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Abstract

Organismsare hierarchicallyorganized both structurallyand behaiorally, whereonelevel is
definedto be abare anotherlevel if the objectsfrom the latter are combinedtogetherto make
objectsof theformerlevel. | saythatsucha pair of levelsis a combinatorial system. To understand
organismswill requireappreciatingherelationshipdetweerall pairsof adjacenhierarchicalevels
in the towers of hierarchicallevels found in organisms. In particular for ary pair of adjacent
hierarchicalevels, a key questionis, (1) Whatrulesgovern how objectsfrom the lower level (the
componentsgombineto make objectsatthe higherlevel (the expressions)For example whatare
therulesdictatinghow bird syllablesarecombinedo make songs?0r, whataretherulesgoverning
how cellscombineto instantiatéhigherlevel organismfunctions?Anotherquestioris, (2) Are there
universallaws gaoverninghierarchicacompleity in systemsf thesametype,in thesensahattwo
combinatoriabystemsf the sameypewill shareghe samerules?For example,if onebird cansing
twice asmary songs(expressionspsanotherbird, whatcanwe say if arything, abouthow mary
syllabletypes(componentypes)they have? If thereareuniversallaws of hierarchicalcompleity
for bird vocalization—a‘universalgrammar’—thert may be possibleto say something;if there
are no universallaws, it may not. A more generalkind of questionis, (3) What kinds of such
“rules of grammar”for combinatorialsystemsare found in nature,andwhy do systemshave the
kindsof rulesthey have? This latterquestioris not concernedvith the particulardetailsof the pair
of levels—e.g. whetherit is structuralor behaioral—hut on the underlyingprinciplesgoverning
adjacenhierarchicalevels. The maintaskof this researchs to askandbegin to answelthesethree
guestions.
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1 Intr oduction

If you have ever programmedn a computeryou will know thatfor mostprogramminganguages
thereis a“main” procedurejn which the primary structureof the programis written. Within this
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mainprocedureptherproceduresrecalled. Perhapghe programs taskis to carryout certainma-
nipulationson a list of numbersandoneof the proceduresalledwithin the main proceduresorts
ary list of numbersanotherprocedureaveragesary list, andanotherfinds the varianceof a list.
Themainprocedurds, then,built out of acombinationof “component’proceduresEachof these
proceduresin turn, callsotherproceduresandthey, in turn, call others.At somepoint, procedures
call primitive procedureswhich are procedureghat are part of the programminglanguagétself,
andthe programminganguageknows whatthesecommandsneanwithout needingary program-
ming instructions.This s justto saythatprogramsarewritten hierarchically Not only is computer
software hierarchicallyorganized,so is computerhardware. At its lowestlevel, computerhard-
wareconsistof primitive componentsuchaswires, resistorscapacitorsinductorsandsolid state
devices. Combinationsof thesemalke higherlevel hardware suchastransistorsandcombinations
of transistorsandothercomponentganmale logic gateswhich in turn canbe strungtogetherto
carry out complex hardwiredprogramsor generalpurposemicroprocessorsComputersare,then,
comprisedof “towers” of hierarchicallevels. And suchhierarchicalorganizationis true of most
artifacts.

Hierarchiesaboundn thebrainandbiologicalsciencesswell. ConsidehumanianguageSen-
tencesarebuilt from words,wordshbuilt from phonemesandphonemeg$rom musclecontractions
in theface tongueandthroat.In organismshasepairscombineto make codonscodonsombineto
build exons,which combineto make geneswhich combineto determinesay cell types,andcells
areputtogetherto implementhigherlevel organismfunctions,andsoon. Therefore prganismsare
alsocomprisedof towersof hierarchiesandto understanarganismsequiresunderstandingvhat
thehierarchicalevelsare,andhow they relateto oneanother

For artificial systemswve happento be more confidentof wherethe hierarchicallevels areand
of what the principles governing the relationshipbetweenlevels are; we are confidentbecause
we (asa culture) built them. But for organismswe mustfigure out whatthe levels are andwhat
the underlyingprinciplesare. While we may intuitively feel we canwith someconfidencgust
“see” wherethey are—aswe just did above for languageand genetics—whatve needare clear
methodologicagiuidelinedor sucha determinationFurthermorewe needto definewhatwe really
meanby a hierarchicallevel. And we would alsolike a frameavork within which we may think
abouttherelationshipdetweerhierarchicalevels.

First, whatis a hierarchicalevel? Therearemary definitionsonemay havel! =3l but let ustry
to capturewhatever it is we wereinformally referringto above. The key ideabehindhierarchy
above wasthat objectsof the lower level are put togetherto make objectsat the higherlevel, and,
in particular areputtogetheiin acombinatorial fashion.Thatis, objectsatthelowerlevel areused
asif they aresymbolsin alanguageandthey maybe combinedto obtaina “combinatorialexplo-
sion” of objectsatthe higherlevel. Therefore adjacenhierarchicalevelsare,underthis notion of
hierarchy combinatorial systems, or systemavhere“words” or components of somekind—namely
the lowerlevel objects—combind¢o make “sentences’or expressions of somekind—namelythe
higherlevel objects.By ‘expressions’] will meanexpressiortypes,unlessotherwisestated.

Let us considera simple combinatorialsystem. Supposehe systemallows just two typesof
componenti.e.,thelower-level object): ‘0’ and'l’. Wewill saythatC = 2. We will alsosuppose
thatthe systems expressionareasfollows:

‘000, ‘001’, ‘0107, ‘100, ‘011’, ‘101’, ‘110" and‘111".
l.e.,thereare E = 8 expressionsandthelength L of theseexpressionss three.How do we know
whethera systemis combinatorial? To start, is this simple systemabose combinatorial?It sure

seems like it is, sincewith only two componentypesthe systemis ableto get eight expressions.
However, thisis not sostraightforvard. To really know whethera systemis combinatorialactually
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requiressomeunderstandingf therules, or grammar, governingthesystem.f we knew thegram-
mar, we couldimmediatelytell whetherthe systemnis combinatorialandthuswhetherthetwo levels
countasdistinctlevels. In describingto you the simplesystemabore, | wascarefulnotto tell you
whatgrammargovernsit. All youknow is thattherearethoseeightexpressionguilt from thetwo
componentypes. If we wereto learnthatthe systemfollows therule, “Combineary components
into sequencesf lengththre€; thenwe would know thatthe systemis combinatorial. We would
know this because¢he numberof expressions wouldthenberelatedto the numberof component
typesC andexpressionlengthL by E = C*, and,solongasL > 1, increasingthe numberof
componentypeswould disproportionatelyncreaseéhe numberof expressionsFor example,if just
two new componentypeswereadded namelysymbols2’ and‘3’, thenthenumberof expressions
in thesystemwouldincreasdrom 2° = 8 to 43 = 64. Alternatively, we mightinsteadearnthatthe
grammaticatuleis, “For every componentypethereis just one othercomponentypewith which
it maybe combinedandcombinedn ary orderupto lengththre€’ For example,supposahattwo
new componentypesareaddedmaking'0’, ‘1’, ‘2’ and‘3’ therepertoireof componentypes.But
supposealsothat‘0’ and‘l’ maybecombinedonly with oneanotherandsimilarly for ‘2" and‘3’.
Theexpressionemanatingrom ‘0’ and‘l’ arethesameeightwe saw earlier andfrom ‘2’ and‘3’
the eightnew expressions
‘222,223, '232’, '322’, '233’, '323’, ‘332’, and‘333’

can be formed. Doubling the numberof componentypesunderthis secondpossiblegrammar
would only doublethe numberof expressiondrom 8 to 16, and generally the equationis £ =
(C/2)2%. For L = 3, wehave E = (C/2)8 = 4C, andthusE andC aredirectly proportionalto
oneanotheror E ~ C. Thus,if this secondpossiblegrammarapplies,the systemis, despitefirst
appearancesot combinatorialat all. The componentandexpressionsvould accordinglynot be
atdistincthierarchicalevels;rather they would comprisethe structurewithin just onelevel.

Gettingaccesgo the grammarof a systemis rarely straightforvard; they arenot written on a
systenms sleeve. If we do not have accesdo the grammay is theresomeotherway to determine
if the systemis combinatorial? Thereis, if it is the casethat systemsof the sametype follow
the samegrammar;thatis, if thereare universallaws governingthe relationshipsbetweenlevels
for all systemsof the samekind. If this is the case,thenwe canlook at other combinatorial
systemf the samekind to inform us on the natureof the grammarthey share.In particular for a
combinatoriabystemgdoublingthe numberof componentshouldmore thandoublethe numberof
expressionslf asystemis not combinatorialhowvever, thendoublingthe componentypesshould
only doublethenumberof expressionsSaiddifferently asystenis combinatorialvhenthenumber
of componentypesscalesdisproportionatelyslonly comparedo the numberof expressionsand
a systemis not combinatorialwhenthe numberof componentypesscalesup proportionallywith
the numberof expressions.To determinewhethera systemis combinatorial,then, it suficesto
know aboutwhat other systemsof the sametype but of different numberof expressionswvould
look like. Thatis, it suficesto look at mary systemsof the sametype in orderto seehow the
numberof componentypesC scalesup asthe numberof expressions increaseslf thereexistsa
universally-conformede grammarby systemf the samekind, thenthe natureof the scale-upof
C shouldbelaw-like. However, anotheipossibilityis thatsystemsf the samekind do not conform
to similar underlyinggrammarswhensystemsf thatkind have mary moreexpressionsthey also
tendto have completelydifferentgrammarsn operation.If thiswereso,thenlooking atthe scaling
behaior of C versusE shouldnotappeataw-like, andwill beuninformatve in regardsto whether
or notthe particularsystemof interestis or is not combinatorial.

We canin this way—i.e.,by looking for law-like scalingbehaior for C' asa function of E—
judgewhethertwo levels aretruly at distinct hierarchicallevels, andnot just part of the structure
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foundat a singlelevel. We do not needto know the grammar However, oncewe have the scaling
relationshipbetweerthe numberof componentandthe numberof expressionsn akind of system,
the particularnatureof the scalingrelationshipwill give us, if it is law-like, a strongindicatoras
to whatthe underlyinggrammaris. The scalingrelationshipbetweenC and E is, then, not only
usefulfor answeringhe questionof whethertherearedistincthierarchicallevels; the relationship
alsocanenableusto recover the grammargoverningthe systemitself. The grammarencompasses
the fundamentaprinciplesof the hierarchicalorganizationof the systemin question,andis thus
somethingve would lik e to discover for hierarchicakystemsn organismsandbehaior.

2 Possiblehierarchical laws

We saw in the previous sectionthatby looking acrossmultiple systemsf the samekind andseeing
how the numberof componentypesC scaleaup asthe numberof expressiond” increasesye can
(i) determinewhetherthescalingrelationshipis law-lik e andaccordinglywhetherthereis therefore
a singlegrammaruniversallyapplyingto systemsof thatkind, (i) decidewhetherthe systemis or
is not combinatorialon the basisof whetherC grows disproportionatelyslowly than E, and (iii)
from the particulardetailsof the law-lik e relationshipacquirea stronghint asto whatthe grammar
for thatkind of systemis. In this sectionwe considersomeof the possiblerelationshipbetween
the numberof componentypesandthe numberof expressions We will usethis taxonomywhen
we look ata numberof actualsystemsn thefollowing section.

