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Abstract

Organismsarehierarchicallyorganized,both structurallyandbehaviorally, whereonelevel is
definedto be above anotherlevel if the objectsfrom the latter are combinedtogetherto make
objectsof theformerlevel. I saythatsuchapairof levelsis a combinatorial system. To understand
organismswill requireappreciatingtherelationshipsbetweenall pairsof adjacenthierarchicallevels
in the towers of hierarchicallevels found in organisms. In particular, for any pair of adjacent
hierarchicallevels,a key questionis, (1) What rulesgovernhow objectsfrom the lower level (the
components)combineto make objectsat thehigherlevel (theexpressions)?For example,whatare
therulesdictatinghow bird syllablesarecombinedto makesongs?Or, whataretherulesgoverning
how cellscombineto instantiatehigherlevel organismfunctions?Anotherquestionis, (2) Are there
universallawsgoverninghierarchicalcomplexity in systemsof thesametype,in thesensethattwo
combinatorialsystemsof thesametypewill sharethesamerules?For example,if onebird cansing
twice asmany songs(expressions)asanotherbird, whatcanwe say, if anything, abouthow many
syllabletypes(componenttypes)they have? If thereareuniversallaws of hierarchicalcomplexity
for bird vocalization—a“universalgrammar”—thenit maybepossibleto saysomething;if there
areno universal laws, it may not. A more generalkind of questionis, (3) What kinds of such
“rules of grammar”for combinatorialsystemsarefound in nature,andwhy do systemshave the
kindsof rulesthey have?This latterquestionis not concernedwith theparticulardetailsof thepair
of levels—e.g.,whetherit is structuralor behavioral—but on theunderlyingprinciplesgoverning
adjacenthierarchicallevels.Themaintaskof this researchis to askandbegin to answerthesethree
questions.
Keywords:Hierarchy, complexity, scaling,language,behavior, organismal

1 Intr oduction

If you have ever programmedon a computer, you will know that for mostprogramminglanguages
thereis a “main” procedure,in which theprimarystructureof theprogramis written. Within this�
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mainprocedure,otherproceduresarecalled.Perhapstheprogram’s taskis to carryout certainma-
nipulationson a list of numbers,andoneof theprocedurescalledwithin themainproceduresorts
any list of numbers,anotherprocedureaveragesany list, andanotherfinds the varianceof a list.
Themainprocedureis, then,built out of a combinationof “component”procedures.Eachof these
procedures,in turn,callsotherprocedures,andthey, in turn,call others.At somepoint,procedures
call primitive procedures,which areproceduresthat arepart of the programminglanguageitself,
andtheprogramminglanguageknows what thesecommandsmeanwithout needingany program-
ming instructions.This is just to saythatprogramsarewrittenhierarchically. Not only is computer
softwarehierarchicallyorganized,so is computerhardware. At its lowest level, computerhard-
wareconsistsof primitive componentssuchaswires,resistors,capacitors,inductorsandsolidstate
devices. Combinationsof thesemake higherlevel hardwaresuchastransistors,andcombinations
of transistorsandothercomponentscanmake logic gates,which in turn canbestrungtogetherto
carryout complex hardwiredprogramsor generalpurposemicroprocessors.Computersare,then,
comprisedof “towers” of hierarchicallevels. And suchhierarchicalorganizationis true of most
artifacts.

Hierarchiesaboundin thebrainandbiologicalsciencesaswell. Considerhumanlanguage.Sen-
tencesarebuilt from words,wordsbuilt from phonemes,andphonemesfrom musclecontractions
in theface,tongueandthroat.In organisms,basepairscombineto makecodons,codonscombineto
build exons,which combineto make genes,which combineto determine,say, cell types,andcells
areput togetherto implementhigherlevel organismfunctions,andsoon. Therefore,organismsare
alsocomprisedof towersof hierarchies,andto understandorganismsrequiresunderstandingwhat
thehierarchicallevelsare,andhow they relateto oneanother.

For artificial systemswe happento bemoreconfidentof wherethehierarchicallevelsareand
of what the principlesgoverning the relationshipbetweenlevels are; we are confidentbecause
we (asa culture)built them. But for organismswe mustfigure out what the levels areandwhat
the underlyingprinciplesare. While we may intuitively feel we canwith someconfidencejust
“see” wherethey are—aswe just did above for languageandgenetics—whatwe needareclear
methodologicalguidelinesfor suchadetermination.Furthermore,weneedto definewhatwereally
meanby a hierarchicallevel. And we would also like a framework within which we may think
abouttherelationshipsbetweenhierarchicallevels.

First, what is a hierarchicallevel? Therearemany definitionsonemayhave
� � ��� �

but let us try
to capturewhatever it is we were informally referring to above. The key ideabehindhierarchy
above wasthatobjectsof the lower level areput togetherto make objectsat thehigherlevel, and,
in particular, areput togetherin acombinatorial fashion.Thatis, objectsat thelower level areused
asif they aresymbolsin a language,andthey maybecombinedto obtaina “combinatorialexplo-
sion” of objectsat thehigherlevel. Therefore,adjacenthierarchicallevelsare,underthisnotionof
hierarchy, combinatorial systems, or systemswhere“words”or components of somekind—namely
the lower-level objects—combineto make “sentences”or expressions of somekind—namelythe
higher-level objects.By ‘expressions’,I will meanexpressiontypes,unlessotherwisestated.

Let us considera simplecombinatorialsystem.Supposethe systemallows just two typesof
component(i.e., thelower-level object): ‘0’ and‘1’. Wewill saythat �
	�� . Wewill alsosuppose
thatthesystem’s expressionsareasfollows:

‘    ’, ‘  �� ’, ‘ ��  ’, ‘ �   ’, ‘ �� � ’, ‘ � �� ’, ‘ � �  ’ and‘ � � � ’.
I.e., thereare ��	�� expressions,andthelength � of theseexpressionsis three.How do we know
whethera systemis combinatorial?To start, is this simplesystemabove combinatorial?It sure
seems like it is, sincewith only two componenttypesthe systemis ableto get eight expressions.
However, this is not sostraightforward. To really know whethera systemis combinatorialactually
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requiressomeunderstandingof therules, or grammar, governingthesystem.If weknew thegram-
mar, wecouldimmediatelytell whetherthesystemis combinatorial,andthuswhetherthetwo levels
countasdistinct levels. In describingto you thesimplesystemabove, I wascarefulnot to tell you
whatgrammargovernsit. All you know is thattherearethoseeightexpressionsbuilt from thetwo
componenttypes.If we wereto learnthat thesystemfollows therule, “Combineany components
into sequencesof lengththree,” thenwe would know that thesystemis combinatorial.We would
know thisbecausethenumberof expressions� would thenberelatedto thenumberof component
types � andexpressionlength � by ������� , and,so long as ���� , increasingthe numberof
componenttypeswoulddisproportionatelyincreasethenumberof expressions.For example,if just
two new componenttypeswereadded,namelysymbols‘2’ and‘3’, thenthenumberof expressions
in thesystemwould increasefrom ! "#��$ to %�"#��& % . Alternatively, wemight insteadlearnthatthe
grammaticalrule is, “For every componenttypethereis just one othercomponenttypewith which
it maybecombined,andcombinedin any orderup to lengththree.” For example,supposethattwo
new componenttypesareadded,making‘0’, ‘1’, ‘2’ and‘3’ therepertoireof componenttypes.But
supposealsothat‘0’ and‘1’ maybecombinedonly with oneanother, andsimilarly for ‘2’ and‘3’.
Theexpressionsemanatingfrom ‘0’ and‘1’ arethesameeightwesaw earlier, andfrom ‘2’ and‘3’
theeightnew expressions

‘222’, ‘223’, ‘232’, ‘322’, ‘233’, ‘323’, ‘332’, and‘333’

can be formed. Doubling the numberof componenttypesunderthis secondpossiblegrammar
would only doublethe numberof expressionsfrom 8 to 16, andgenerally, the equationis �'�( ��) !�* ! � . For ���
+ , we have ��� ( �,) ! * $-�
%�� , andthus � and � aredirectly proportionalto
oneanother, or ��.�� . Thus,if this secondpossiblegrammarapplies,thesystemis, despitefirst
appearances,not combinatorialat all. Thecomponentsandexpressionswould accordinglynot be
atdistincthierarchicallevels;rather, they wouldcomprisethestructurewithin just onelevel.

