (0.00)

The low confidence ratings at the boundaries of the borderline region (i.e.,
the transitions) are evidence for the existence of higher-order vagueness, and
I will take it as an operational definition of higher-order vagueness.

To test my own theory of vagueness against this data I presented subjects
with a sorites series of 27 made-up figures gradually morphing from the first
figure to the final. Subjects were told that the first object is pirnk, and
that the series changes gradually so that the last figure is zuff. It is possible
but not necessary, I told them, that there are some figures in between that
are neither pirnk nor zuff. Of course, the subjects did not know what the
properties pirnkness and zuffness are, so I supplied them with a computer
program (their program in the head) that did. Subjects were asked to enter
the number of the object into the program, and they were told that the
program would respond “pirnk” if the input was pirnk and “zuff” if the input
was zuff. They were warned that the program may well take some time to
halt; furthermore, they were warned that if the figure is neither pirnk nor
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zuff, the program will never halt. They were instructed to terminate the
program if they wished to give up waiting for it to halt. The program was
set up so that the ‘neither’ region consisted of figures 11 through 15 and
the figures nearer the neither region took longer to halt (this amounts to a
natural but new assumption for the sake of the experiment). The program
on inputs 10 and 16, for example, took about three minutes, were anyone to
be patient enough; the program on inputs 1 and 27, for example, took less
than one second. ‘pirnk’ is the analog of ‘red’, ‘zuff’ the analog of ‘not red’,
and ‘neither’ the analog of ‘borderline red’. My prediction was that subjects’
confidence ratings at the distinguished points along the sorites series would
be similar to those in the ‘red’ experiment. The means over all nine subjects
are as follows:

Pirnk: 3.00 (0.00)
Pirnk-neither transition: 1.72 (0.96)
Neither: 2.22 (0.83)
Neither-zuff transition: 1.67 (0.91)
Zuff: 3.00 (0.00)

As in the case of known vagueness (i.e., the ‘red’ experiment), we see here low
confidence ratings at the boundaries of the analog of the borderline region;
my theory captures what I operationally defined as higher-order vagueness.
In addition, we also see a higher mean confidence rating at the centers of
the ‘neither’ region, just as is the case for the center of the borderline red
region. The results of this experiment help increase the plausibility of my
theory, and I hope they motivate further empirical studies.

A worry one might express is that in my invented sorites series (pirnk
to zuff) I have presumed that the borderline region is both contiguous and
sandwiched between the definite regions. Why should this be? The reason
is that a sorites series is, by its nature, a sequence moving as gradually as
possible from one extreme to another. An object being neither R nor not R
means it is intuitively less R than R things and more R than not-R things,
so all such objects must be placed on a sorites series in between the R and
the not-R things.

3.4 The sorites paradox

Finally we arrive at the sorites paradox, which I give here in the following
form: (i) 0 hairs is bald, (ii) for all n, if n hairs is bald, so is n + 1, (iii)
therefore you are bald no matter how many hairs you have. Notice that I
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have stated the argument in natural language; many researchers on vague-
ness state the paradox in some logical language, which is strange since the
paradox is one in natural language. Presenting it in a logical language in-
evitably makes certain biased presumptions; for example that ‘not’ is to be
translated to the classical negation ‘¬’.

What is usually dangerous about rejecting premise (ii) is that it implies
there is an n0 such that n0 hairs is bald but n0 +1 hairs is not; i.e., it usually
leads to there being no borderline region. This is bad because borderline
regions surely exist. In my theory’s case, though, what happens? A sorites
series moves along a “path” that is most gradual from R to ‘not R’; it must
therefore cross the borderline region lest it not be “most gradual.” Imagine
starting in the ‘bald’ region and moving toward the borderline region. Even-
tually there will be a number n0 such that n0 hairs is bald but it is not case
that n0 + 1 is bald, and you cannot in general determine where this occurs.
However, this in no way prevents n0 + 1 from being borderline bald, i.e.,
being neither bald nor not bald. Eventually the denial of (ii) will occur—
and you will not know when—but it does not imply the lack of a borderline
region. The sorites paradox is thus prevented without losing vagueness.