Let us supposehat a given kind of systemdoeshase somegrammarthat universally applies
to all systemsof thatkind. Thatis, the grammarpossessethe rulesgoverningthe possibleways
componentsnay be put togetherto malke expressionsRecallthatif thereareC componentypes
andthe lengthof an expressionis L, thenthereare E = C* expressions.Actually, though,this
is how mary expressiongherewould beif (i) the expressionsarelinearsequencesand(ii) every
possiblesequencés grammatical.More generally the structureof an expressionmight not be se-
guential(e.g.,considemuscle-firingombininginto abehaioral expressionywheremary muscles
fire simultaneously)andnot every possiblecombinationmay be allowed. In generalthen,we can
only expectthatthe numberof expressionawill be proportional to C*. Thatis, we cangenerally
only expectE = aC", for someconstanproportionaffactora capturingthe fractionof all possible
sequencethatareactuallyexpressions Sincewe do not muchcareaboutthe constani, we usu-
ally write thisasE ~ C*. Thisis still not quiteright: This only holdsif eachpossible'slot” for
a componenin an expressiormay be filled without regardfor the componentsn the otherslots.
In actualsystemst may bethe casethatif you put symbol A in slot 1, then B mustgoin slot 2.
Therewill very oftenbe suchdependenciesandthis reduceghe “effective” length of an expres-
sion, the intuition beingthatsuchdependencieseduceone’s freedomto build an expressionfrom
L down to somethingower. Thus,generally the effective lengthof expressionsn a systemmay
actuallybe lower thanthe numberof componentsn the expressionsThis “effective length” | call
thecombinatorial degree, d; moreeffective lengthmeansa greaterdegreeof “combinatorialroom”
for building expressionsSo, for systemgyovernedby the samegrammaywe expectthat E ~ C¢,
Thatis, we expectthatthereis a fixed proportionalityfactorrelating £ andC%. Accordingly if
we find thatin akind of systemE ~ C¢, it will bereasonabléo presumethatthe proportionality
factoris constanbecauséhe grammars constanticrosghe systems We shouldrecognizethatit
is possible however, unlikely, thatthe grammaticalulescould be differentfor every systemof the
sametype solong asthe grammargmaintainthe identicalproportionalityconstant.l will alsosup-
posethatcombinatorialdegreeandexpressioriengthare proportionalto oneanothereventhough
theformermaybelessthanthelatter



To sumupthelastfew thoughtsjf akind of systemis governedby auniversalgrammarthenwe
expectthatwhenwe look at systemsf thattype, we will find conformanceo the proportionality
E ~ C¢ whered is the combinatorialdegree(or the “effective length”). Supposehatwe have
accesso thenumberof componentypesandthe numberof expressiongor avariety of systemf
thesameaype (aswedoin thesystem®f thenext section).If we plot C versusE, whatrelationships
would fit within this universal-grammafor invariantgrammar)possibility? It turnsout thatthere
areafew kindsof quantitatve relationshiponecouldsee ary of whichwould suggesthatthereis
aninvariantgrammar To seethis, justimaginehow onemightincreasehe numberof expressions
in a combinatorialsystemwith two componentypesthat may be combinedin ary fashioninto
sequencesf lengththree.It haseightexpressionsion. The mostobviouspossibilityis to increase
thelengthof theallowableexpressionsanincreasdrom 3 to 4 upsthenumberof expressiongrom
810 16. Theotherobviouswayis to justincreaséhe numberof componentypes:anincreasdrom
2 to 3 increaseshe numberof expressiongrom 8 to 27. A third possibilityis to do both: increase
the lengthandthe numberof componentypes. Theseoptionsprovide the basisfor the following
list of possiblerelationshipbetweerC andE thatwe mightexpectif thereis aninvariantgrammar
(i.e.,if E ~ C9).

Possibility (a): C relatedto E via a power law

Thefirst possibility | will describes that, asthe numberof expressionsncreasesthe combi-
natorial degreestaysconstant,and, instead,only the numberof componentypesincreases.For
example,considerbird vocalization,wheresyllablescombinetogetherto producesongs.Possibil-
ity (a)is thatbirdswith moresongsn theirrepertoirehave moresyllabletypeswith whichthey can
composesongs,not longersongs. Sinced is constantthe relationshipE ~ C¢ is somethingwe
call a power law (which holdsfor ary equationof theform y = az®, wherea andb areconstants).
If oneplotsC versusE, oneexpectsthe datato fit the power law C ~ E'¢. |f oneexpectsdata
to conformto a power law, oneplotsthe dataon alog-log plot, i.e., oneplotsthelogarithmsof the
dataratherthanthedataitself. Thereasorthisis usefulcanbe seenby takingthe logarithmsof the
power law equationjn which casewe get

log(C) = log(aB'/%),
wherea is aproportionalityconstantThis canbe manipulatednto
log(C) = log(a) + log(E'/),
which canbe changedurtherinto
log(C) = (1/d) log(E) + log(a).

If we plot log(C') onthey axisagainsilog(E) onthez axis, noticethatthe equationis actuallyof
theform
y=mx+b,

i.e., an equationfor the line, with slopem = 1/d andy-interceptof log(«). Thus,if a kind of
systemhasa universalgrammay andif a greatemumberof expressionss achie/ed by increasing
only the numberof componentypes,thenwe expectalog-log plot of C versusE to befitted by a
straightline. Furthermoresincethe combinatorialdegreed mustbe greaterthanor equalto one,
1/d mustbelessthanor equalto oneandgreaterthanor equalto 0; i.e., the slopeof thebest-fitline
of theplot shouldbein theintenal [0,1]. Slopesnearetto zeroimply greatercombinatoriadegree;
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greatercombinatorialdegree,thus,allows the numberof expressiongo increasewithout having to
increaseghe numberof componentypesvery quickly. If the combinatorialdegreeis high enough,
say 1000, thenC ~ E/1000 'in which caseC will be effectively constantas E increasessince
1/1000 is socloseto zero.As theslopeincreasesowardone,the combinatoriadegreefalls toward
one,andC mustincreasemoreandmorequickly as E increasesWhenthe combinatorialdegree
equalsone,the systemcanno longerbe saidto be combinatorialat all, sincenowv C ~ E; in this
casethereis nodistincthierarchicalevel.

Possibility (b): C is constant

The secondossibilityto consideris thatthe numberof componentypesC' staysconstantand
only thecombinatoriadegree(think: length)d increasesasthenumberof expressions increases.
In thebird vocalizationexample ,greateisongrepertoiresvould bemadepossiblenotby increasing
thenumberof syllabletypes,but by increasinghe combinatorialdegree,or the effective length,of
eachsong.For aplot of C versusE, we simply expectC stayconstant.To understandhow fastthe
combinatorialdegreemustincreaseconsiderthatthe relationshipbetweerthe variablesunderthe
assumptiorof aninvariantgrammaiis E = aC¢, but now C is aconstantindd is variable. Taking
thelogarithmsof bothsideswe have

log(E) = log(a) + dlog(C).
Sincea andC' areconstantswe cansimplify thisto
d ~ log(E)

(supposing¥ is sufficiently large). Thatis, within this possibility for aninvariantgrammay C' is

invariant,andthe combinatorialdegreegrows logarithmicallywith E. As mentionedn Possibility
(a) abore, whenPossibility(a) is true andthe combinatorialdegreeis very high, thenC will grow

soslowly thatit will seenconstantThus,findingthatakind of systemhasC thatdoesnotincrease
with E could meanthat either Possibility (a) or (b) applies. To distinguishbetweenthem one

would needto acquiredataon how the combinatorialdegreechangeswith increasingexpression
compleity, e.g.,by usingthe averagenumberof componentperexpressiorasameasure.

Possibility (c): C relatedto E via alogarithmic law

Possibilities(a) and(b) arethetwo extremepossibilities;in (a) C increasesandd is invariant,
andin (b) d increaseand( is invariant. Thethird possibilityis a compromisebetweerthesetwo,
namelythatbothC andd increaseasE increaseskor bird vocalizationthis would meanthatbirds
with a greatemumberof songshave both moresyllabletypesandeffectively longersongs.What
relationshipwouldwe expectif system®f akind increasedheirnumberof expressiongn thisway?
First, notethatwe expectthenumberof componentypesC to increasanoreslonly thanary power
law, becauséf C increasedsapowerlaw, Possibility(a) would applyandthecombinatoriadegree
would not needto increase Similarly, we expectthe combinatorialdegreeto increasemoreslowly
thanlogarithmicallywith E, sinceif it increasedogarithmically Possibility (b) would apply and
thenumberof componentypeswould not needto increase Onenaturalpossibilityis thatC' scales
up logarithmicallywith E—i.e., C ~ log(E)—which is slover thanary power law relationship
with a positve exponent. In this case how fastmustd increase?Consideringagainour scaling
relationshipfor the caseof aninvariantgrammaywe have

E =aC?,
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for someconstanproportionalitya, andnow whereneitherC' nord is constantUndertheassump-
tionthatC = klog(E) (with £ aconstant)we cansolve for d in termsof E asfollows.

log(E) = log(a) + dlog(C),
log(E) = log(a) + dlog(k log(E)),
log(E) = log(a) + d[log(k) + log(log(E))],
d[log(k) + log(log(E))] = log(E) — log(a),

_ log(E) —log(a)
~ log(log(E)) + log(k)’
which for suficiently large E scalesas

N log(E)
log(log(E))

If akind of systemfalls within this possibility thenC shouldscaleproportionallyto log(E), and
thusa plot of C versuslog(FE) is expectedto be a straightline. On a log-log plot, the dataare
expectednot to be straight,but, instead to increasebut with everdecreasinglopeasE increases.
Theinstantaneouslopeis ameasuref theinverseof thecombinatorialegreeof thesystemat that
stage.

Possibility (d): C and E are not relatedin a simple law-lik e way

| hadstatedearlierthatif thereis a universalgrammarapplyingto all the systemsof the same
kind, thenwe shouldexpectlaw-like behaior. We have seenthe threeprincipal kinds of law-like
behaior thatarepossiblefor a universalgrammasboundkind of system.However, it turnsoutthat
it is possible,in principle, for the relationshipbetweenC and E to neverthelesse non-lav-like.
This would happenf increasingnumbersof expressionsveresometimesachiezed via increasing
thenumberof componentypes(Possibility(a)), sometimewia increasinghecombinatoriadegree
(Possibility (b)), and sometimesvia increasingboth (Possibility (c)), with no universaltrendin
which of thesepossibilitiesis followed by ary system.For bird vocalizationsthis would occurif
somebirdsobtainedmoresongsvia increasinghe numberof syllabletypes,someby increasinghe
effective songlength,andsomeby doingboth,andwhich of theseis usedby abird is notafunction
of E. Thebehaior of aplot of C versusE would, underthis possibility notbelaw-like. However,
therearestill thingswe shouldexpect. First, we expectthatas E increasesso shouldthe variance
in the numberof componentypesC'. Thisis becausesomesystemawill have low C, but someof
themvery high valuesfor C. (Actually, in particularwe expectthe varianceof thelogarithmof C
to increasethe varianceof C is expectedto increasen the Possibility(a) and(c) aswell, merely
becausét is gettinglarger) Secondjf we canacquirecombinatorialdegreeor expressionength
informationfrom individual systemsthenwe cansimultaneoushplot C' versusd versuskE in a
threedimensionaplot, andsincethey areconstrainedy theinvariant-grammaequation £ ~ C¢,
we expectthat pointsin this spaceshouldfall on single two-dimensionakurface. The systemd
have studiedthusfar appeato notbedescribedy this possibility sowewill notdiscusghisagain.

In sum,underthe assumptiorthatthereis a universalgrammarapplyingto all systemsof the
samekind, thefour possiblerelationshipdetweerthe numberof componentypesandthenumber
of expressionsarethese:

s Possibility (a) is thatthe numberof componentypesC increasenly, in which caseC' is
relatedto E by a power law with exponentin theintenal [0, 1].
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s Possibility (b) is that the combinatorialdegreed increasenly, in which caseC doesnot
increaseawith E.

o Possibility(c) is that both the numberof componentypesandthe combinatorialdegreein-
creasein which caseC increasesogarithmicallywith E.

s Possibility(d) is “all of theabore, dependingn the particularsystemmeaningthatthereis
no nicelaw-lik e relationshipbetweenC and E.

The grammamot only determinesvhattheinvariantproportionalityconstants, but it canalso
determinewhich of thesePossibilitiesobtains.For example,it couldbethatthegrammarexplicitly
allows only so mary componentperexpressionjn which casetherewould be a maximumlength
expressionandafixed,maximumcombinatoriadegree;thiswouldleadto Possibility(a). Alterna-
tively, thegrammarcouldbe specificto only certainkinds of componentput allow arbitrarily long
expressionccomposedf them; this would leadto Possibility (b). Or, it could be that the gram-
mar explicitly requiresa certainrelationshipbetweenthe componentypesandthe combinatorial
degree,sothatif oneincreasesomustthe other in which this mightleadto Possibility(c).

While it is possiblethat the grammarcould itself determinewhich Possibility holds, it is also
possiblghatthegrammaiis weak—notmakingary strongrequirementsnC, d or theirrelationship—
butit is neverthelesshecasehatoneof Possibilitiega), (b) or (c) applies.Why thebehaior is one
of thesepossibilitiesratherthananothemwould be duenot the grammay but to “extra-grammatical
constraints. For example, perhapsthe grammaticalrules allow arbitrarily long expressionshut
thereare constraintson how long expressionsan be becausef the natureof kind of systemin
which thegrammatis embeddedFor example,in Englishor ary naturallanguagevordsarecom-
binedto make sentencesand Englishgrammarallows arbitrarily long sentencedn principle; but
becausesentenceare utteredby peoplewith limits on the ability to produceandunderstandgen-
tenceswe canexpectanupperboundto thecombinatoriadegree,andthusexpectPossibility(a) to
apply Similarly, extra-grammaticatonstraintsouldleadto Possibility(b) if thereweresomelimit
to the numberof componentypes,or (c) if thereweresomeoptimal balancebetweerthe number
of componentypesandthe combinatorialdegree. If thereareno grammaticarequirement®n C,
d or theirrelationshipand thereareno extra-grammaticatonstrainteither thenwe would expect
Possibility(d) to apply: differentsystemf the sametype could chooseheir own way to increase
expressie compleity.

If thereis not a universalgrammarapplyingto the kind of system thenthesepossibilitiesare
irrelevant,andmary thingsarepossible.lt turnsoutthatthe datal have sofaraccumulatedanbe
accommodatedithin Possibility(a), (b) or (c), andmainly (a) and(c); thus,the kinds of systems
studiedthusfar do appeahave invariantgrammarslt is to the studiedkinds of systenthatwe turn
to in thenext section.