Gettingaccessto thegrammarof a systemis rarelystraightforward; they arenot written on a
system’s sleeve. If we do not have accessto the grammar, is theresomeotherway to determine
if the systemis combinatorial? Thereis, if it is the casethat systemsof the sametype follow
the samegrammar;that is, if thereareuniversallaws governingthe relationshipsbetweenlevels
for all systemsof the samekind. If this is the case,then we can look at other combinatorial
systemsof thesamekind to inform uson thenatureof thegrammarthey share.In particular, for a
combinatorialsystem,doublingthenumberof componentsshouldmore thandoublethenumberof
expressions.If a systemis not combinatorial,however, thendoublingthecomponenttypesshould
only doublethenumberof expressions.Saiddifferently, asystemis combinatorialwhenthenumber
of componenttypesscalesdisproportionatelyslowly comparedto thenumberof expressions,and
a systemis not combinatorialwhenthenumberof componenttypesscalesup proportionallywith
the numberof expressions.To determinewhethera systemis combinatorial,then, it suffices to
know aboutwhat other systemsof the sametype but of different numberof expressionswould
look like. That is, it suffices to look at many systemsof the sametype in order to seehow the
numberof componenttypes � scalesupasthenumberof expressions� increases.If thereexistsa
universally-conformed-to grammarby systemsof thesamekind, thenthenatureof thescale-upof
� shouldbelaw-like. However, anotherpossibilityis thatsystemsof thesamekind donotconform
to similarunderlyinggrammars;whensystemsof thatkind have many moreexpressions,they also
tendto havecompletelydifferentgrammarsin operation.If thiswereso,thenlookingat thescaling
behavior of � versus� shouldnotappearlaw-like,andwill beuninformative in regardsto whether
or not theparticularsystemof interestis or is not combinatorial.

We canin this way—i.e.,by looking for law-like scalingbehavior for � asa functionof � —
judgewhethertwo levels aretruly at distinct hierarchicallevels, andnot just part of thestructure
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foundat a singlelevel. We do not needto know thegrammar. However, oncewe have thescaling
relationshipbetweenthenumberof componentsandthenumberof expressionsin akind of system,
theparticularnatureof thescalingrelationshipwill give us, if it is law-like, a strongindicatoras
to what the underlyinggrammaris. The scalingrelationshipbetween/ and 0 is, then,not only
usefulfor answeringthequestionof whethertherearedistincthierarchicallevels; therelationship
alsocanenableusto recover thegrammargoverningthesystemitself. Thegrammarencompasses
the fundamentalprinciplesof the hierarchicalorganizationof the systemin question,andis thus
somethingwe would like to discover for hierarchicalsystemsin organismsandbehavior.

2 Possiblehierarchical laws

Wesaw in theprevioussectionthatby lookingacrossmultiplesystemsof thesamekind andseeing
how thenumberof componenttypes/ scalesupasthenumberof expressions0 increases,wecan
(i) determinewhetherthescalingrelationshipis law-likeandaccordinglywhetherthereis therefore
a singlegrammaruniversallyapplyingto systemsof thatkind, (ii) decidewhetherthesystemis or
is not combinatorialon the basisof whether / grows disproportionatelyslowly than 0 , and(iii)
from theparticulardetailsof thelaw-like relationshipacquireastronghint asto whatthegrammar
for that kind of systemis. In this sectionwe considersomeof thepossiblerelationshipsbetween
thenumberof componenttypesandthenumberof expressions.We will usethis taxonomywhen
we look atanumberof actualsystemsin thefollowing section.

Let us supposethat a given kind of systemdoeshave somegrammarthat universallyapplies
to all systemsof that kind. That is, thegrammarpossessesthe rulesgoverningthepossibleways
componentsmaybeput togetherto make expressions.Recallthat if thereare / componenttypes
andthe lengthof an expressionis 1 , thenthereare 0�23/�4 expressions.Actually, though,this
is how many expressionstherewould be if (i) theexpressionsarelinearsequences,and(ii) every
possiblesequenceis grammatical.More generally, thestructureof anexpressionmight not bese-
quential(e.g.,considermuscle-firingscombininginto abehavioral expression,wheremany muscles
fire simultaneously),andnot every possiblecombinationmaybeallowed. In general,then,we can
only expectthat thenumberof expressionswill beproportional to /�4 . That is, we cangenerally
only expect 0
2�5�/ 4 , for someconstantproportionalfactor 5 capturingthefractionof all possible
sequencesthatareactuallyexpressions.Sincewe do not muchcareabouttheconstant5 , we usu-
ally write this as 076�/ 4 . This is still not quiteright: This only holdsif eachpossible“slot” for
a componentin an expressionmay be filled without regardfor the componentsin the otherslots.
In actualsystemsit maybe thecasethat if you put symbol 8 in slot 1, then 9 mustgo in slot 2.
Therewill very often be suchdependencies,andthis reducesthe “effective” lengthof an expres-
sion,theintuition beingthatsuchdependenciesreduceone’s freedomto build anexpressionfrom
1 down to somethinglower. Thus,generally, theeffective lengthof expressionsin a systemmay
actuallybelower thanthenumberof componentsin theexpressions.This “effective length” I call
thecombinatorial degree, : ; moreeffective lengthmeansagreaterdegreeof “combinatorialroom”
for building expressions.So,for systemsgovernedby thesamegrammar, we expectthat 0�6
/�; .
That is, we expect that thereis a fixed proportionalityfactorrelating 0 and / ; . Accordingly, if
we find that in a kind of system076</�; , it will bereasonableto presumethat theproportionality
factoris constantbecausethegrammaris constantacrossthesystems.We shouldrecognizethat it
is possible,however, unlikely, thatthegrammaticalrulescouldbedifferentfor every systemof the
sametypesolong asthegrammarsmaintaintheidenticalproportionalityconstant.I will alsosup-
posethatcombinatorialdegreeandexpressionlengthareproportionalto oneanother, eventhough
theformermaybelessthanthelatter.
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To sumupthelastfew thoughts,if akind of systemis governedby auniversalgrammar, thenwe
expectthatwhenwe look at systemsof that type,we will find conformanceto theproportionality=�>�?�@

, where A is the combinatorialdegree(or the “effective length”). Supposethat we have
accessto thenumberof componenttypesandthenumberof expressionsfor avarietyof systemsof
thesametype(aswedoin thesystemsof thenext section).If weplot

?
versus

=
, whatrelationships

would fit within this universal-grammar(or invariantgrammar)possibility? It turnsout that there
area few kindsof quantitative relationshipsonecouldsee,any of whichwouldsuggestthatthereis
aninvariantgrammar. To seethis, just imaginehow onemight increasethenumberof expressions
in a combinatorialsystemwith two componenttypesthat may be combinedin any fashioninto
sequencesof lengththree.It haseightexpressionsnow. Themostobviouspossibilityis to increase
thelengthof theallowableexpressions:anincreasefrom 3 to 4 upsthenumberof expressionsfrom
8 to 16. Theotherobviouswayis to just increasethenumberof componenttypes:anincreasefrom
2 to 3 increasesthenumberof expressionsfrom 8 to 27. A third possibility is to do both: increase
the lengthandthenumberof componenttypes. Theseoptionsprovide thebasisfor the following
list of possiblerelationshipsbetween

?
and
=

thatwemightexpectif thereis aninvariantgrammar
(i.e., if

=<>�? @
).