3.5 Universality of vagueness

I now touch on three issues related to the universality of vagueness.
The first concerns whether all natural language predicates are vague.

By the Thesis and the characterization of vagueness, “most” of your natural
language predicates are vague. “most,” however, does not mean all, and
according to my theory there may be some non-vague predicates. But are
not all natural language (nonrelational) predicates vague? It is not clear
that the answer to this question is ‘Yes’. For example, Sorensen13 cites
‘flat’, ‘clean’ and ‘empty’ as example non-vague predicates. These predicates
are often applied in “restricted domains of discourse; not all bumps, dirt,
and contents are relevant,”14 but if I am asked if, strictly speaking, some
surface is flat, I am sure that my answer is either YES or NO (i.e., not
neither). “Strictly speaking,” surfaces are either flat or not, whereas for
‘bald’ there is no such “strictly speaking” analog. I also believe ‘mortal’
and ‘everlasting’, for example, to be non-vague. There are explanations
consistent with my theory for why non-vague predicates are rare at best.
The first emanates from the observation made in Section 2.3 that the set

13[Sor88], p. 201.
14ibid.
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of algorithms is much more difficult than its complement, and this is what
motivated the scare quotes around ‘most’ in the first place. The second
explanation helps to explain why there are few to no non-vague “complex”
natural language predicates. By complex predicates I informally mean those
predicates like ‘dog’, ‘bald’, ‘people’, ‘chair’, etc., that depend on a number
of more “primitive” predicates like ‘red’, ‘circular’, etc., for their application.
Most of our every day predicates—the ones we use to carve up the world—
are complex. In order for one of these predicates to be non-vague, every
more primitive concept it employs must be non-vague,15 and this is probably
never the case, given that “most” (primitive) concepts are, according to my
theory, vague.

The second universality issue is that given that some predicates might be
non-vague, we do not find in our experiences cases where, say, ‘dog’ is vague
but ‘cat’ is not; similar sorts of predicates should either both be vague or
neither. The observation just mentioned concerning complex versus prim-
itive concepts explains this datum. Similar predicates make use of similar
more primitive concepts, and thus inherit the vagueness (or lack thereof) of
the more primitive concepts.

On the third issue of universality, the Thesis is about your interpreta-
tions, stating that “most” of the time your natural language predicates are
vague. The Thesis obviously also applies to any of us individually. One da-
tum of vagueness seems to be that we don’t find ourselves disagreeing about
the vagueness of predicates. What reason have we to believe, in my theory’s
sights, that you and I have the same vague predicates? Why should your
“most” and my “most” coincide? The answer to this query is as follows:
If you believe ‘bald’ is vague and I believe it is non-vague, then it is not
the case that we have the same concept of baldness save that one is vague
and the other not. Your concept of baldness consists of two interpretations
which do not cover every object. My concept of baldness, on the other
hand, consists of just a single classical interpretation; I have no “hole” in
my concept. We disagree about more than just baldness’s vagueness since
our concepts are genuinely different. Therefore, in order to explain why we
all agree on which predicates are vague, it suffices to explain why we all
tend to have the same concepts for predicates. Explaining this, however, is
not something my theory is subject to any more than any other theory; any
adequate account of our shared concepts suffices to explain why we agree

15Although see Sorensen ([Sor88], pp. 228-229) for some nice and unusual
counterexamples.
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about the vagueness of predicates.

4 Conclusion

I have argued that it is very likely to be in a Church-bound agent’s (i.e.,
finite and sufficiently powerful) best interest to have accessible (i.e., inter-
preted via programs in the head), maximally accurate (i.e., any algorithm
a possible meaning determiner) interpretations of natural language predi-
cates. I have also argued that such an agent having such interpretations
experiences vagueness. Vagueness, then, is in such an agent’s best interest.
If we, too, are Church-bound, then vagueness is very likely good for us; the
only possible ways for us to avoid vagueness are either to lose the accessi-
bility of our natural language meanings or to confine our meanings to an
“infinitely less rich” choice, each very likely to be more costly than the costs
of vagueness.
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