3 Universallaws arethe rule

Let us now look at someactualsystemssystemgshatappearo be hierarchicalandanalyzethem
in light of the earlierpossibilitiesanddiscussion Eachsystemappeargo be combinatorialin that
component®f somekind appeaito combinetogetherto malke expression®f somekind; eachsys-
temthusappeardo consistof two distincthierarchicalevels. The kinds of systeml have acquired
datafor arelistedin Table1, which shavs whatthe componentsaindexpressionsarefor eachkind
of systemalongwith otherdetailswe will discussn turn.

In the following subsectionsve cover thesekinds of system beginning with artificial systems
like universitiesand electronicdevices, and moving to structuralhierarchicalcompleity in or-
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Kind of combinatorial Component | Expression | Relationship between C and E (and R Combinatorial
system hypothesis from introduction) degree
Bird vocalization Syllable Song Power law (a) 0.702 1.23
Human language
- historical Word Sentence Power law (a 0.795 5.02
- ontogeny 1 Word Sentence Logarithmic (c) 0.984 1upto 2.6
- ontogeny 2 Phoneme Morpheme Logarithmic (c) 0.959 2upto4
Behavior Muscle Behavior Logarithmic (c) ? 0.772 3upto 9
Organism
- phylogeny Cell Expression Power law (a) 0.438 12.42
- ontogeny Cell Expression Power law (a) 0.988 1.02
University Concentration Degree Power law (a) 0.687 1.65
Electronic device
- CD player Button-press Action Power law or logarithmic (a or ¢) 0.489 2.07
TV Button-press Action Power law or logarithmic (a or c) 0.842 1.58
-VCR Button-press Action Power law or logarithmic (a or c) 0.508 3.95
- calculator Button-press Action Power law or logarithmic (a or c) 0.875 8.77

Table1: Summaryof the kinds of systemstudied,the componentsgxpressionswhich possibility
from earlier (for kinds of systemswith universalgrammars)}he dataconfirm ((a) through(d)), the
correlation,andthe combinatorialdegree. Whenit is unknovn whether(a) or (c) applies,correlation
andcombinatorialdegreeareunderthe assumptiorof Possibility(a). Correlationis highly significant
(p < 0.01) in eachcase. When Possibility (c) applies,the approximaterangeis shavn over which
combinatorialdegreevaluesincrease.



ganisms,and spendingthe remainderof the sectionon varietiesof behaioral hierarchiesfrom
languageo bird songto muscled?—*!

3.1 Artificial systems

Beforemoving to hierarchicalcompleity in brainandbiologicalsystems] think it is usefulto see
examplesamongthe systemave humansouilt oursehes. We will seethatin somekindsof artificial

systemssystemf the samekind appeatto “self-organize”into conformancevith universallaws,

therebeing no centraldecision-makr dictating this conformance. Although we understandhe

workingsof ary oneof thesesystemstheseuniversallaws governingthekind of systemhave yet

to benoticed(atleast,notuntil Changizi#), muchlessexplained.However, becauseve built these
artificial systemsoursehes, it will probablybe muchsimplerto understandhe universallaws than
it will in brainandbiologicalsystems.

3.1.1 Electronic device userinterface

Thefirst kind of artificial systemwe will look atis electronicdevices. Actionson electronicdevices
arecarriedout by the userpressinga sequencef buttons.Button-pressearethe componentsand
eachbutton is a differenttype of button-press.Button-pressesombineto make device actions,
the expressions.The questionis, how do electronicdevices achiere more device actions? Does
thereappearto be a universalgrammarapplyingto them,anddoesthereappearo be one of the
expectedsimplelaw-lik e curves(or thelesssimplebehaior of Possibility(d))? Is greateexpressie
compleity (i.e., moreexpressionshandledby having morebutton-pressypes(Possibility(a)), or
with longerbutton-pressequenceperaction(Possibility (b)), or both (Possibility(c))? And if we
find law-like scalingbehaior of oneof thesetypes,canwe learnarything aboutthe grammarby
the specificnatureof the plot?

| obtainedneasurementsr four kindsof electroniadevice: Compactisk (CD) playerg(n=20),
televisions(TVs) (n=8),videocassetteecordergVCRs) (n=36,averagedrom 78) andcalculators
(n=17).1 measuredhe numberof button-pressypesasthenumberof buttonsonthedevice;for CD
players,TVs andVCRs,the numberof buttonswastakenfrom remotecontrols,andfor calculators
I limited casego thosewithoutfull a-to-zkeyboards.Thenumberof expression$iereis thenumber
of actionsthe device is capableof, andto measuréghis | assumedhatif a device cando twice as
mary thingsasanotherdevice, its users manualwill tendto be roughly doublein length. | then
usedthe numberof pagesn the users manualasa proxy for expressiorcompleity.

Figurel shavs the dataplottedon log-log plotsfor eachof the four kinds of electronicdevice.

The first thing to notice is that, for eachtype of electronicdevice, the trend appeardaw-
like, implying that theremay be someunderlyinguniversalgrammas—an invariant proportional-
ity constant—driing the scalingrelationshipbetweenthe numberof componentypesC' andthe
numberof expressions. Thegrammaifor ary kind of electronicdevice is whaterer aretherules
we have learnedwhenwe saywe know how to usea device. Thefactthattheseplotsarelaw-like
suggestshatdevicesof the samekind usethe samegrammaticakules;this is why oncewe learn
how to work oneVCR we canwork ary VCR.

Notice,furthermorejn theplotsthatin eachcaseéhenumberof button-presgcomponentjypes
increasessthe numberof device actions(expressionjncreasesThis meanghateitherPossibility
(a) or Possibility(c) applyto eachof thefour kinds of electronicdevice. Unfortunately becausef
therestrictedrangeof valuesfor the numberof button-presgypes,it is not possibleto distinguish
betweenthesepossibilities: the plots are practically identical whetherplotted on log-log (which
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shouldbe linear if Possibility (a) holds) or plottedwith just the = axis logged(which shouldbe
linearif Possibility(b) holds).

In either case,we can get an estimateof the combinatorialdegreefrom the log-log plot. If
Possibility (a) holds, thenthe kind of systemhasan invariantcombinatorialdegree. If, however,
Possibility(c) holds,thenthekind of systemhasa combinatoriadegreethatis increasingandthus
the slopeof the log-log plot shouldprogressiely decrease.(Recallthat the inverseof the slope
in alog-log plot is an estimateof the combinatorialdegree.) The slopesof the best-fitlines (via
linear regression)over the entirety of eachof the four log-log plotsimplies combinatorialdegrees
of 2.07for CD players,1.58for TVs, 3.95for VCRs,and8.77 for calculators.l shouldreiterate
thatif Possibility(c) applies thenit is strictly incorrectto give a singlecombinatorialdegreevalue
for the kind of device; instead the combinatorialdegreemustactually begin lower thanthe value
mentionedabore, andrise above that value. The combinatorialdegreeestimatefrom the whole
plot neverthelesgjive usanideaof the sizeregime of the combinatoriadegree whetherPossibility
(a) or (c) applies. Eachof the four kinds of systemhascombinatorialdegreeabove one,andis
thustruly a combinatorialsystem;electronicdevice userinterface languagesave (at least)two
distincthierarchicallevels. But we knew this, sincewe all know, at leastimplicitly, the grammars
of theseelectronicdevices(i.e., we know how to usethem),andknow thatthe userinterfacerules
arecombinatorial.

Canwe male ary senseof thesecombinatorialdegreedifferencesfor the differentkinds of
electronicdevice? The simplesthypothesidor whatexplainsthe combinatoriadegreein electronic
devicesis the averageor typical numberof buttonsrequiredto carry out a device action. The
combinatorialdegreevaluesabove, then,may be interpretedasrequiring,on average aroundtwo
buttonpresseso carryoutafunctionona CD player aroundoneandahalf ona TV, aroundfour for
aVCR, andaroundninefor calculators At first glance the differencebetweercalculatorsandthe
othertypesis expected sincecalculatorsequiremary more button pressego carry out an action
thandotheotherkindsof device. | have notattemptedo make sensef thedifferencedetweerCD
playersandTVs onthe onehand,andVCRson the other the latterwhosecombinatorialdegreeis
significantlyhigher muchlesshave | tried to explainthe particularcombinatoriadegreevaluesfor
ary of thesekindsof system Wherethecombinatoriadegreescomefrom, though,seemselatively
clear:they aredueto the averagenumberof buttonsrequiredto carryoutafunctiononthatkind of
device.

3.1.2 Universities

The otherartificial systemfor which | have acquireddataconcernauniversities. In particular de-
partmentatoncentrationghe componentsareputtogetherby studentgo make up theiracademic
degrees the expressions.Mary studentgust chooseone major, but mary addendminorsto their
degree,andmary othershave two majors,or two majorsanda minor. Becausef the studentavho
choosedegreeswith morethanonedepartmentatoncentrationacademiaegreescanbe built in
a combinatoriafashionfrom departmentatoncentrationsSincepretty muchary combinationof
departmentatoncentrationss typically allowedby ary university thegrammaishouldbethesame
acrosgheuniversities.We thusexpectoneof Possibilitiega) through(d) to apply

To seewhich of thesepossibilitiesactuallyapplies,| soughtto measurghe numberof depart-
mental concentratiortypes (e.g., “physics”) and the numberof distinct academicdegrees(e.g.,
“physicsand math”) in a numberof collegesanduniversities. | usedthe numberof departments
atauniversity asthe measuref the numberof departmentatoncentrationypes. Measuremenof
the numberof distinctacademiadegreetypesis difficult to obtain. As a simplifying assumption|
supposedhatif a university hastwice asmary studentsthentherearetwice asmary distinctkinds
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Figure2: (A) Logarithm (basel0) of the numberof departmentatoncentratiortypes(measureds
thenumberof departmentsyersughelogarithmof the numberof academiaegreetypes(measureas
the numberof students)(B) Sameplot but underthe assumptiorthatthe numberof componentypes
(i.e., departmentatoncentratiortypes) scaleslogarithmically with the numberof expressiongi.e.,
academiaegrees). The dataon the log-log plot conformmuchbetterto a line thanon the semi-log
plot, suggestinghatit is Possibility(a) thatapplies.

of dggreessoughtafter Theintuitive ideabehindthis assumptioris that studentsareuniqueindi-
viduals,up to a constanproportion;this is why you alwaysfind, no matterhow mary departments
thereare,somestudentdoublemajoringin two of the mostdisparatedepartmentsor dissatisfied
with the choicesso muchthatthey wishto createtheir own personamajor. With this assumption,
thenumberof studentattheuniversity, beingproportionato thenumberof academiaegreetypes,
canbeusedasa proxy for the numberof academiaegreetypes.

In thisway | obtainedmeasuresf the numberof departmentatoncentratiortypes(measured
asthe numberof departmentsandthe numberof distinctacademiadegreetypes(measuredsthe
numberof studentsfor 89 U.S.andCanadiarcollegesanduniversitiesl®! Figure2 shavs theplots
undertheassumptionsf Possibility(a) (Figure2, (A)) andPossibility(c) (Figure2, (B)).

Thefirstthingto obsereis thatthereis astriking law-lik e relationshigollowedby thesediverse
schools.We expectedthis becausave suspectedhatdifferentuniversitieshave the samegrammar
for combiningconcentrationsnto degrees: namely arything goes. And recall thatif thereis a
universalgrammay then,unlessPossibility (d) holds,thereis a nice law-lik e relationshipthat will
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applyto the systemsalthoughwhich relationshipwill depend.

The secondobsenation is that the numberof departmentatoncentratiortypesis clearly in-
creasingnotremaininglevel. This meanghateitherPossibility(a) or Possibility(c) applyto these
systemsTheinverseof the best-fit(by linearregressionklopein thelog-log plot (underthe powver
law assumption)s 1.66 (95% confidencentenal [1.45, 1.94]), andis muchmorelinearthanthe
plot underthe logarithmic assumption.Thus, Possibility (a) appeardo apply: greateracademic
degreetypesis accommodatediot by increasingthe combinatorialdegree,but by increasingthe
numberof departmentatoncentratiortypesfrom which studentsmay choose. In particular the
relationshipbetweerthemis givenby C ~ E%6927  Thisis not too surprising,sincestudentscan
only handlesomary concentrationguringtheirfour or soyearsin school thecombinatoriablegree
cannotgrov muchpastwhatever this upperlimit may be; this is an extra-grammaticatonstraint.
Perhapsthenthecombinatoriabdegreeof 1.66shouldbecloseto theaveragenumberof departmen-
tal concentrationper student. To testthis, | arbitrarily wrote to the registrarsat Duke University
(becausehatis wherel was),University of Virginia (my undegraduatenstitution) and Williams
College (wheremy summerstudentat thetime wasfrom), andasled for dataon the averagenum-
berof concentrationper student.Countingonly majorsandminorsasconcentrationshe average
numbersof majorsor minors per personat Duke, UVA and Williams College are, respectiely,
1.75,1.17and1.39,in the ballparkof the combinatorialdegree(which, recall,is the combinatorial
degreemeasuredby examinationof the scalingbehaior across89 universities,not just thesethree
universities).[Averagedor Duke andUVA arefor Springsemester2000. Thevaluefor Williams
Collegeis averagedover the averagefor eachyearfrom 1991to 2000,andhasstandarddeviation
for thosetenyearsof 0.0344.]