Possibility (a):
?

relatedto
=

via a power law

Thefirst possibility I will describeis that,asthenumberof expressionsincreases,thecombi-
natorialdegreestaysconstant,and, instead,only the numberof componenttypesincreases.For
example,considerbird vocalization,wheresyllablescombinetogetherto producesongs.Possibil-
ity (a) is thatbirdswith moresongsin their repertoirehavemoresyllabletypeswith whichthey can
composesongs,not longersongs.Since A is constant,the relationship

=�>7?�@
is somethingwe

call a power law (which holdsfor any equationof theform BDC�E FHG , whereE and I areconstants).
If oneplots

?
versus

=
, oneexpectsthedatato fit thepower law

?�>�=KJ L @
. If oneexpectsdata

to conformto a power law, oneplotsthedataon a log-log plot, i.e.,oneplotsthelogarithmsof the
dataratherthanthedataitself. Thereasonthis is usefulcanbeseenby takingthelogarithmsof the
power law equation,in whichcasewe get

M N OHP ?RQ C M N OHP S = J L @ Q T

where
S

is aproportionalityconstant.This canbemanipulatedinto

M N OUP ?RQ C M N OHP S QUV M N OHP = J L @ Q T

whichcanbechangedfurtherinto

M N OHP ?RQ C P W X A Q M N OUP =KQUV M N OUP S Q Y

If we plot
M N OHP ?RQ

on the B axisagainst
M N OHP =KQ

on the F axis,noticethat theequationis actuallyof
theform

BZC\[DF V I T
i.e., an equationfor the line, with slope []C W X A and B -interceptof

M N OHP S Q
. Thus, if a kind of

systemhasa universalgrammar, andif a greaternumberof expressionsis achieved by increasing
only thenumberof componenttypes,thenwe expecta log-log plot of

?
versus

=
to befitted by a

straightline. Furthermore,sincethecombinatorialdegree A mustbegreaterthanor equalto one,W X A mustbelessthanor equalto oneandgreaterthanor equalto 0; i.e., theslopeof thebest-fitline
of theplot shouldbein theinterval [0,1]. Slopesnearerto zeroimply greatercombinatorialdegree;
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greatercombinatorialdegree,thus,allows thenumberof expressionsto increasewithout having to
increasethenumberof componenttypesvery quickly. If thecombinatorialdegreeis high enough,
say ^ _ _ _ , then `�a7bKc d c e e e , in which casè will be effectively constantas b increases,since
^ f�^ _ _ _ is socloseto zero.As theslopeincreasestowardone,thecombinatorialdegreefalls toward
one,and ` mustincreasemoreandmorequickly as b increases.Whenthecombinatorialdegree
equalsone,thesystemcanno longerbesaidto becombinatorialat all, sincenow `�a<b ; in this
casethereis nodistincthierarchicallevel.

Possibility (b): ` is constant

Thesecondpossibilityto consideris thatthenumberof componenttypes ` staysconstant,and
only thecombinatorialdegree(think: length) g increasesasthenumberof expressionsb increases.
In thebird vocalizationexample,greatersongrepertoireswouldbemadepossiblenotby increasing
thenumberof syllabletypes,but by increasingthecombinatorialdegree,or theeffective length,of
eachsong.For aplot of ` versusb , wesimplyexpect ` stayconstant.To understandhow fastthe
combinatorialdegreemustincrease,considerthat therelationshipbetweenthevariablesunderthe
assumptionof aninvariantgrammaris b<h�i�`�j , but now ` is aconstantand g is variable.Taking
thelogarithmsof bothsides,we have

k l mHn bKoph k l mHn i�oUqrg k l mHn `Ro s
Sincei and ` areconstants,we cansimplify this to

gZa k l mHn bKo
(supposingb is sufficiently large). That is, within this possibility for an invariantgrammar, ` is
invariant,andthecombinatorialdegreegrows logarithmicallywith b . As mentionedin Possibility
(a) above, whenPossibility(a) is trueandthecombinatorialdegreeis very high, then ` will grow
soslowly thatit will seemconstant.Thus,findingthatakind of systemhas̀ thatdoesnot increase
with b could meanthat either Possibility (a) or (b) applies. To distinguishbetweenthem one
would needto acquiredataon how the combinatorialdegreechangeswith increasingexpression
complexity, e.g.,by usingtheaveragenumberof componentsperexpressionasameasure.

Possibility (c): ` relatedto b via a logarithmic law

Possibilities(a) and(b) arethetwo extremepossibilities;in (a) ` increasesand g is invariant,
andin (b) g increasesand ` is invariant.Thethird possibilityis a compromisebetweenthesetwo,
namelythatboth ` and g increaseas b increases.For bird vocalizationthiswouldmeanthatbirds
with a greaternumberof songshave bothmoresyllabletypesandeffectively longersongs.What
relationshipwouldweexpectif systemsof akind increasedtheirnumberof expressionsin thisway?
First,notethatweexpectthenumberof componenttypes̀ to increasemoreslowly thanany power
law, becauseif ` increasedasapower law, Possibility(a)wouldapplyandthecombinatorialdegree
would not needto increase.Similarly, we expectthecombinatorialdegreeto increasemoreslowly
thanlogarithmicallywith b , sinceif it increaseslogarithmically, Possibility(b) would apply and
thenumberof componenttypeswouldnotneedto increase.Onenaturalpossibilityis that ` scales
up logarithmicallywith b —i.e., `3a k l mHn bKo —which is slower thanany power law relationship
with a positive exponent. In this case,how fastmust g increase?Consideringagainour scaling
relationshipfor thecaseof aninvariantgrammar, wehave

b<h�i�` j t
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for someconstantproportionalityu , andnow whereneitherv nor w is constant.Undertheassump-
tion that v
x�y{z | }H~ �K� (with y aconstant),wecansolve for w in termsof � asfollows.

z | }H~ �K�px�z | }H~ u��U�rwpz | }H~ vR� �
z | }H~ �K�px�z | }U~ u��U��wpz | }U~ y#z | }U~ �K� � �

z | }H~ �K�px�z | }H~ u��U��w�� z | }U~ y��U��z | }H~ z | }U~ �K� � � �
wH� z | }H~ y��U�rz | }H~ z | }H~ �K� � �Ux�z | }H~ �K���rz | }H~ u�� �

wKx z | }H~ �K����z | }H~ u��
z | }H~ z | }H~ �K� �U��z | }U~ y�� �

which for sufficiently large � scalesas

wK� z | }H~ �K�
z | }H~ z | }U~ �K� ���

If a kind of systemfalls within this possibility, then v shouldscaleproportionallyto z | }H~ �K� , and
thusa plot of v versusz | }H~ �K� is expectedto be a straightline. On a log-log plot, the dataare
expectednot to bestraight,but, instead,to increasebut with ever-decreasingslopeas � increases.
Theinstantaneousslopeis ameasureof theinverseof thecombinatorialdegreeof thesystemat that
stage.

Possibility (d): v and � are not relatedin a simple law-lik e way

I hadstatedearlierthat if thereis a universalgrammarapplyingto all thesystemsof thesame
kind, thenwe shouldexpectlaw-like behavior. We have seenthe threeprincipalkindsof law-like
behavior thatarepossiblefor auniversalgrammar-boundkind of system.However, it turnsout that
it is possible,in principle, for the relationshipbetweenv and � to neverthelessbe non-law-like.
This would happenif increasingnumbersof expressionsweresometimesachieved via increasing
thenumberof componenttypes(Possibility(a)),sometimesvia increasingthecombinatorialdegree
(Possibility (b)), and sometimesvia increasingboth (Possibility (c)), with no universal trend in
which of thesepossibilitiesis followedby any system.For bird vocalizations,this would occurif
somebirdsobtainedmoresongsvia increasingthenumberof syllabletypes,someby increasingthe
effectivesonglength,andsomeby doingboth,andwhichof theseis usedby abird is nota function
of � . Thebehavior of aplot of v versus� would,underthispossibility, notbelaw-like. However,
therearestill thingswe shouldexpect.First,we expectthatas � increases,soshouldthevariance
in thenumberof componenttypes v . This is becausesomesystemswill have low v , but someof
themvery high valuesfor v . (Actually, in particularwe expectthevarianceof thelogarithmof v
to increase;thevarianceof v is expectedto increasein thePossibility(a) and(c) aswell, merely
becauseit is gettinglarger.) Second,if we canacquirecombinatorialdegreeor expressionlength
informationfrom individual systems,thenwe cansimultaneouslyplot v versusw versus� in a
threedimensionalplot, andsincethey areconstrainedby theinvariant-grammarequation,�
��v�� ,
we expect that points in this spaceshouldfall on singletwo-dimensionalsurface. The systemsI
havestudiedthusfarappearto notbedescribedby thispossibility, sowewill notdiscussthisagain.

In sum,undertheassumptionthat thereis a universalgrammarapplyingto all systemsof the
samekind, thefour possiblerelationshipsbetweenthenumberof componenttypesandthenumber
of expressionsarethese:
� Possibility (a) is that the numberof componenttypes v increasesonly, in which casev is

relatedto � by apower law with exponentin theinterval � ��� � � .
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� Possibility (b) is that the combinatorialdegree � increasesonly, in which case� doesnot
increasewith � .
� Possibility(c) is thatboth thenumberof componenttypesandthecombinatorialdegreein-

crease,in whichcase� increaseslogarithmicallywith � .
� Possibility(d) is “all of theabove,” dependingon theparticularsystem,meaningthatthereis

no nicelaw-like relationshipbetween� and � .

Thegrammarnot only determineswhattheinvariantproportionalityconstantis, but it canalso
determinewhichof thesePossibilitiesobtains.For example,it couldbethatthegrammarexplicitly
allows only somany componentsperexpression,in which casetherewould bea maximumlength
expression,andafixed,maximumcombinatorialdegree;thiswould leadto Possibility(a). Alterna-
tively, thegrammarcouldbespecificto only certainkindsof component,but allow arbitrarily long
expressionscomposedof them; this would leadto Possibility (b). Or, it could be that the gram-
mar explicitly requiresa certainrelationshipbetweenthe componenttypesandthecombinatorial
degree,sothatif oneincreasessomusttheother, in which thismight leadto Possibility(c).

While it is possiblethat thegrammarcould itself determinewhich Possibilityholds,it is also
possiblethatthegrammarisweak—notmakingany strongrequirementson � , � or theirrelationship—
but it is neverthelessthecasethatoneof Possibilities(a),(b) or (c) applies.Why thebehavior is one
of thesepossibilitiesratherthananotherwould beduenot thegrammar, but to “extra-grammatical
constraints.” For example,perhapsthe grammaticalrulesallow arbitrarily long expressions,but
thereareconstraintson how long expressionscanbe becauseof the natureof kind of systemin
which thegrammaris embedded.For example,in Englishor any naturallanguagewordsarecom-
binedto make sentences,andEnglishgrammarallows arbitrarily long sentences,in principle; but
becausesentencesareutteredby peoplewith limits on theability to produceandunderstandsen-
tences,wecanexpectanupperboundto thecombinatorialdegree,andthusexpectPossibility(a) to
apply. Similarly, extra-grammaticalconstraintscouldleadto Possibility(b) if thereweresomelimit
to thenumberof componenttypes,or (c) if thereweresomeoptimalbalancebetweenthenumber
of componenttypesandthecombinatorialdegree.If thereareno grammaticalrequirementson � ,
� or their relationship,and thereareno extra-grammaticalconstraintseither, thenwe wouldexpect
Possibility(d) to apply: differentsystemsof thesametypecouldchoosetheir own way to increase
expressive complexity.

If thereis not a universalgrammarapplyingto thekind of system,thenthesepossibilitiesare
irrelevant,andmany thingsarepossible.It turnsout thatthedataI have sofar accumulatedcanbe
accommodatedwithin Possibility(a), (b) or (c), andmainly (a) and(c); thus,thekindsof systems
studiedthusfardoappearhave invariantgrammars.It is to thestudiedkindsof systemthatwe turn
to in thenext section.

3 Universal laws are the rule

Let usnow look at someactualsystems,systemsthatappearto behierarchical,andanalyzethem
in light of theearlierpossibilitiesanddiscussion.Eachsystemappearsto becombinatorialin that
componentsof somekind appearto combinetogetherto make expressionsof somekind; eachsys-
temthusappearsto consistof two distincthierarchicallevels. Thekindsof systemI have acquired
datafor arelistedin Table1, which shows whatthecomponentsandexpressionsarefor eachkind
of system,alongwith otherdetailswe will discussin turn.

In the following subsectionswe cover thesekindsof system,beginningwith artificial systems
like universitiesand electronicdevices, and moving to structuralhierarchicalcomplexity in or-
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Table 1: Summaryof the kinds of systemstudied,the components,expressions,which possibility
from earlier (for kinds of systemswith universalgrammars)the dataconfirm ((a) through(d)), the
correlation,andthecombinatorialdegree.Whenit is unknown whether(a) or (c) applies,correlation
andcombinatorialdegreeareundertheassumptionof Possibility(a). Correlationis highly significant
(ÀÂÁÄÃÆÅ ÃÆÇ ) in eachcase. WhenPossibility (c) applies,the approximaterangeis shown over which
combinatorialdegreevaluesincrease.
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ganisms,andspendingthe remainderof the sectionon varietiesof behavioral hierarchies,from
languageto bird songto muscles.È É Ê5Ë Ì

3.1 Artificial systems

Beforemoving to hierarchicalcomplexity in brainandbiologicalsystems,I think it is usefulto see
examplesamongthesystemswehumansbuilt ourselves.Wewill seethatin somekindsof artificial
systems,systemsof thesamekind appearto “self-organize”into conformancewith universallaws,
therebeing no centraldecision-maker dictating this conformance.Although we understandthe
workingsof any oneof thesesystems,theseuniversallaws governingthekind of systemhave yet
to benoticed(at least,notuntil ChangiziÈ É Ì ), muchlessexplained.However, becausewebuilt these
artificial systemsourselves,it will probablybemuchsimplerto understandtheuniversallaws than
it will in brainandbiologicalsystems.

3.1.1 Electronic deviceuser interface

Thefirst kind of artificial systemwewill look at is electronicdevices.Actionsonelectronicdevices
arecarriedoutby theuserpressinga sequenceof buttons.Button-pressesarethecomponents,and
eachbutton is a different type of button-press.Button-pressescombineto make device actions,
the expressions.The questionis, how do electronicdevicesachieve moredevice actions?Does
thereappearto be a universalgrammarapplyingto them,anddoesthereappearto be oneof the
expectedsimplelaw-likecurves(or thelesssimplebehavior of Possibility(d))? Isgreaterexpressive
complexity (i.e.,moreexpressions)handledby having morebutton-presstypes(Possibility(a)),or
with longerbutton-presssequencesperaction(Possibility(b)), or both(Possibility(c))? And if we
find law-like scalingbehavior of oneof thesetypes,canwe learnanything aboutthegrammarby
thespecificnatureof theplot?