It is fascinatingto find suchuniversallaws underlyingdiverseuniversitiesover two ordersof
magnituden sizeof studenbody Theexplanationfor this orderis, asin electronicdevices,a“self-
organization"explanation astherewould appeato be no centralauthorityor university guidebook
dictatinghow mary departmentshereshouldbe givensoandsomary students.

3.2 Cellsand organisms

Organismsare hierarchicallyorganizedin structure. What principles,if ary, governthesehierar
chies?In this subsectiorl focusprimarily on how cells combineto implementhigherlevel func-
tions. We will beinterestedn looking attrendsat thelargestphylogeneticscales.So,for example,
if | saythatthe combinatorialdegreeis invariantasorganismsbecomemorecomple, | meanthat
thereis nolargestscaletrendin the combinatoriadegree.

Organismsarecomple systemsandthey carryoutlots of higherlevel functions,suchasinhal-
ing, chawing, digestionandwalking. | will genericallycall suchhigherlevel functions“organism-
expression$,andfor now | wish to remainelusive aboutjust whatexactly anorganism-&pression
is. It will turn out that, solong aswhateser organism-g&pressionsare, they follow a certainas-
sumption(“assumption(x)”), thenwe will be ableto make progresswithout having to become
preciseaboutwhat an organism-gpressionis. Organismsachiare their organism-g&pressionsvia
combiningcells into comple structures.Cells are, then, the components.In actuality mostor-
ganismsprobablyhave hierarchicalevelsin betweenrthatof the cell andthe organism-&pression,
but will attemptto look at only thesetwo levels. Our questionbecomes;What principlesgovern
the hierarchicakelationshipbetweercellsandorganism-g&pressions? For example,asorganisms
becomemorecomplec—i.e., a greatemumberof organism-&pressions—ades the numberof cell
typesincrease?And if so,in whatfashion,Possibility(a) or (c)? And if Possibility(a) holds,say
thenwhatdoesthe combinatorialdegreetell usaboutthe grammayor aboutthe extra-grammatical
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constraintoonthe system?

Measuremenof the numberof cell typeswas possibledueto the work of Bell andMooers!’!
whoacquiredestimategrom 134organismsover 31 phyla(hamely plantphyla,animalphyla,fungi
phyla, alongwith Chlorophyta,PhaeophytaRhodophytaCiliata, Acrasiomycotaand Myxomy-
cota). Measuringhenumberof organism-&pressionss moredifficult. Not to mentiontheproblem
thatl wouldlik e to notcommitmyselfto ary rigid, definednotionof anorganism-&pression.There
are neverthelesswo promisingstratgies toward acquiringa proxy for the numberof organism-
expressionsthefirst concerninggenomiccompleity, andthe secondconcerningorganismmass.

3.2.1 Measuring expressve-complexity using coding genomesize

The coding genome size is theamountof anorganisms DNA thatcodesfor proteins.Ultimately; it
is this codewhich possessethe bulk of theinformationneededor organismgo developinto their
final form, with all the highest-leel organism-&pressionsCodinggenomesizeshouldthuscorre-
latewith thenumberof organism-&pressionsNotethatthey cannotbe expectedo be proportional
to oneanothersinceDNA is acode, andsocodinggenomesizeshouldscaleup disproportionate
slowly asa function of the numberof organism-g&pressions.Note alsothat, in principle, it need
not bethe casethatgenomecodingsizecorrelatewith the numberof cell types. For example, it is
a priori possiblethatthe numberof cell typescould be keptinvariantasorganismsbecomemore
expressiely comple (i.e., the numberof cell typesdoesnot changeas a function of expressie
compl«ity). Organismswould, in this case,achieve greaterexpressie compleity via increasing
the combinatorialdegree,i.e., by increasinghe effective numberof cellsinvolvedin anorganism-
expression.Thiswould correspondo Possibility(b). So,althoughit could bethe casehatgenome
codingsizecorrelatesvith numberof cell types—if,say Possibilitiega) or (c) apply—itneednot.
Theonly aspecbf organismsawith which genomecodingsizewould have to correlatas thenumber
of highestlevel function expressionspr organism-g&pressions something hasto codefor this in-
formation,andit is surelyprimarily DNA thatis responsibleeventhoughwe do notyetunderstand
all thatis involvedin the connectiorbetweerthesetwo hierarchicalevels.

With this in mind, our first attemptat analyzingthe relationshipbetweenthe numberof cell
typesandorganismexpressie compleity is to usecodinggenomesize®! asthe measuref num-
ber of organism-&pressionsywherewe expectthis measurgo merelycorrelate.If the numberof
cell typesremainsinvariantas codinggenomesizeincreasesthenPossibility (b) probablyholds:
greaterexpressie compleity is obtainedvia increasinghe combinatorialdegree,not the number
of cell types.If, onthe otherhand,the numberof cell typesincreasesthenthis impliesthateither
Possibility(a) or (c) applies.Figure 3 shavs alog-log plot of the numberof cell typesagainstthe
codinggenomesizefor 8 organismswhereboth were availablein CavalierSmith® andBell and
Mooers!’]

The numberof cell typesclearlyincreasessgenomecodingsizeincreasesandthusincreases
asthe numberof organism-&pressiondgncreases.Possibility (a) or (c) applies,then,to this sys-
tem. We canfirst ask, Is this systemcombinatorial? To answerthis, first recognizethatgenome
codingsize, beinga code,mustscaledisproportionatelslowly againstthe numberof organism-
expressions.Sincethe slopein thelog-log plot in Figure 3 is lessthanone,numberof cell types
scaleaup disproportionatelslonly with codinggenomesize,andsincethe latter scaledispropor
tionatelyslowly with the numberof organism-&pressionsso musttheformer Thus,cellsimple-
mentorganism-g&pressionsn a combinatorialfashion;they do comprisetwo distinct hierarchical
levels. Note thatwe cannotconcludethatthey areadjacent hierarchicalevels; theremaywell be,
andprobablyare,intermediatéhierarchicalevelsin between.

Canwedecidewhichof Possibilitiega) or (c) appliesfrom Figure3? We arenotableto because
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12.7),motivatedby differentconcerns.

we donotknow how genomecodingsiderelateso thenumberof organism-&pressionsall we can
be reasonablyconfidentaboutis thatthe former grows disproportionatel slovly comparedo the
latter, but we don't know whatkind of relationshipgovernsthem.

3.2.2 Measuring expressve-complexityusing mass

Genomecodingsize hadtwo downsides.Thefirst we just mentionedandis thatwe do not know

how it relatesto expressie compleity, otherthanthatthey are probablycorrelated. The second
difficulty is thatit is difficult to acquiregenomecodingsize for organisms,andthusthe paucity
of datapointsin Figure3. It would be corvenientif we hadsomeotherproxy for the numberof

organism-gpressiondor which (i) their relationshipis betterunderstoodand(ii) measuremeris

easy Massis ouranswermorepreciselytotal numberof cells,but sincecellsareroughlyinvariant
in size,masscanbe usedinsteadof thetotal numberof cells. It is certainlyeasyto measurenass,
andaccordinglythereexists plenty of massmeasurements the literaturefor organisms.Massis

alsoadvantageoubecauseyndera simplifying assumptionit is possibleto relateit to the expected
numberof organism-&pressions.

Allow meto glossoverthesimplifying assumptiotiirst, andsayhow masselateso thenumber
of organism-g&pressions.An organismcarriesout mary organism-g&pressions.Supposehereare
FE of them.Also supposédhatorganism-a&pressiongonsistof aroundL cells;this is the expression
length. Supposinghat every cell is part of someorganism-&pression,it follows that £ times L
mustequalthe total numberof cellsin the organism. Total numberof cells scalesproportionally
with massandthuswe cansaythat M ~ EL. Recallalsothatthereis goodreasorto expectthat
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the combinatoriadegreed is proportionalto L, andso
M~ E-d.

Now we have a simplescalingequationrelatingmassto expressie compleity andcombinatorial
degree.How masgrelatesto expressie compleity now depend®nthe combinatorialdegree.Un-
derthehypothesighatPossibility(a) holds,the combinatoriabegreeis invariant,andthus M ~ E.
Thatis, if Possibility(a) holds,thenwe expectthatwe mayusemassasaproxy for expressie com-
plexity, andwe expectthe numberof cell typesto scaleup with massasa power law. Alternatiely,
if Possibility(c) holds,thend ~ log(E)/log(log(E)), andsoM ~ E[log(E)/log(log(E))]. Be-
causghecombinatoriadegreetermscalessoslowly, it is it is approximatehthecasehatM ~ E.
Thus,masscanbe usedasa proxy for the numberof organism-g&pressionsvhetherPossibility(a)
or (c) applies.Possibility(b) is not an option herebecauseave alreadyknow from Figure 3 thatthe
numberof cell typesincreasesvith expressie compleity.

Beforeusingmassasa proxy to askwhich of Possibilities(a) and(c) describeorganismswe
shouldexaminethe abore agumentfor massasa proxy in moredetail. | have implicitly madea
simplifying assumption Before statingit, let mefirst provide anintuition pump. Considercalcu-
latorsfor a moment. They are,for the mostpart, madeto be assmall as possiblesubjectto the
constraintghatthey cando all thefunctionsthey aremadefor, andthathumanscanactuallypunch
the buttons. Calculatorswith morebuttonsare,in orderto fit all the buttons,typically physically
larger Now hereis my intuition pump question? If a calculatorhasmore buttonsthananother
calculator and hassomenovel type of button, thenhow mary buttonsof this novel type doesit
have? Justone. Thatis, whennew functionalbuttonsareaddedo calculatorsjustoneis added not
multiple copies.[For the purpose®f this discussionit is not helpfulto remembepur earlierstudy
of calculators.Our taskthenconcernedow buttonscombineto implementhigherlevel functions.
For our purposesiow | amonly interestedn just the level of buttons.] Calculatorshecomemore
“button-compl&” by addinga new button type, not by addingmultiple buttonsof the sametype.
More importantly it is not the casethatascalculatorsacquiremoreand morebuttons,they adda
greaterandgreatemumberof copiesof the samebuttonto the device. For example,the following
is notthecase:

Calculator4; hastwo buttons,eachof adifferenttype. Calculatord, addsanew button
type,but putsin two copies makingfour buttons threetypes.Calculatords addsanew
type,but putsin threecopiesof it, resultingin sevenbuttons,andfour types.And soon.

Thereasorthis doesnot occurin calculatords presumablbecaus@f the market pressurdo min-
imize the overall size of the calculatorsubjectto the constraintsithereshouldaccordinglybe no
morebuttonsthanneededThemoralof theintuition is that,if afunctionaldeviceis underpressure
to minimizeits overall size,thenasit acquiresmorefunctions(or in the caseof calculatorsmore
buttons)we expectit not to add unnecessargopiesof the samefunction; and, in particular we
expectit notto addanincreasinghumberof copiesof the samefunction.

Let usnow considerananalogousdeafor organisms.Organismdave organism-g&pressionsn
themthatcarryoutfunctionsof somesort,andthey arecomposeaf cells. An organismwith more
organism-gpressiortypesis moreexpressiely comple. [I have beenusing“numberof organism-
expressionsimplicitly to meannumberof organism-g&pressiongypes.]Supposanorganismwith
few organism-&pressiongainsanew type of organism-gpressionandin doingso,gainsk copies
of it (i.e., devotesenoughcellsto implementk copiesof the expressions).Now considera much
moreexpressiely complex organismthatgainsa new type of expressionHow mary copiesof the
new kind of expressiondoesit add? The intuition pumpabore tried to make it plausiblethatonly
k copieswill beadded;.e., justasmary copieswill be addedasin the lessexpressiely comple
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organism. An alternatve is thatthe more complex organismaddsmorethan & copiesof its new
expressiontype, andthatstill morecomple organismswould add even more copiesof their nen
expressionsit is this alternatve thatour hypothesigs assumings not anappropriateassumption.
Thesimplifying assumption will call the Copy-Invariance Assumption, andis statedas

As organismgyetmoreexpressiely comple, thenumberof timesary givenorganism-
expressiontypeis instantiatedn the organismdoesnot, itself, tendto change.

Organismsconformingto this would therebyachieve their functionality without having to devote
ary morecellsthanis necessary

With this Copy-InvarianceAssumptionijt follows (asdiscusse@arlier)thatmasscanbeusedas
aproportionalproxy for thenumberof organism-&pressionsandwe canproceedandtestbetween
Possibilities(a) and (c). Bell andMooers$” have acquiredestimatesf the numberof cell types
from mary organismsaswe mentionedearlier but they alsoestimatedhe massof the organisms.
Figure4 shaws averageof thenumberof cell typesversusaveragesgor massor the31 phylafrom
Bell andMooersl”)] The first obseration to be madeis that, as portendecby the genomecoding
sizeplot earlier the numberof cell typescertainlyincreasesvith the currentproxy for organism
expressie compl«ity, namelymass.