I obtainedmeasurementsfor four kindsof electronicdevice: Compactdisk(CD) players(n=20),
televisions(TVs) (n=8),videocassetterecorders(VCRs)(n=36,averagedfrom 78)andcalculators
(n=17).I measuredthenumberof button-presstypesasthenumberof buttonsonthedevice; for CD
players,TVs andVCRs,thenumberof buttonswastakenfrom remotecontrols,andfor calculators
I limited casesto thosewithoutfull a-to-zkeyboards.Thenumberof expressionshereis thenumber
of actionsthedevice is capableof, andto measurethis I assumedthat if a device cando twice as
many thingsasanotherdevice, its user’s manualwill tendto be roughly doublein length. I then
usedthenumberof pagesin theuser’s manualasaproxy for expressioncomplexity.

Figure1 shows thedataplottedon log-logplotsfor eachof thefour kindsof electronicdevice.
The first thing to notice is that, for eachtype of electronicdevice, the trend appearslaw-

like, implying that theremay be someunderlyinguniversalgrammar—an invariantproportional-
ity constant—driving thescalingrelationshipbetweenthe numberof componenttypes Í andthe
numberof expressionsÎ . Thegrammarfor any kind of electronicdevice is whatever aretherules
we have learnedwhenwe saywe know how to usea device. Thefact that theseplotsarelaw-like
suggeststhatdevicesof thesamekind usethesamegrammaticalrules;this is why oncewe learn
how to work oneVCR wecanwork any VCR.

Notice,furthermore,in theplotsthatin eachcasethenumberof button-press(component)types
increasesasthenumberof device actions(expression)increases.ThismeansthateitherPossibility
(a) or Possibility(c) applyto eachof thefour kindsof electronicdevice. Unfortunately, becauseof
therestrictedrangeof valuesfor thenumberof button-presstypes,it is not possibleto distinguish
betweenthesepossibilities: the plots arepractically identicalwhetherplottedon log-log (which
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Figure1: Logarithm(base10) of thenumberof button-presstypesversusthelogarithmof thenumber
of device actions(the latter measuredby the numberof pagesin the user’s manual),for CD players,
VCRs,TVs andcalculators.
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shouldbe linear if Possibility (a) holds)or plottedwith just the 	 axis logged(which shouldbe
linearif Possibility(b) holds).

In eithercase,we can get an estimateof the combinatorialdegreefrom the log-log plot. If
Possibility(a) holds,thenthe kind of systemhasan invariantcombinatorialdegree. If, however,
Possibility(c) holds,thenthekind of systemhasacombinatorialdegreethatis increasing,andthus
the slopeof the log-log plot shouldprogressively decrease.(Recall that the inverseof the slope
in a log-log plot is an estimateof the combinatorialdegree.) The slopesof the best-fit lines (via
linear regression)over theentiretyof eachof thefour log-log plots impliescombinatorialdegrees
of 2.07for CD players,1.58 for TVs, 3.95for VCRs,and8.77for calculators.I shouldreiterate
thatif Possibility(c) applies,thenit is strictly incorrectto give asinglecombinatorialdegreevalue
for thekind of device; instead,thecombinatorialdegreemustactuallybegin lower thanthevalue
mentionedabove, andrise above that value. The combinatorialdegreeestimatesfrom the whole
plot neverthelessgiveusanideaof thesizeregimeof thecombinatorialdegree,whetherPossibility
(a) or (c) applies. Eachof the four kinds of systemhascombinatorialdegreeabove one,andis
thus truly a combinatorialsystem;electronicdevice user-interface languageshave (at least)two
distincthierarchicallevels. But we knew this, sincewe all know, at leastimplicitly, thegrammars
of theseelectronicdevices(i.e., we know how to usethem),andknow that theuser-interfacerules
arecombinatorial.

Can we make any senseof thesecombinatorialdegreedifferencesfor the different kinds of
electronicdevice?Thesimplesthypothesisfor whatexplainsthecombinatorialdegreein electronic
devices is the averageor typical numberof buttonsrequiredto carry out a device action. The
combinatorialdegreevaluesabove, then,maybe interpretedasrequiring,on average,aroundtwo
buttonpressesto carryoutafunctiononaCD player, aroundoneandahalf onaTV, aroundfour for
a VCR, andaroundninefor calculators.At first glance,thedifferencebetweencalculatorsandthe
othertypesis expected,sincecalculatorsrequiremany morebuttonpressesto carryout anaction
thandotheotherkindsof device. I havenotattemptedto makesenseof thedifferencesbetweenCD
playersandTVs on theonehand,andVCRson theother, thelatterwhosecombinatorialdegreeis
significantlyhigher, muchlesshave I tried to explain theparticularcombinatorialdegreevaluesfor
any of thesekindsof system.Wherethecombinatorialdegreescomefrom, though,seemsrelatively
clear:they aredueto theaveragenumberof buttonsrequiredto carryouta functionon thatkind of
device.

3.1.2 Universities

Theotherartificial systemfor which I have acquireddataconcernsuniversities. In particular, de-
partmentalconcentrations,thecomponents,areput togetherby studentsto make up their academic
degrees,the expressions.Many studentsjust chooseonemajor, but many addendminorsto their
degree,andmany othershave two majors,or two majorsandaminor. Becauseof thestudentswho
choosedegreeswith morethanonedepartmentalconcentration,academicdegreescanbe built in
a combinatorialfashionfrom departmentalconcentrations.Sinceprettymuchany combinationof
departmentalconcentrationsis typically allowedby any university, thegrammarshouldbethesame
acrosstheuniversities.We thusexpectoneof Possibilities(a) through(d) to apply.

To seewhich of thesepossibilitiesactuallyapplies,I soughtto measurethenumberof depart-
mentalconcentrationtypes(e.g., “physics”) and the numberof distinct academicdegrees(e.g.,
“physicsandmath”) in a numberof collegesanduniversities. I usedthe numberof departments
at a universityasthemeasureof thenumberof departmentalconcentrationtypes.Measurementof
thenumberof distinctacademicdegreetypesis difficult to obtain. As a simplifying assumption,I
supposedthatif auniversityhastwiceasmany students,thentherearetwiceasmany distinctkinds
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Figure2: (A) Logarithm(base10) of the numberof departmentalconcentrationtypes(measuredas
thenumberof departments)versusthelogarithmof thenumberof academicdegreetypes(measuredas
thenumberof students).(B) Sameplot but undertheassumptionthatthenumberof componenttypes
(i.e., departmentalconcentrationtypes)scaleslogarithmically with the numberof expressions(i.e.,
academicdegrees).The dataon the log-log plot conformmuchbetterto a line thanon the semi-log
plot, suggestingthatit is Possibility(a) thatapplies.

of degreessoughtafter. The intuitive ideabehindthis assumptionis thatstudentsareuniqueindi-
viduals,up to a constantproportion;this is why you alwaysfind, no matterhow many departments
thereare,somestudentdoublemajoringin two of the mostdisparatedepartments,or dissatisfied
with thechoicessomuchthat they wish to createtheir own personalmajor. With this assumption,
thenumberof studentsat theuniversity, beingproportionalto thenumberof academicdegreetypes,
canbeusedasaproxy for thenumberof academicdegreetypes.