Next we needto determinewhich of Possibility(a) or (c) the datafavor. If Possibility(a) holds
for organismsthenwe expectthe datato be approximatelylinear on a log-log plot of numberof
celltypesversusmassaplot whichis shavn in Figure4A. If, instead Possibility(c) holds,thenwe
expectthedatato beapproximatehlinearwhenwe plot (unloggednumberof cell typesversughe
logarithmof the massthe plot whichis shavn in Figure4B. Onemay seefrom thefiguresthatthe
datafall morelinearly underthe hypothesighat Possibility(a) holdsthanunderthe hypothesighat
Possibility(b) holds. The datathereforeappearto confirm Possibility(a), preliminarily suggesting
thatat the largestphylogeneticscaleorganismexpressie-compleity is primarily achiezed via in-
creasinghe numberof cell types,not via increasinghe combinatorialdegree. Also, the exponent
of the power law is 0.0805,which is lower thanone,andthusthe systemappeargo certainlybe
combinatorial.

3.2.3 The combinatorial degree

Figure 4A hasa slopeof 0.0805,which leadsto an estimatedcombinatorialdegreearound12.
Therearetwo questionsve might ask. (i) Why might Possibility (a) apply ratherthanPossibility
(c)? Thatis, is theresomereasonwhy the combinatorialdegreemight have remainednvariant?
And (ii) why is the combinatorialdegreein the roughrangeof 12?1 shouldpoint out thatwe can,
atthis point, have little confidencdhatthe combinatoriadegreefor organismsactuallyis invariant,
nor much confidencein anything more thanthe orderof magnitudeof the combinatorialdegree
range. Neverthelesslet us now wonderif theremight be answerdo thesequestionsyecognizing
thatwe areengagingn speculatiormostlyfor its own enjoyment.

Firstlet usaskif theremight be ary reasorfor the cell/olganism-&pressio systemto have in-
variantcombinatoriablegree(supposingt is indeednvariant). Recallthatfrom the Copy-Invariance
Assumptionwe canconcludehat M ~ E - d, i.e.,masss proportionalto the numberof organism-
expressiongimesthe combinatoriadegree.If d is invariantasin Possibility(a), then

M~ E.

If, ontheotherhand,d increasesublogarithmicallywith E, asin Possibility(c), then

log E

M~E.- 95~
loglog E’
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andthusmassof organismanustscaleup morequickly asexpressie compleity increaseskFinally,
if d increasedogarithmicallywith E, asin Possibility(b), then

M ~ Elog E,

and massmustscaleeven more quickly. Thus, of thesethreepossibilities,organismmassscales
up the leastquickly whenthe combinatorialdegreeis invariant. Keepingthe combinatorialde-

greeinvariant,andincreasingthe numberof cell typesinstead meanshat organismscanachiere

greaterxpressie compleity while keepingtheir overall sizelow; they canpackin their functional

expressionsnto anoverall smallerbody

Now, let us askwhy the combinatorialdegree might be on the orderof 10 or so. Organism-
expressionswhaterer they maybe,arealmostsurelybuilt out of tremendouslynorethan10 cells;
thereare few caseswherearound10 cells make up somefunctional higherlevel structure. The
combinatorialdegree of around10 is probably then, not due simply to the numberof cells in
an organism-gpression.Let us considerorgansasa possiblecandidateexampleof an organism-
expressionalthoughl do notwishto commitmyselfto organsbeingthedefinitionof anorganism-
expression. Organsare obviously built from cells, but they are more usefully consideredo be
combinationsof tissues, thatis the way organsare,in fact, moretypically describedn histology
textbooks. Assumingthatthe numberof tissuetypesscalegproportionallywith the numberof cell
types,our plot in Figure4A canbetreatedasshaving the numberof tissuetypesalongthey axis,
andthe combinatorialdegree of around12 would hold for the hierarchicalsystemof tissuesand
organism-g&pressions While organism-&pressionsio not have aroundten cells, they may tendto
have aroundtentissues Perhapsthen,organism-&pressionsarebuilt from tissuesascomponents,
and,on average aroundten or sotissuesendsto be involved in the constructionof an organism-
expression.

| eventuallyplanon testingthis by countingup the numberof tissuedn higherlevel functional
structures—e.g.organs—inorganismsacrossmary phyla, and seeingwhethertheretendsto be
aroundten or so. In the meantime,asa startl have acquiredthe numberof tissuesinvolved in
63 organs(seelegendof Figure5 for vertebrategrom a standardvertebratehistologytextbook!®!
The averagenumberof tissueds 10.52(44.17)), indicatedroughly by the arrav in the histogram
in Figure5. This is within the 95% confidencenterval of the measuredcombinatorialdegreeof
12.42,but | would not make muchof this atthis point.

Althoughwe have provided somemeageevidencetowardthe conjecturghatperhapghecom-
binatorialdegreeof aroundtenis dueto tissuescombiningin groupsof aroundteninto organism-
expressionswe have not given ary reasonfor why organism-gpressionsvould have this mary
tissuecomponentsAVhy aroundten? Onegeneralkind of reasonis simply thattheremay be an
upperlimit to how mary tissuesmaybe physicallypacled nearoneanotherto make anexpression.
For example imaginethattissueswvereall sphere®f thesamesize.In thatcase pnecanpackabout
12 spheresaroundone sphere.Tissuesare muchmore corvolutedin shapethansphereshut per
hapsthis packinglimit is the driving factorin the combinatorialdegree. To overcomethis kind of
limit for organism-&pressiongequiringphysicalcontactof their constituentissuestissuesvould
have to becomeconvoluted andbranchedl|ike neurons.[Neuronscombinetogetherto implement
higherlevel neuralstructuresandsinceneuronsare so branchythey may form expressionsouilt
from thousand®f neuronssimultaneouslyontrikuting. We might thereforeexpectthe combinato-
rial degreefor nenoussystemso bevery high, andthusthe numberof neurontypeswould have to
scaleup very slowly asthe numberof neuralexpressionsncreases.]

| have serere doubtsthat the combinatorialdegreefor organismsreally hasremainedinvari-
ant over the history of life. The reasonis that there may be, for more comple organismsbut
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Figure5: Distribution of numbersof tissuesperorganin vertebrates Arrow indicatesthe mean. Or-
gansusedare: heart,aorta,tonsil, lymph node, spleen,thymus, skin, endocrineand apocrinesweat
glands,sweatandsebaceouglands hair follicle andnail, tongue submandihlar gland,parotidgland,
sublingualgland,soft palate teeth,lip, esophagusssophagogastrianction,stomachgastroduodenal
junction,duodenumjejunum,ileum, colon,appendixanorectajunction, liver, gallbladdey pancreas,
olfactorymucosajarynx, tracheaandbronchus pronchioleandrespiratorypassageslveoli, kidney,
ureter urinary bladder pituitary gland, pineal gland, parathyroidand thyroid glands, thyroid folli-
cle cells,adrenalgland, testis,ductuli efferentesand epididymis,spermaticcord andductusdeferens,
prostategland, seminalvesicle,ovary, corpusluteum, oviduct-uterinetube, uterus,cervix, placenta,
vagina,mammaryglands.eye, eat organof corti.

21



not lesscomplex organismshierarchicallevels betweenrthe cell level andthe highest,“organism-
expression, level. Thatis, vertebratesnay have hierarchicalevels betweerthe cell level andthe
toplevel, but someancestomaynothave. As we will discussSectiord, whennew hierarchicalev-

elsareaddedn betweentwo existing levels, the consequencis anincreaseddombinatoriadegree
betweenthe original two levels. Thus, sincewe might reasonablyexpectthat hierarchicallevels
have beenaddedover the history of life, we would accordinglyexpectthe combinatorialdegreeto

increaseMore dataandanalysiswill be neededo searcHor signsof hierarchyadditions.

3.2.4 Ontogenyof cell typesversusmass

We have discussedtell/oganism-&presgon hierarchicalcompleity at the largest phylogenetic
scale.We may naturallywishto know how thesehierarchicalevelsbehae duringontogen. As an
organismdevelops,its numberof cell typesincreasesasdoesits numberof organism-&pressions.
How dothey scalerelativeto oneanotheduringontogen? If we continueto usemassasa proxy for
the numberof organism-&pressionsthenit is relatively simpleto obtainmeasuregor expressie
compleity asafunctionof developmentatime. Acquiringthenumberof cell typesin anorganism
as a function of time, however, is very difficult. The nematodewvorm Caenorhabditis elegans
providesuswith agoodstartingpoint: it hasonly aroundathousandtellsin all, we know whatthey
are,andhow mary therearethroughouthe worm’s development(SulstonandWhite in Appendix
1 of WoodRef.[10]).

Figure6 shawvs alog-log plot of thenumberof cell typesin C. elegans asa functionof its mass
throughoutits gastrulationwhich is its primary grownth phase;the legenddetailsthe 27 kinds of
cell typesl distinguished.

The plot appeargo stronglyfollow Possibility (a), but the slopeis essentiallyl, andthusthe
cell/omganism-gpressim systemis not acting combinatoriallyover the developmentalstage. If
they werefoundto actcombinatorially thenthis would suggesthat, at eachstageof development,
the worm utilizesits currentcell typesto, in alanguage-like fashion,build combinatoriallymary
organism-g&pressionsinsteadthe plot suggestshatthis is notthecase:cell typesarecreateconly
with their ultimate “adult use” in mind. Alternatiely, it may be that during ontogen the Copy-
InvarianceAssumptionis no longerjustified, in which casewe cannotusemassto measurehe
numberof organism-&pressions.

3.2.5 Subcellular parts

As afinal topic concerninghierarchicalcompleity in organismswe will briefly discusshow sub-
cellularpartsimplementcellularfunctions,or cell-expressiongasopposedo organism-g&pressions
Over all thekinds of hierarchicakysteml have thusfar studiedthereis atendeng for thenumber
of componentypesto increase—meaningither Possibility (a) or Possibility (c) applies. Let us
supposdor the momentthatthis alsoholdsfor subcellularcomponentombiningto implement
cell types.

With this suppositionwe may make a predictionconcerningthe differencein internalcom-
plexity betweenfree-living eukaryoticcells (protists)andcells in certainmulticellular organisms
(metazoansindland plants). It is plausiblethat, on average free-living cells mustcarry out more
cell functionsthancells in multicellular organismsthe latter which may be more specializedand
incapableof certainfunctions(e.g.,reproduction)In otherwords,onereasorcellsin multicellular
organismamay have fewer cell-level functionsis becausehe functionalityhasbeenpushedupto a
still greatemierarchicalevel 1] Anotherreasoris thathigherlevel functionalityrequirescoordina-
tion amongthelower-level componentsywhichin turnrequiresconstraintthus,cellsin multicellular
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Figure6: Logarithm(basel0) of numberof cell typesversusogarithmof total numberof cellsin C.
Elegans during gastrulation.The scalingexponentis 0.98 (R? = 0.9872, n = 22), or nearly1. Here
| list the cell type distinctionsmade;in squarebracletsnext to eachtype | have put (a) the label, if
thereis one,for the type of cell from SulstonandWhite in Appendix1 of Wood (1988),and (b) the
numberof cells of thattype. Six kinds of epithelialcell types: (1) main hypodermighyp7, 83], (2)
rectalhypodermidrect, 4], (3) headhypodermiq27], (4) tail hypodermighyp8-12,6], (5) interfacial
[arc, 9], (6) sean35]. Threekindsof nenoustissue:(7) neuron[302], (8) socket[23], (9) sheatH23].
Ten kinds of mesoderm:(10) head[hmc, 1], (11) analdepressofmu anal, 1], (12) body [mu body;
79], (13) intestinal[mu int, 2], (14) pharynx[m, 46], (15) sphinctefmu sph, 1], (16) uterine[mu ut,
8], (17) vulval [mu vul, 8], (18) coelomogte [cc, 6], (19) pharyngeamaginal [mc, 9]. Two kinds of
intestinaltissue;(20) tube[int, 20], (21) valve [v, 8]. Two kindsof gland: (22)g1[g1, 3], (23)g2[g2,
2]. Finally, four kinds of excratorycell: (24) exc cell [1], (25) duct[1], (26) gland[2], (27) soclet[1].
Dataarefor hermaphrodit@nly, andthe founderandblastcellswereexcludedfrom theanalysis.

23



organismsshouldhave fewer cell-level functions! If free-living cells have morecell-level func-

tions, or expressionsattheir disposalandif cellsascombinatoriakystemsncreasehe numberof

componentypesto obtaingreaterexpressie compleity, thenfree-living cellswould be predicted
to have a greatemumberof subcellularparttypesthancellsin multicellularorganisms.Thatis, as
cellsbecomememberwf colonies,their internalcompleity shouldtendto decrease Analogous
amgumentshold for the differencebetweerary kind of free-living unit versusunitswithin colonies.
Preliminaryresearch!—13 (McShea2000,2001;McSheaandAnderson2001)providesevidence
confirmingthis prediction. Subcellularparttype countsfor metazoansndland plantstendto be
significantlylower thanthatfor protists,choanoflagellateandgreenalgae.