In this way I obtainedmeasuresof thenumberof departmentalconcentrationtypes(measured
asthenumberof departments)andthenumberof distinctacademicdegreetypes(measuredasthe
numberof students)for 89 U.S.andCanadiancollegesanduniversities.² ³ ´ Figure2 shows theplots
undertheassumptionsof Possibility(a) (Figure2, (A)) andPossibility(c) (Figure2, (B)).

Thefirst thingto observe is thatthereis astrikinglaw-likerelationshipfollowedby thesediverse
schools.We expectedthis becausewe suspectedthatdifferentuniversitieshave thesamegrammar
for combiningconcentrationsinto degrees: namely, anything goes. And recall that if thereis a
universalgrammar, then,unlessPossibility(d) holds,thereis a nice law-like relationshipthatwill
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applyto thesystems,althoughwhich relationshipwill depend.
The secondobservation is that the numberof departmentalconcentrationtypesis clearly in-

creasing,not remaininglevel. ThismeansthateitherPossibility(a)or Possibility(c) applyto these
systems.Theinverseof thebest-fit(by linearregression)slopein thelog-logplot (underthepower
law assumption)is 1.66(95% confidenceinterval [1.45, 1.94]), andis muchmorelinear thanthe
plot underthe logarithmicassumption.Thus,Possibility (a) appearsto apply: greateracademic
degreetypesis accommodatednot by increasingthe combinatorialdegree,but by increasingthe
numberof departmentalconcentrationtypesfrom which studentsmay choose. In particular, the
relationshipbetweenthemis givenby µ·¶¹¸»º ¼ ½ º ¾ ¿ . This is not too surprising,sincestudentscan
only handlesomany concentrationsduringtheirfour or soyearsin school,thecombinatorialdegree
cannotgrow muchpastwhatever this upperlimit maybe; this is anextra-grammaticalconstraint.
Perhaps,thenthecombinatorialdegreeof 1.66shouldbecloseto theaveragenumberof departmen-
tal concentrationsperstudent.To testthis, I arbitrarily wrote to the registrarsat Duke University
(becausethat is whereI was),Universityof Virginia (my undergraduateinstitution)andWilliams
College(wheremy summerstudentat thetime wasfrom), andaskedfor dataon theaveragenum-
berof concentrationsperstudent.Countingonly majorsandminorsasconcentrations,theaverage
numbersof majorsor minors per personat Duke, UVA andWilliams College are, respectively,
1.75,1.17and1.39,in theballparkof thecombinatorialdegree(which, recall,is thecombinatorial
degreemeasuredby examinationof thescalingbehavior across89 universities,not just thesethree
universities).[Averagesfor Duke andUVA arefor Springsemester, 2000.Thevaluefor Williams
College is averagedover theaveragefor eachyearfrom 1991to 2000,andhasstandarddeviation
for thosetenyearsof 0.0344.]

It is fascinatingto find suchuniversallaws underlyingdiverseuniversitiesover two ordersof
magnitudein sizeof studentbody. Theexplanationfor thisorderis,asin electronicdevices,a“self-
organization”explanation,astherewouldappearto benocentralauthorityor universityguidebook
dictatinghow many departmentsthereshouldbegivensoandsomany students.

3.2 Cellsand organisms

Organismsarehierarchicallyorganizedin structure.What principles,if any, govern thesehierar-
chies?In this subsectionI focusprimarily on how cellscombineto implementhigherlevel func-
tions.Wewill beinterestedin looking at trendsat thelargestphylogeneticscales.So,for example,
if I saythat thecombinatorialdegreeis invariantasorganismsbecomemorecomplex, I meanthat
thereis no largestscaletrendin thecombinatorialdegree.

Organismsarecomplex systems,andthey carryout lotsof higherlevel functions,suchasinhal-
ing, chewing, digestionandwalking. I will genericallycall suchhigherlevel functions“organism-
expressions,” andfor now I wish to remainelusive aboutjust whatexactly anorganism-expression
is. It will turn out that, so long aswhatever organism-expressionsare, they follow a certainas-
sumption(“assumptionÀ Á Â ”), thenwe will be able to make progresswithout having to become
preciseaboutwhat an organism-expressionis. Organismsachieve their organism-expressionsvia
combiningcells into complex structures.Cells are, then, the components.In actuality, mostor-
ganismsprobablyhave hierarchicallevels in betweenthatof thecell andtheorganism-expression,
but will attemptto look at only thesetwo levels. Our questionbecomes,“What principlesgovern
thehierarchicalrelationshipbetweencellsandorganism-expressions?” For example,asorganisms
becomemorecomplex—i.e., a greaternumberof organism-expressions—does thenumberof cell
typesincrease?And if so,in what fashion,Possibility(a) or (c)? And if Possibility(a) holds,say,
thenwhatdoesthecombinatorialdegreetell usaboutthegrammar, or abouttheextra-grammatical
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constraintson thesystem?
Measurementof thenumberof cell typeswaspossibledueto thework of Bell andMooers,Ã Ä Å

whoacquiredestimatesfrom 134organismsover31phyla(namely, plantphyla,animalphyla,fungi
phyla, alongwith Chlorophyta,Phaeophyta,Rhodophyta,Ciliata, AcrasiomycotaandMyxomy-
cota).Measuringthenumberof organism-expressionsis moredifficult. Not to mentiontheproblem
thatI wouldliketo notcommitmyselfto any rigid, definednotionof anorganism-expression.There
areneverthelesstwo promisingstrategies toward acquiringa proxy for the numberof organism-
expressions,thefirst concerninggenomiccomplexity, andthesecondconcerningorganismmass.

3.2.1 Measuring expressive-complexityusingcoding genomesize

Thecoding genome size is theamountof anorganism’s DNA thatcodesfor proteins.Ultimately, it
is this codewhich possessesthebulk of theinformationneededfor organismsto developinto their
final form, with all thehighest-level organism-expressions. Codinggenomesizeshouldthuscorre-
latewith thenumberof organism-expressions.Notethatthey cannotbeexpectedto beproportional
to oneanothersinceDNA is a code, andsocodinggenomesizeshouldscaleup disproportionately
slowly asa function of the numberof organism-expressions.Note alsothat, in principle, it need
not bethecasethatgenomecodingsizecorrelatewith thenumberof cell types.For example,it is
a priori possiblethat thenumberof cell typescouldbekept invariantasorganismsbecomemore
expressively complex (i.e., the numberof cell typesdoesnot changeasa function of expressive
complexity). Organismswould, in this case,achieve greaterexpressive complexity via increasing
thecombinatorialdegree,i.e.,by increasingtheeffective numberof cells involved in anorganism-
expression.Thiswouldcorrespondto Possibility(b). So,althoughit could bethecasethatgenome
codingsizecorrelateswith numberof cell types—if,say, Possibilities(a) or (c) apply—itneednot.
Theonly aspectof organismswith whichgenomecodingsizewouldhave to correlateis thenumber
of highestlevel functionexpressions,or organism-expressions; something hasto codefor this in-
formation,andit is surelyprimarily DNA thatis responsible,eventhoughwedonotyetunderstand
all thatis involvedin theconnectionbetweenthesetwo hierarchicallevels.