However, organismswith a greaternumberof cell typesmay, over all the cell types,have a
greatemumbercell-level expressionghanary free-living cell. Thatis, thetotalnumberof cell-level
expressionsn amulticellularorganismis greatethe morecell typesthereare,andprobablygreater
thanthenumberof cell-level expressionafree-living cell is capableof, eventhoughthefree-living
cell may have more cell-level expressionghanary onecell type in a multicellular organism. If
oneorganismhas,over all its cell types,more cell-level expressionghandoesanotherorganism,
we expectthattheremustbe, overall its cell types,moresubcellulamparttypesthandoesthe other
organism. So, for example,we would expectthat, over all cell typesin human,the total number
of subcellularparttypeswould be greaterthanthe union of all subcellularparttypesfoundin C.
Elegans. (Thisis true despitethe factthat eachcell type in eachorganismmay have, on average,
thesamenumberof subcellulamparttypes.)Thisis a predictionl would like to testin thefuture.

3.3 Hierarchiesin behavior

We have now studiedhierarchicakomplity in artificial systemsandfor someof the structureof
organisms. We have not, hawever, touchedon hierarchiesconcernedwith the brain. Althoughl
would eventuallylik e to studyneuroanatomicaiierarchicalevels, atthis point| have concentrated
only on hierarchicalcompleity in beha&ioral organization:namely bird vocalization,humanlan-
guageandmammaliarbehaiors.

3.3.1 Bird vocalization

Bird vocalizationis a corvenient hierarchicalsystemwithin behaior to study becausehe be-
havioral componentsaand expressionsare relatively easyto distinguish(comparedo mary non-
linguistic behaiors). In this case,the componentsare called syllables,and the expressionsare
songs.Do birdsthathave moresongsin their repertoirehave moresyllabletypes,or do they have
longersongs(andgreatercombinatorialdegree)?ls therea law-lik e relationshipat all?

Figure 7 shaws the datafor a log-log plot and a semilogplot, and the dataclearly conform
betterto thelog-log plot. Birds appeatto increaseheir songrepertoiresizeby addingnew syllable
types, not by increasingtheir combinatorialdegree. In particular the numberof syllable types
scalesagainsinumberof songswith exponent0.813,i.e.,C ~ E%813: the 95% confidencdntenal
is [0.599,1.027]. Theinverseof this exponentgivesthe estimateccombinatorialdegree,which is
1.23,with 95% confidenceanterval [0.97,1.67]. The combinatorialdegreeis thusnot significantly
differentfrom one,andwe shouldnot concludethatbird songsarecombinatorialat all. Birds with
twice asmary songstendto have roughlytwice asmary syllables.This is despitebirds having, on
averagearound3 or 4 syllablespersong.[Inverselog of themeanof thelog numberof syllablesper
songis 3.72,andmedianis 3, for 109 birds cataloguedy ReadandWeary'4l] Althoughsyllables
appearto actin alanguage-lik mannerto achieze songs,this may be illusory, andsyllablesand
songsmay not be at differenthierarchicalevelsatall.
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3.3.2 English throughout history

Justasvocal behaiors aremoreamenabléo measuremerih birdsthanmary otherkinds of bird
behaior, languagen humansis moreamenabldo studythanotherkinds of humanbehaior. In
particular one of the mostnaturalkinds of hierarchicalstructure,anda behaioral oneat that, is
the word/sentencéierarchicalsystem.Our systemwill be the Englishlanguageandnot for one
individual, but for the entire communityof Englishspeakrs. We will treatthe English-speaking
communityasan entity thathasa word type repertoireanda sentenceepertoire.How mary word
types—i.e.,entriesin the dictionary suchas‘dog’, ‘race’ and ‘the’—doesthis entity have at its
disposal?And, how mary thingsdoesentity expressusingthosewords?If we couldanswerthose
guestiondor the currentEnglish-speakingommunity we would thenhave one datapoint. How
maywe acquireotherdatapointswherethe numberof sentencem theentity’s repertoirevould be
very different,in orderto getscalinginformation?The English-speakingommunityhasgrowvn in
populationover time, andaccordinglythis entity hashad moreand morethingsto say Thus,we
may look atthis sameEnglish-speakingommunityover time.

| estimatedhe growth in the numberof Englishword typesby usingthe Oxford EnglishDic-
tionary (OED), SecondEdition. It is possibleto searchfor yearswithin only the etymological
informationfor all entriesin the OED. In this way it waspossibleto estimatethe numberof new
word typesper decadeover the last 800 years. To obtain an estimateof the growth rate for the
numberof sentenceghe English-speakingntity expresses| usedthe numberof bookspublished
in ary given year as an estimateof the numberof new sentencedn that year This would be a
problematiomeasuréf differentbookstendedo highly overlapin their sentencedyut sincenearly
every written sentences novel, never having beenutteredbefore,thereis essentiallyno overlap
of sentencebetweenbooks. This would alsobe a problematicmeasurdf the lengthof books,in
termsof the numberof sentenceshasbeenchangingthroughtime; | have no datain this regard,
but it seemsplausibleto assumehatary suchtrendis not particularlydramatic. The numberof
newv bookspublishedperyearwasobtainedby searchindgor publicationdateswithin the yearfor
literaturelistedin WorldCat,an online catalogof morethan40 million recordsfoundin thousands
of OCLC (Online ComputerLibrary Center) membeiibrariesaroundtheworld. In thisway | was
ableto estimatehe numberof newv booksperdecadeover thelast800years the sametime period
for which | obtainedword type data.

What relationshipshould we expect betweenthe numberof word typesand the numberof
sentencestirst, we know thegrammarof Englishwell enoughto concludethatit is combinatorial.
The numberof word typesshould, then, scaledisproportionatelyslowly againstthe numberof
expressions.However, the grammarof naturallanguagedoesnot constrainthe numberof word
types,nordoesit constrainhow long sentencemaybe. Thus,if therearescalinglaws relatingthe
numberof word typesto the numberof sentenceatteredby the English-speakingommunity they
areextra-grammaticatonstraintsWhich of Possibilities(a) through(d) applies?

Figure8 shaws thelogarithmof the numberof new word typesandbooksperdecadeover the
last800years,measuredsdescribedcabore. Notethatthe plot shawvs estimatedor the numberof
new word typesper decadeandthe numberof new sentenceperdecadej.e., it measuredC/dt
anddE/dt versustime. The plot doesnot, therefore shav the growth in the actualmagnitudeof
thenumberof word typesor the numberof sentencesBut it is the scalingrelationshipbetweerthe
actualmagnitudesf C' and E we careabout,sowhatcanwe do with a plot of growth ratesover
time? Note first thatthe growth ratesfor eachare exponential(this is becausehe plotsfall along
straightlineswhenthey axisis logarithmicandthe z axisnot). If a growth ratefor somequantity
u increasesxponentiallywith time, thenthis meansiu/dt ~ e™. And if yourecallyour calculus,
it follows thatthe quantityitself scalesexponentiallywith time, and,in fact,it scalegroportionally
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Figure 8: Growth ratesin the decadedrom the years1200to 1990for the numberof nenv English

word typesandthe numberof new Englishbooks. Regressionequationsand correlationcoeficients
areshavn for each(79 datapointseach).Unsureetymologicaldatesendto clusterat centuryandhalf

centurymarksandthereforecenturyandhalf-centurymarkstendto be overcountedaccordingly they

werenotincludedin thecounts. The OED is conserative andundercountsecentlycoinedword types;
consequentlythe exponentialdecayregion (the last five squaredatapoints) was not includedwhen
computinglinear regression. | do not have ary way to similarly measurehe numberof word type
extinctionsperyeat andsol have notincorporatedhis; my working assumptions thatthe extinction

rateis smallcomparedo the growth rate,but it shouldbe recognizedhatthe estimateccombinatorial
degreeis thereforeanunderestimate.
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with the growth rate: i.e.,u ~ du/dt. Thus,Figure8 haseffectively measuredhe growth in the
numberof word typesandthe numberof books. By looking at the growth in the numberof word
typescomparedo thatfor the numberof books,we candeterminehow thefirst scalesagainstthe
second.

Fromthefigurewe can,then,determinghat

dC/dt ~ C ~ 100-001725¢ , ,0.003972¢

and
dE/dt ~ E ~ 100-008653¢ _, ,0.01992¢

We maynow solve for C in termsof E, andwe obtain

C ~ E0.003972t/0.01992t — E0'1994.

The numberof word typesscalesasa power law againsthe numberof sentencesand,unsurpris-
ingly, the combinatorialdegreeis lessthanoneandthusEnglishis combinatorial. Thus,via some
kind of extra-grammaticalpr defacto,constraintgreaterexpressie compleity wasachiezed over
the last 800 yearsnot by increasingthe combinatorialdegree (or averagesentencdength), but,
instead by increasinghe numberof word typeswith which to build sentences.

Thescalingexponentof around0.2impliesanestimatedombinatoriadegreeof abouts. There
appeargo be nothing aboutthe English grammarthat implies a fixed combinatorialdegree (or
sentencdength), muchlessary particularvalueof it. Whatexplainsthis value of 5? [Or, a little
morethan5; seelegendof Figure8 concerningword type extinctions.] It cannotsimply be dueto
thetypical numberof wordsin anEnglishsentencesincetherearetypically mary morewordsthan
that,namelyaround10 to 30 words!{!5—1€!

To malke senseof the combinatorialdegree,we mustdistinguishbetweentwo kinds of word
in English: content andfunction. The setof contentwords,which referto entities,events,states,
relationsandpropertiesin the world, is large (hundredsof thousandspand experiencessignificant
growth.'”l Thesetof functionwords,on the otherhand,whichincludesprepositionsgonjunctions,
articles,auxiliary verbsandpronounsjs small (around500) andrelatively stablethroughtime 7]
Thescale-ivariantcombinatorialdegreeof Englishsuggestshatthe averagenumberof wordsper
sentencés invariant. Imagine,for simplicity, thatthere,on averagen placesfor contentwordsin a
sentenceandm placesfor functionwords,andthatthesevalues,too, areinvariant. (And thusthe
averagesentencéengthis n + m.) Thetotalnumberof possiblesentences then

E ~ N"M™,

whereN is thetotal numberof contentwordsin EnglishandM thetotal numberof functionwords.
n andm areinvariant,asmentionedust above, andso s the total numberof functionwords M.
Thus,the equationabore simplifiesto the power law equation

E~ N™.

Also, notethat the numberof contentwords, NV, is essentiallyall the words, sinceit dwarfs the
numberof functionwords;i.e.,C =~ N. Thus,E ~ C™, andso,

C ~ EY™,

Thatis, the combinatorialdegreeis expectedto be equalto the typical numberof content words
per sentence—nathe typical total numberof words per sentence—andjp to a constantfactor
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deemedh sentencef it representeé completethoughtor proposition. So, for example,semicolons
were treatedas sentencealelimiters, multiple sentencesombinedinto onelong sentencedy “, and”

weretreatedasmultiple sentencesandextendedasideswithin dasheor parenthesewerenot treated
aspartof thesentence.
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they may be combinedin ary order To testthis reasoning| measuredhe numberof content
wordsin nearly onethousandsentencegseelegendof Figure9). The distribution is log-normal
(Figure9), andthe meanof thelogsis 0.7325(+0.2987); thelog-transformedneanis thus5.401,
andone standarddeviation aroundthis correspondso the intenal [2.715,10.745]. This provides
confirmationof thehypothesighatthe combinatoriadegreeis dueto therebeingfive contentwords
persentence

But why aretheretypically five contentwords per sentence?0One obvious hypothesids that
sentencesan convey only so much information beforethey overloadthe utterers or listeners
ability to understanar absorbit. In this light, five contentwordsper sentences probablydueto
our neurobiologicalimits on working memory which is a bit above fivel'8l; working memoryis
the extra-grammaticatonstraintfor the combinatorialdegreeof around5. The fingerprintof our
working memorymay, then,befoundin therelative rateat which nev wordsarecoinedcompared
to thenumberof sentencestteredby the English-speakingommunity

3.3.3 Ontogenyof language

In additionto studyinghumanlanguageat the level of the entire English-speakingommunity we
may studyit atthelevel of anindividual developingchild. Childrencombinephonemeinto words,
andwordsinto sentencesandthey eventuallybegin to do socombinatorially We know thatdevel-
oping childrenlearnnew phonemetypesandword typesthroughtime, andthuseitherPossibility
(a) or (c) apply Developingchildrenalsohave anincreasingability to stringwordstogetheH9—24
It is thereforepossiblethattheir combinatorialdegreeincreaseshroughtime. However, recallthat
the combinatorialdegreeis operationallymeasuredby determininghow the numberof component
typesscaleswith the actual numberof sentencesxpressednamely the inverseof the scalingex-
ponent) hotthe potentialnumberof sentencesror all we know atthemomentdevelopingchildren
couldindeedincreaseheir ability to stringcomponentsogetherbut they maynotactuallyusethis
ability to expressall thatis within their power, in which casetheir combinatorialdegreemay not
increaseasfastastheir (latent) ability to string wordstogether To testwhetherchildrens com-
binatorial degree keepspacewith their ability to combine,we may comparetheir combinatorial
degreeandtheir expressionengthsthroughdevelopment.lf combinatoriadegree“keepsup” with
expressionength,thenthisimpliesthatchildrenareusingtheir combinatoriabowersto thefullest.
If the combinatorialdegreelagsbehind,growving disproportionatehslownly, thenchildrenmay be
able to combinecomponentsnto longerexpressionsas evidencedby their longersentenceshut
they do not actually much usethis ability. | presentdata—forjust two children—belav for the
phonemehwrd hierarchicakystemandfor theword/sentenchierarchicakystemgachfor individ-
ualdevelopingchildren,andwewill seethatin eachcasechildrendoappeato have acombinatorial
degreethatis increasingassentencdengthincreasesat ary pointin developmentthey usetheir
productve powerto its fullest.