With this in mind, our first attemptat analyzingthe relationshipbetweenthe numberof cell
typesandorganismexpressive complexity is to usecodinggenomesizeÃ Æ Å asthemeasureof num-
berof organism-expressions,wherewe expectthis measureto merelycorrelate.If thenumberof
cell typesremainsinvariantascodinggenomesizeincreases,thenPossibility(b) probablyholds:
greaterexpressive complexity is obtainedvia increasingthecombinatorialdegree,not thenumber
of cell types.If, on theotherhand,thenumberof cell typesincreases,thenthis impliesthateither
Possibility(a) or (c) applies.Figure3 shows a log-log plot of thenumberof cell typesagainstthe
codinggenomesizefor 8 organismswhereboth wereavailablein Cavalier-SmithÃ Æ Å andBell and
Mooers.Ã Ä Å

Thenumberof cell typesclearlyincreasesasgenomecodingsizeincreases,andthusincreases
asthe numberof organism-expressionsincreases.Possibility (a) or (c) applies,then,to this sys-
tem. We canfirst ask,Is this systemcombinatorial?To answerthis, first recognizethat genome
codingsize,beinga code,mustscaledisproportionatelyslowly againstthe numberof organism-
expressions.Sincetheslopein the log-log plot in Figure3 is lessthanone,numberof cell types
scalesup disproportionatelyslowly with codinggenomesize,andsincethelatterscalesdispropor-
tionatelyslowly with thenumberof organism-expressions,somusttheformer. Thus,cells imple-
mentorganism-expressionsin a combinatorialfashion;they do comprisetwo distincthierarchical
levels. Notethatwe cannotconcludethat they areadjacent hierarchicallevels; theremaywell be,
andprobablyare,intermediatehierarchicallevelsin between.

Canwedecidewhichof Possibilities(a)or (c) appliesfrom Figure3?Wearenotableto because
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Figure3: Logarithm(base10) of thenumberof cell typesversusthe logarithmof thecodinggenome
size(picogramsof genescodingfor proteins)for someplantsandanimals(n=8). Codinggenomesize
dataaretakenfrom Cavalier-Smith.

c d e
Cell typedataareobtainedfrom Bell andMooers.

c f e
A similar

plot, but for total DNA ratherthancodingDNA, appearsin Kauffman(Ref.55, Fig. 13; Ref.54, Fig.
12.7),motivatedby differentconcerns.

wedonotknow how genomecodingsiderelatesto thenumberof organism-expressions; all wecan
bereasonablyconfidentaboutis that the formergrows disproportionately slowly comparedto the
latter, but wedon’t know whatkind of relationshipgovernsthem.

3.2.2 Measuring expressive-complexityusingmass

Genomecodingsizehadtwo downsides.Thefirst we just mentioned,andis thatwe do not know
how it relatesto expressive complexity, otherthanthat they areprobablycorrelated.The second
difficulty is that it is difficult to acquiregenomecodingsizefor organisms,andthusthe paucity
of datapointsin Figure3. It would be convenientif we hadsomeotherproxy for the numberof
organism-expressionsfor which (i) their relationshipis betterunderstood,and(ii) measurementis
easy. Massis ouranswer;moreprecisely, totalnumberof cells,but sincecellsareroughlyinvariant
in size,masscanbeusedinsteadof thetotal numberof cells. It is certainlyeasyto measuremass,
andaccordinglythereexistsplentyof massmeasurementsin the literaturefor organisms.Massis
alsoadvantageousbecause,underasimplifying assumption,it is possibleto relateit to theexpected
numberof organism-expressions.

Allow meto glossoverthesimplifying assumptionfirst, andsayhow massrelatesto thenumber
of organism-expressions.An organismcarriesout many organism-expressions.Supposethereareg

of them.Also supposethatorganism-expressionsconsistof aroundh cells;this is theexpression
length. Supposingthat every cell is part of someorganism-expression,it follows that

g
times h

mustequalthe total numberof cells in the organism. Total numberof cells scalesproportionally
with mass,andthuswe cansaythat ikj g h . Recallalsothatthereis goodreasonto expectthat
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thecombinatorialdegreel is proportionalto m , andso
nporqts lvu

Now we have a simplescalingequationrelatingmassto expressive complexity andcombinatorial
degree.How massrelatesto expressive complexity now dependson thecombinatorialdegree.Un-
derthehypothesisthatPossibility(a)holds,thecombinatorialdegreeis invariant,andthus

nworq
.

Thatis, if Possibility(a)holds,thenweexpectthatwemayusemassasaproxyfor expressivecom-
plexity, andweexpectthenumberof cell typesto scaleupwith massasapower law. Alternatively,
if Possibility(c) holds,then l otx y z�{ q}| ~"x y z�{ x y z�{ q}| | , andso

n�otq�� x y z�{ q}| ~"x y z�{ x y z�{ q}| | �
. Be-

causethecombinatorialdegreetermscalessoslowly, it is it is approximatelythecasethat
nworq

.
Thus,masscanbeusedasa proxy for thenumberof organism-expressionswhetherPossibility(a)
or (c) applies.Possibility(b) is notanoptionherebecausewe alreadyknow from Figure3 thatthe
numberof cell typesincreaseswith expressive complexity.

Beforeusingmassasa proxy to askwhich of Possibilities(a) and(c) describeorganisms,we
shouldexaminetheabove argumentfor massasa proxy in moredetail. I have implicitly madea
simplifying assumption.Beforestatingit, let mefirst provide an intuition pump. Considercalcu-
latorsfor a moment. They are, for the mostpart, madeto be assmall aspossiblesubjectto the
constraintsthatthey candoall thefunctionsthey aremadefor, andthathumanscanactuallypunch
thebuttons. Calculatorswith morebuttonsare,in orderto fit all thebuttons,typically physically
larger. Now hereis my intuition pumpquestion?If a calculatorhasmorebuttonsthananother
calculator, andhassomenovel type of button, thenhow many buttonsof this novel type doesit
have?Justone.Thatis, whennew functionalbuttonsareaddedto calculators,justoneis added,not
multiplecopies.[For thepurposesof thisdiscussion,it is nothelpful to rememberourearlierstudy
of calculators.Our taskthenconcernedhow buttonscombineto implementhigher-level functions.
For our purposesnow I amonly interestedin just the level of buttons.] Calculatorsbecomemore
“button-complex” by addinga new button type,not by addingmultiple buttonsof the sametype.
More importantly, it is not thecasethatascalculatorsacquiremoreandmorebuttons,they adda
greaterandgreaternumberof copiesof thesamebutton to thedevice. For example,thefollowing
is not thecase:

Calculator��� hastwo buttons,eachof adifferenttype.Calculator��� addsanew button
type,but putsin two copies,makingfour buttons,threetypes.Calculator��� addsanew
type,but putsin threecopiesof it, resultingin sevenbuttons,andfour types.And soon.

Thereasonthis doesnotoccurin calculatorsis presumablybecauseof themarket pressureto min-
imize the overall sizeof the calculatorsubjectto the constraints;thereshouldaccordinglybe no
morebuttonsthanneeded.Themoralof theintuition is that,if a functionaldevice is underpressure
to minimize its overall size,thenasit acquiresmorefunctions(or in thecaseof calculators,more
buttons)we expect it not to addunnecessarycopiesof the samefunction; and, in particular, we
expectit not to addanincreasingnumberof copiesof thesamefunction.

Let usnow considerananalogousideafor organisms.Organismshaveorganism-expressionsin
themthatcarryout functionsof somesort,andthey arecomposedof cells.An organismwith more
organism-expressiontypesis moreexpressively complex. [I havebeenusing“numberof organism-
expressions”implicitly to meannumberof organism-expressionstypes.]Supposeanorganismwith
few organism-expressionsgainsanew typeof organism-expression,andin doingso,gains� copies
of it (i.e., devotesenoughcells to implement� copiesof theexpressions).Now considera much
moreexpressively complex organismthatgainsa new typeof expression.How many copiesof the
new kind of expressiondoesit add?Theintuition pumpabove tried to make it plausiblethatonly
� copieswill beadded,i.e., just asmany copieswill beaddedasin the lessexpressively complex
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organism. An alternative is that the morecomplex organismaddsmorethan � copiesof its new
expressiontype,andthat still morecomplex organismswould addevenmorecopiesof their new
expressions;it is this alternative thatour hypothesisis assumingis not anappropriateassumption.
Thesimplifying assumptionI will call theCopy-Invariance Assumption, andis statedas

As organismsgetmoreexpressively complex, thenumberof timesany givenorganism-
expressiontypeis instantiatedin theorganismdoesnot, itself, tendto change.