Ontogeny of words and sentences

To studythe developingword/sentencéierarchicalystemin children,| compileddatafor the
numberof word typesandthe numberof distinctsentenceproducedby a child namedDamonfor
41 weeksfrom 12 to 22 monthsof agel?*! The numberf word typesandsentenceslo notappear
to berelatedby a power law, ascanbe seenin Figure 10 by how the plot flattensout, decreasing
its slope. A logarithmic plot (not shavn)—i.e., C' versuslog E—appearscomparattely linear,
providing supportfor Possibility(c), whichis whatwe expected.

Theplotis probablybestinterpretecasconsistingof two power law regimes.In thefirst regime
the estimatedcombinatorialdegreeis aboutl, meaningthat the child hasnot yet begun to treat
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Figure10: Logarithm (basel0) of the numberof word typesversuslogarithmof the numberof sen-
tencesasproducedy onechild nameddamonfrom 12to 22 monthsi?! Plotis confinedto multiword
utteranceageswhich beganat about14 months.

wordsandsentenceasdistincthierarchicalevels;it is asif his sentenceareall built with justone
word. In thesecondegime, afterthe bend,the estimateccombinatorialdegreeincreaseso around
2.5, meaningthat the child hasbegun usingwordsin a combinatorialfashionto build sentences.
Sentencéengthdatado notexist for Damon,andit is notpossibleto directly comparenis combina-
torial degreeincreasewith his sentencéengthincrease However, thisis consistentvith thetypical
increasesn themeanlengthutterancesf childrenduringthis period(23!

Ontogeny of phonemes and words

To study the developing phonemehard hierarchicalsystem,| compiledfrom Velterd?®! the
numberof phonemdypesandthe numberof morphemesasproducedy a child namedlearnfrom
11to 30 monthsof age.[A morpheme is the smallestmeaningfullinguistic unit.] Figure11 shawvs
the log-log plot of the numberof phonemeypesversusthe numberof morphemetypes,andone
canseethatthe slopetendsto decreassomevhatthroughdevelopmentmeaninghe combinatorial
degreeis increasing.The plot of (unlogged)numberof phonemaypesversusthelogarithmof the
numberof morphemegnotshavn here)is comparatiely linear, againsuggestindPossibility(c), as
we expected. Doesthis increasingcombinatorialdegreekeepup with the child’s apparenability
to combinephonemesnto words?The combinatorialdegreeincreasegrom around2 to around4,
andscalesup well with the maximumnumberof phonemegermorphemeover this period(Figure
11). This, again,suggestshatthis child utilizes his combinatorialpotentialto its fullest. It is asif
the child hassomary expressionst wishesto saythatit saysall thatis possiblewith its abilitiesat
ary time.

3.3.4 Musclesand behavior

In our discussiorof hierarchiesn behaior thusfar, the behaior hasbeenlinguistic or vocal: bird
song,Englishthroughoutistory andthe ontogeny of humanlanguage We have notyetconsidered
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Figure11: (A) Logarithm (basel0) of the numberof phonemetypesversuslogarithmof the num-
ber of morphemesas producedby one child namedJeanfrom 11 to 30 monthsi?) Morphemesare
the smallestmeaningfullinguistic unit, andare mostly wordsin this case. (B) Maximum numberof
phonemepermorphemdga measuref expressiorlength)andcombinatorialdegreeversusogarithm
of numberof morphemes.Combinatorialdegreeis measuredrom the inverseof the instantaneous
slope(measuredia linearregressiorfor a moving window twelve datapointswide) from the log-log
plot. Onecanseethatboththe maximumnumberof phonemegper morphemeandthe combinatorial
degreeincreasdogetherandarewell correlatedvith oneanother
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Figurel12: Logarithm(baselO0) of the numberof muscletypesversudogarithmof the encephalization
guotient,for 12 land mammalsandfor birds. Oneconcernis thathumansmay have a greatemrmuscle
typecountpurelybecaus¢hey aremuchmorewell studied andthatthecorrelationrmaybebeingdriven
by this. Remwing humanfrom the plot leadsto the equationy = 0.164x + 2.044 with a correlation
only slightly reducedo R? = 0.621. Numbersof muscletypesweretaken asthe maximumestimate
countedfrom the following sourcesfor eachanimal: humani%3-6 macaqués” cat[68-71 rat[72-7
rabbit[™=78 guineapig,™ dog[®%%8 horsel®:82 ox,[83-84 pig 8 elephant®® bird 5789 opossuni?!
Encephalizatiomuotientsverecomputedusingbrainvolumesfrom Ref.91-98;andbodymasse$rom
Ref.98-99.

the morerun-of-the-millnon-linguisticbehaiors. Behaviors, generally areimplementedria com-
plex scoref musclecontractiong”—3: muscle-contractionsombineto carryoutbehaiors. The
guestionthen,is whetheror not thereis aninvariantgrammargoverninghov muscle-contractions
make up behaioral expressionsandif so,whichof Possibilitiega)through(d) apply To attempto
answetrthis | concentratedn 12 land mammalgandonebird species)andcountedup thenumber
of musclegdypesin each(seelegendof Figurel2).

The difficulty wasin measuringhe numberof behaiors the animalis capableof. Ethograms
provide onekind of measureand| have begunto explore the possibility of usingthem,but in the
researchH describeherel usea notion of brain size as a proxy, the ideabeingthat bigger brain
shouldcorrelatewell with behaioral compleity. Using simply brain volume, however, is not a
goodcorrelatedproxy for behaioral compleity becausenimalswith larger bodiestendto have
largerbrainsevenif they do notappeaio be smarter Thus,ary interestingnotion of brainbigness
thatis hopedto correlatewith intelligencewill have to factorout body mass.The encephalization
guotient doesjustthis, measuringhow largethebrainis relative to whatwe would expectgiventhe
animals body sizel3? Since,acrossthe highermammaliantaxa, brain volume scalesroughly as
the 3/4 power of body mas&34 the encephalizatiomuotientis Virqin /M>/*, whereVi,qir is the
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brainvolumeand M the body mass. The encephalizatiomuotientdoes,indeed,highly correlate
with the apparenintelligenceandbehaioral compleity of mammalsandbirds; however, we do
not know whatexactly the relationshipis betweenencephalizatiomuotientandsize of behaioral
repertoire. | will make a working, and undefendedassumptiorthat encephalizatiomjuotientis
relatedto behaioral compleity by apowerlaw with someunknavn exponent.Theencephalization
guotientwascomputedor eachof the 12 mammalsandonebird speciegseelegendof Figure12).
Figure 12 shaws the log-log plot of the numberof muscletypesversusthe encephalization
guotientfor the 13 species,and one may obsenre a law-like trend, with the numberof muscle
typesclearlyincreasing This suggest®ossibility(a) or Possibility(c). A plot of thedataunderthe
assumptiorthatPossibility(c) is true (notshavn) actuallyleadsto a slightly betterfit; also,analysis
of the instantaneouslopeof the log-log plot shaws significantly decreasinglopeasbehaioral
compl«ity increases.Theseobsenrationsallow the tentatve favoring of the hypothesighat the
combinatorialdegreeactuallyincreasesasbehaioral compleity increasesThis is not surprising
since greaterencephalizatiormight be expectedto allow animalsto string togetherlonger and
more complex combinationsof musclecontractions(as well as coding for a greaternumberof
behaioral expressions).l do not have ary conjecturesat this time for why mammalsappearto
follow Possibility(c) in this regard. Is therean optimaltradeof betweerincreasinghe numberof
muscletypesandincreasinghe combinatorialdegreeleadingto the scalingrelationship?

3.3.5 Further behavioral directions

Thereareanumberof interestingdirectionsl would like to take in thefuture.

| have, asdiscussedilready acquireddatafor hov musclescombinetogetherto implement
behaiors, but the proxy for numberof behaiors wasencephalizatiomuotient,which, at best,is
known to correlatereasonablyvell with behaioral compleity. Furthermoreencephalizatiouo-
tientprobablybestcorrelatesvith the highesthierarchicalevelsof behaior, andtherearedoubtless
mary hierarchicalevelsof behaior betweermusclesandthe highestevel. | would like to acquire
behaioral repertoiresize datafrom publishedethogramdor mary kinds of animal, which exist
for awide variety of animalsincluding, but in noway confinedto, snailsandslug$®®*-¢! | squid[3”!
beetled38:39 true bugs!*! birds[*!:42l fruit bats*3] horsel**) andmonley.*>*6 The expectation
is thatthe behaiors recordedn ethogramsreat a hierarchicalevel abore musclesout belov the
highestlevel behaiors. For example ethograméiave 120behaiors for rhesusmonley,*” 111 for
humanchildren(McGrew in Ref. 48), 67 for cat[*®! and27 for Leptothorax curvispinosus antst®?
Commonsenseells us that rhesusmonkeys have ordersof magnitudemore behaiors than 120,
which meansethogramatalogbehaiors at alower hierarchicalevel, alevel nearetto the lowest
level of muscles.l thereforeexpectthatthe numberof muscletypesshouldscaleup moreslowly
thanthe numberof ethogram-counteldehaiors, which, in turn, shouldscaleup moreslowly than
thenumberof higherlevel behaiors, asproxiedby the encephalizatioguotient,andl hopein this
way to gainmoreinsightinto therulesgoverningbehaioral hierarchies.

It would alsobeinterestingo concentrat®n certainbehaioral subsystemfor asinglespecies,
namely human. The numberof humanmuscletypesand numberof humanbehaiors (as esti-
matedby encephalizatiomjuotient)givesusonly onedatapoint,andno consequentinderstanding
of humansasbehaioral combinatorialsystems.But by partitioninghumanbehaior into certain
subsystemst maybe possibleto acquirescalingdatafor how humanbrainscombinemusclesnto
behaiors. Onebehaioral subsystenwould bethevocal systemwhereintherearea certainnum-
berof vocalmusclesanda certainnumberof thingswe do with thosemuscles.This would provide
onedatapoint. Anotherbehaioral subsystemmight be the humanarm (not including the hand):
how mary muscletypesarein the humanarm,androughly how mary differentthingsdo humans
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do with their arms(e.g.,throw, lift, turn, etc.)? As athird examplebehaioral subsystemfacial

musclescombineto malke facial expressions Othersystemsdncludehand,fingerandeye. In each
casethereis a relevant literaturefrom which it shouldbe possibleto get estimatedor the num-

ber of expressions—e.gphonemecountsfor vocal musclesrom thelinguisticsliterature;armor

handexpressioncountsfrom motordisorderliteratureandthe AmericanSign Languagditerature;

facial expressioncountsfrom the psychologyof facial expressionliterature. Scalinginformation

obtainedfrom suchdatacould illuminate whetheror not the humanbrain hassomecharacteristic
combinatorialdegreefor musclecombinations.

Animal coloniesis anotheiplaceripefor study Insectandotherkindsof coloniesarecorvenient
because¢henotionof abehaioral componentypeis relatively easyto define:the setof behaioral
componentypesjust is the setof highestlevel behaiors of the individual within the colory, i.e.,
what anindividual insectcando. Othermeasuregor componentypesmight be the numberof
castespr the numberof worker sizeswithin the colory, theideabeingthatgreatersizevariability
tendsto correlatewith greaterrangeof lower level functionality Datafor the latter have been
collectedin Jafel5!! (andfirst plottedin Andersonand McShea,Ref. 52), andshaw a significant
increasdn sizevariability with colory size. An undegraduatestudentof mine namedMichael A.
McDannaldhasput togethertwo exciting plots,eachmeasuringhe numberof antsizetypesversus
the colory sizel® Thefirst is shavn in Figure 13 (A), andplots the logarithmof the numberof
distinct worker sizetypes,or physicalcastesasa function of the logarithmof colory size. The
numberof physicalcasteslearlycorrelatesvell with colory size,andincreaseslisproportionate
slowly, aswe would expectof a hierarchicalsystem. The secondplot is shavn in Figure 13 (B),
andit usegheratio of maximumto minimumheadwidth for workersin antcoloniesasa proxy for
thenumberof physicalanttypeswithin thecolory: if the“maxminheadratio” is doubled thereis,
informally, twice asmuchroomfor physicalsizedifferencedn ants,andsowe might expectthis
measuremenb be proportionalto the numbermphysicalsizetypes.Thelog-log plot of the maxmin
headratio versuscolory size (Figure13 (B)) leads,again,to a strongcorrelation;this senesasa
replicationof thefirst figure. Furthermorethe slopesof eachplot arevery similar, hoveringaround
0.1, suggestinga combinatorialdegreeof around10. Might this be dueto therebeing,on average,
aroundl10 antsinvolved in the implementatiorof a colory-level expression?And if so, why 10?
As for measuringhe total numberof expressionsn a colory, if anassumptiorakin to the Copy-
InvarianceAssumptionfrom earlier (see Subsectior3.2) holds for colonies—i.e.,coloniesgain
in expressie complity by having morekinds of expressionsnot more expressionsn absolute
number(where,here,eachexpressionis a combinationof individual insectactions)—thercolory
size canbe usedasa proxy for the colory’s expressie complity. Thus, preliminary evidence
supportghe conclusionthat coloniesascombinatorialsystemsncreaseghe numberof component
types,andthusfollow eitherhypothesiga) or (c) from theintroduction.

As a final future direction, one may look at oursehes as an example colory, where human
workers (the componentsfombinetogetherin an economyto createproducts(the expressions).
The economymay be studiedasa combinatorialsystemlongitudinally by studyingthe growth in
the numberof occupationtypesthroughtime andalsothe numberof differentproducttypesasa
functionof time.
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Figurel3: (A) Logarithm(basel0) of thenumberof physicalcastedor workersin antcoloniesversus
the logarithm (basel0) of the colory size. Dataarefor 24 speciesrom Jafel®) and16 speciesrom
otherplacesn theliteraturecompiledby my studentMichaelMcDannald.[Note that Jafe mistalenly
saysin thelegendof his Tablel thatthecastevaluesarethelogarithmof variation,butin personatom-
municationwith him we learnedthatthe quantitiesreferto the numberof physicalcastesasmeasured
by the numberof bumpsin the frequeng distribution of sampledphysicalsizesin the colorny.] (B)
Logarithm(basel0) of theratio of the maximumto minimum headwidth for workersin antcolonies
versusthelogarithm(basel0) of the colory size. We expectthatthis ratio shouldscaleproportionally
with thenumberof distinctphysicalsizetypes,andnotethatits slopeis similar to thatin (A). Also, for
eachplot, whencolory sizeis 1 we expectthe numberof castesandthe headratio to be 1, andwe see
thatthey-interceptsareindeedeachcloseto zero.
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4 Hierar chical laws and new levels

4.1 Why aninvariant combinatorial degree?

In the previous sectionwe saw thata numberof radically differentkinds of hierarchicakystemap-
pearto conformto universallaws (seeTablel), suggestinghereareinvariantgrammarsinderlying
eachsystemof agivenkind. Furthermoregachkind of systenmstudiedthusfarincreaseds expres-
sive compl«ity, atleastin part, by increasingthe numberof componentypes,somethingthatis
not, in principle,anecessityi.e., Possibility(b)). In mostcaseshe combinatorialdegreeappeared
to beinvariant(Possibility(a)), andin someothercasest appearedo increasgPossibility(c); see
Figurel). Althoughl putforth ideasfor someof the kinds of systemfor why the scalingbehaior
may be whatit is, andwhy the combinatorialdegreemay be whatit is, | have not discussedvhat
kinds of generalprinciplesmight be found acrosghesevariouskinds of system.

Thereareat leastthree(extra-grammaticalyeasonsvhy a hierarchicalsystemmight conform
to Possibility (a), i.e., to aninvariantcombinatorialdegree. Thefirst is simply thatthereis some
upperlimit constrainingit. [This is alsothe easiestvay to make senseof thosecaseswvherethe
combinatorialdegreeis increasingaswell asthe numberof componentypes:the upperlimit hap-
pensto beincreasing.However, this doesnot help usto understandhe principlesunderlyingthe
“decision” for a kind of systemto follow Possibility(c).] The seconds thattheremay sometimes
be a pressurdo minimize the growth in the total numberof components—notomponentypes.
The total numberof componentsn a systemis the numberof expressiongimesthe numberof
componentgper expression,.e., EL. Supposinghatthe expressionengthis proportionalto the
combinatorialdegree,to minimize E L requiresminimizing the growth rate of the combinatorial
degree,andkeepingit invariantis thusoptimal. This possibilityonly seemedtelevantin our discus-
sionthe cell/oganism-&presson hierarchicakystem.Thelastreason have thoughtof for why a
kind of systemwould have invariantcombinatorialdegreeis that whensystemsof thatkind have
moreexpressionsthey have expressionghathave, intuitively, completelynovel meaningsor func-
tions. The meaningsare so novel thatno combinationof componentypesfrom a lessexpressie
systemcould possibly capturethe meaning. Instead,a new componentype hadto be invented,
with its own novel constituentneaningandonly with it couldthe new neededxpressiondebuilt.
This scenariorequiresthat the kind of systemhave a compositional semantics, which meansthat
componentypeshave fixedmeaningsandthe meaningof anexpressioris a functionof themean-
ings of the constituentcomponentypes,and of the expressiors syntax. A kind of systemthat
increasedxpressie complity only in orderto obtainsuch“completelynovel” expressiong will
call arich kind of system.Rich kinds of systemswith compositionasemanticwill have invariant
combinatorialdegreenot becausef an upperboundon the invariantdegree,but becausét never
senesary expressie purposeo increasehe combinatoriadegree,astheonly way to getthe new,
neededxpressionss by theadditionof nev componentypesinstead.

4.2 Why hierarchical levelsat all?

Oneissuewe have not yet toucheduponis why thereshouldbe hierarchicallevelsat all. We have
justtakenthemfor grantedandsoughtto studythe laws governingthem,but givenno explanation
for why thereareary.
Themostobviousreasorconcernshecombinatoriapowerthesystemachiaes: asmallnumber
of componentypessufiicesfor the constructionof an exhorbitantlylarger numberof expressions,
anda small increasen the numberof componentypeshasa disproportionatgi large influence
on the numberof expressions. This is, for example, why thereis not an extraordinarydiffer-
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encein the numberof cell typesbetweenC. Elegans andmammals—abou25 and100 cell types,
respectiely—andyet the differencein expressie compleity is probablymary ordersof magni-
tudes.Thisis alsowhy anadultindividual with avocalulary of around50,000word typescanutter
aneffectively infinite numberof sentencesBird vocalization,onthe otherhand,appearshatit may
notbe combinatorial or atleastnotvery; doublingthe numberof songshereforerequiresdoubling
thenumberof syllabletypes.Thereis, however, a costto beingcombinatorialj.e., a costto having

hierarchy:the kind of systemmusthave someapparatudy which to imposea grammay so that
componentsan be combinedappropriatelyto obtain expressions.Componentsnustbe guided
somehwy, or guidethemseles,into only certainallowablearrangementsSuchguidancerequires
information, or programmingfrom somevhere. For electronicdevicesthe grammarfor the user
interfaceis in the head=of the users.For Englishthe grammaiis, again,in the head.For cell types
thecellspossesgheinformation,andmay utilize naturalprinciplesof self-olganizationto do much
of thework in determiningthe grammaf®¥ Bird vocalizationmay avoid this needfor a grammar:
thesesystemanay, instead just effectively adda new syllabletype every time they wish to adda
new song.In this sensesyllabletypesjust are thesongs.

4.3 Why new hierarchical levels?

In all the discussiorthusfar, only two hierarchicallevels werediscussedIn someof the studied
kinds of system,the levels were probablynot adjacentitherewere surelylevelsin between. For
example theremaywell belevelsin betweerthatof cellsandorganism-g&pressionsAnd thereare
certainlyhierarchicalevels betweermusclecontractionsandthetotal behaioral repertoire.

At somepointin the historyof akind of hierarchicabystemhathasmorethantwo levels,there
may have beenfewer levels, andat somepoint just two levels. Whatreasonsretherefor adding
anew hierarchicalevel? What usedoesit sene the system?To understandhis, considera kind
of systemwith aninvariantgrammarandhaving aninvariantcombinatoriadegreed, ., dueto an
upperlimit. While the systemhasonly two hierarchicalevels,the scalingrelationshipis givenby

C ~ Vs,

Now supposehata new hierarchicallevel is addedbetweenthem, andthatthe numberof entity
typesatthislevelis D. | will callthelowestlevel objectsC-objectsthemiddlelevel D-objectsand
the highestlevel E-objects;the numberof objecttypesat eachlevel is C, D and E, respeciiely.

While it wasthe casethatC-objectscombineddirectly to make E-objects now C-objectscombine
to make D-objects,which, in turn, combineto make E-objects. Let us supposdhatjustasmary

E-typesmustbe expressedasbefore,it is just thatnow their componentsare D-objects. And, let
us supposehat eachE-type requiresjust asmary componentsasbefore;thatis, eachE-type, or
expressionnow hasL D-objectsin it insteadof L C-objects;moreweakly | amsupposinghatthe
combinatorialdegreebetweenD andFE is whateser it wasbetweernC' and E, namelyd,q,. S0,

D ~ E'/dmas,

The lowestlevel's taskhasnow shifted: it mustnow just worry aboutmaking D-objects,not E-
objects.Supposaow thatthecombinatoriadegreefor C-objectsis thesameasit usedto be,dyq,
Thatis, C'-objectshave gottenno better(or worse)at combininginto higherlevel objects.Thenit
follows that

C ~ DYdmas,
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Now supposene only have accesso C' and E/, andwish to seehow they scalerelative to one
another By combiningthe lasttwo equationsve maysolve for C in termsof E.

1
CN_deaac’
1 1
CN [Edmaw]dmaw’
1 .1
C ~ Edmaw dmaw’
_
CNEdmaac,

Thatis, C now scalesagainst? with exponentof not1/d,., asbefore butwith exponentl /(d2,,,)-
Thus, the combinatorialdegreefor the C/E pair of levels is no longer just dy,q;, but d2,,,. By
addingjust onehierarchicallevel, the combinatorialdegreefor the C/E systemhasbeensquared.
If it was5, it will nov be 25. The growth in the numberof lowestlevel componentypes—€
types—will thusbe dramaticallyslowved, without losing expressie power. Thisis anextraordinary
gainin combinatoriadegree.More generallyaddingn new levelswould modify the combinatorial
degreefrom d,q, to d%tL. Adding hierarchicallevels, then, allows systemsto exponentiallyin-
creaseaheir combinatoriadegree, andaccordinglyto keeptheir numberof lowest-level component
typesvery low! Miniscule changesn the the numberof C typesresultsin an explosionof new
expressionst thehighestlevel.

Thisis why organismsvary soastronomicallyin compleity, yetvary solittle in numberof cell
types;thereare hierarchicallevelsin between.This is why sucha small numberof phonemes—
typically around40—canproduceeffectively infinitely mary comple ideas;therearemary hierar
chicallevelsin betweenThisis why thevariability in thenumberof muscletypesamongmammals
is low, andyet the highestlevel behaioral repertoiresvould appearintuitively, to vary wildly be-
tweenthe apparentlylessbehaiorally complex mammalsandoursehes. Generally if onelooksat
the towers of hierarchicallevelsin organisms,andfocusesat whatever is the rock bottomlowest
level, we expectto find thatthe numberof componentypesatthatlevel hasstayednvariantacross
organismsthereasorbeingthatthe combinatoriadegreefor it in building whaterer arethe objects
at the highestlevel shouldbe so large that the growth in the numberof componentypesis effec-
tively zero. For example,a combinatorialdegreeof 25 would imply thatC ~ E'/25. Supposing
theproportionalityis equalityhere whenC = 2, E = 3.36- 107. Supposéhata systemwantsa bit
moreexpressionghanthis. ThenC will increasedo 3, in which casethe systemwill suddenlybe
capableof 8.47 - 10'! expressionseventhoughit only initially wanteda little morethan3.36 - 107
expressions.This is morethan 10, 000 timesmorethanthe systeminitially wanted. As systems
of thatkind becomemoreexpressie, they will not needto increaseC againuntil their expressie
compleity increasedy morethan10, 000 fold, andthey will thusappeato have aninvariantnum-
berof componentypes,when,in fact,they justhave alarge combinatoriadegreedueto the mary
intervening hierarchicallevels. Combinatorialdegreesashigh as100 would be possiblewith just
four levelswith combinatorialdegreesbetweeradjacentevels of, respectiely, 5, 5 and4; in such
acasethebottomlevel numberof componentypesmaynever have to increaseover the courseof
theuniverseto obtainthe highestievel expressie complity. It is for obserationsof thiskind that,
for example four basepairsmayforever sufiice asthe bottom-level componentypesin organisms;
or alternatvely, why lessthantwo dozenaminoacidsmayforever be sufficient building blocksfor
proteins.

Theseobsenationsgive us anotherpossibleinterpretatiorfor hierarchicalsystemghatappear
to follow Possibility(c), i.e., wherethe numberof componentypesandthe combinatorialdegree
increases.The earlierinterpretationrwasthat the expressionlengthwaslengthening put it is also
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possible,instead,that a hierarchicallevel is being addedbetweenthe two. A new hierarchical
level will not appearall at once(asit did in my simple exampleabove). Instead,it will appear
incrementallyandthuswe would expectto seethe combinatorialdegreeincreasingncrementally
In a certainsenseaddinga hierarchicallevel doesincreasethe expressionength, sincethereare
moreC objectsinvolved in eachE-object, so increasingexpressionlengthis just a moregeneral
interpretationconsistentvith the possibility of the additionof a new hierarchicalevel.
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