Organismsconformingto this would therebyachieve their functionalitywithout having to devote
any morecellsthanis necessary.

With thisCopy-InvarianceAssumption,it follows(asdiscussedearlier)thatmasscanbeusedas
aproportionalproxy for thenumberof organism-expressions, andwecanproceedandtestbetween
Possibilities(a) and(c). Bell andMooers� � � have acquiredestimatesof the numberof cell types
from many organisms,aswe mentionedearlier, but they alsoestimatedthemassof theorganisms.
Figure4 showsaveragesof thenumberof cell typesversusaveragesfor massfor the31phylafrom
Bell andMooers.� � � The first observation to be madeis that, asportendedby the genomecoding
sizeplot earlier, the numberof cell typescertainlyincreaseswith the currentproxy for organism
expressive complexity, namelymass.

Next we needto determinewhichof Possibility(a) or (c) thedatafavor. If Possibility(a) holds
for organisms,thenwe expectthedatato be approximatelylinear on a log-log plot of numberof
cell typesversusmass,aplot whichis shown in Figure4A. If, instead,Possibility(c) holds,thenwe
expectthedatato beapproximatelylinearwhenweplot (unlogged)numberof cell typesversusthe
logarithmof themass,theplot which is shown in Figure4B. Onemayseefrom thefiguresthatthe
datafall morelinearlyunderthehypothesisthatPossibility(a)holdsthanunderthehypothesisthat
Possibility(b) holds.Thedatathereforeappearto confirmPossibility(a),preliminarily suggesting
thatat thelargestphylogeneticscaleorganismexpressive-complexity is primarily achievedvia in-
creasingthenumberof cell types,not via increasingthecombinatorialdegree.Also, theexponent
of the power law is 0.0805,which is lower thanone,andthusthe systemappearsto certainlybe
combinatorial.

3.2.3 The combinatorial degree

Figure 4A hasa slopeof 0.0805,which leadsto an estimatedcombinatorialdegreearound12.
Therearetwo questionswe might ask. (i) Why might Possibility(a) apply ratherthanPossibility
(c)? That is, is theresomereasonwhy the combinatorialdegreemight have remainedinvariant?
And (ii) why is thecombinatorialdegreein theroughrangeof 12? I shouldpoint out thatwe can,
at thispoint,have little confidencethatthecombinatorialdegreefor organismsactuallyis invariant,
nor muchconfidencein anything more thanthe orderof magnitudeof the combinatorialdegree
range.Nevertheless,let usnow wonderif theremight beanswersto thesequestions,recognizing
thatwe areengagingin speculationmostlyfor its own enjoyment.

First let usaskif theremight beany reasonfor thecell/organism-expression systemto have in-
variantcombinatorialdegree(supposingit is indeedinvariant).RecallthatfromtheCopy-Invariance
Assumptionwecanconcludethat �w�r�r� � , i.e.,massis proportionalto thenumberof organism-
expressionstimesthecombinatorialdegree.If � is invariantasin Possibility(a), then

�w�r���
If, on theotherhand,� increasessublogarithmicallywith � , asin Possibility(c), then

�w�r���
� � � �� � ��� � � ���
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Figure4: (A) Logarithm(base10) of the numberof cell typesversuslogarithmof the total number
of cells for plant, animal, fungi, Chlorophyta,Phaeophyta,Rhodophyta,Ciliata, Acrasiomycotaand
Myxomycotaphyla(n=31).Error barsshow standarddeviation. Best-fit line via linearregression.(B)
Numberof cell typesversuslogarithmof thetotal numberof cellsfor samedataasin (A).

19



andthusmassof organismsmustscaleupmorequickly asexpressivecomplexity increases.Finally,
if = increaseslogarithmicallywith > , asin Possibility(b), then

?A@ >CB D EF>HG
andmassmustscaleeven morequickly. Thus,of thesethreepossibilities,organismmassscales
up the leastquickly when the combinatorialdegreeis invariant. Keepingthe combinatorialde-
greeinvariant,andincreasingthenumberof cell typesinstead,meansthatorganismscanachieve
greaterexpressivecomplexity while keepingtheiroverallsizelow; they canpackin their functional
expressionsinto anoverall smallerbody.

Now, let us askwhy the combinatorialdegreemight be on the orderof 10 or so. Organism-
expressions,whatever they maybe,arealmostsurelybuilt outof tremendouslymorethan10 cells;
thereare few caseswherearound10 cells make up somefunctionalhigher level structure. The
combinatorialdegreeof around10 is probably, then, not due simply to the numberof cells in
an organism-expression.Let us considerorgansasa possiblecandidateexampleof an organism-
expression,althoughI donotwish to commitmyselfto organsbeingthedefinitionof anorganism-
expression. Organsare obviously built from cells, but they are more usefully consideredto be
combinationsof tissues; that is the way organsare,in fact,moretypically describedin histology
textbooks.Assumingthat thenumberof tissuetypesscalesproportionallywith thenumberof cell
types,our plot in Figure4A canbetreatedasshowing thenumberof tissuetypesalongthe I axis,
andthe combinatorialdegreeof around12 would hold for the hierarchicalsystemof tissuesand
organism-expressions.While organism-expressionsdo not have aroundtencells,they may tendto
have aroundtentissues.Perhaps,then,organism-expressionsarebuilt from tissuesascomponents,
and,on average,aroundtenor so tissuestendsto be involved in theconstructionof anorganism-
expression.

I eventuallyplanon testingthis by countingup thenumberof tissuesin higher-level functional
structures—e.g.,organs—inorganismsacrossmany phyla, andseeingwhethertheretendsto be
aroundten or so. In the meantime,asa start I have acquiredthe numberof tissuesinvolved in
63 organs(seelegendof Figure5 for vertebratesfrom a standardvertebratehistologytextbook.J K L
Theaveragenumberof tissuesis 10.52( MONQP R S )), indicatedroughlyby thearrow in thehistogram
in Figure5. This is within the 95% confidenceinterval of the measuredcombinatorialdegreeof
12.42,but I wouldnotmake muchof thisat thispoint.

Althoughwehaveprovidedsomemeagerevidencetowardtheconjecturethatperhapsthecom-
binatorialdegreeof aroundten is dueto tissuescombiningin groupsof aroundteninto organism-
expressions,we have not given any reasonfor why organism-expressionswould have this many
tissuecomponents?Why aroundten? Onegeneralkind of reasonis simply that theremay bean
upperlimit to how many tissuesmaybephysicallypackednearoneanotherto makeanexpression.
For example,imaginethattissueswereall spheresof thesamesize.In thatcase,onecanpackabout
12 spheresaroundonesphere.Tissuesaremuchmoreconvolutedin shapethanspheres,but per-
hapsthis packinglimit is thedriving factorin thecombinatorialdegree.To overcomethis kind of
limit for organism-expressionsrequiringphysicalcontactof their constituenttissues,tissueswould
have to becomeconvolutedandbranched,like neurons.[Neuronscombinetogetherto implement
higher level neuralstructures,andsinceneuronsareso branchythey may form expressionsbuilt
from thousandsof neuronssimultaneouslycontributing. Wemight thereforeexpectthecombinato-
rial degreefor nervoussystemsto beveryhigh,andthusthenumberof neurontypeswouldhave to
scaleup very slowly asthenumberof neuralexpressionsincreases.]

I have severedoubtsthat the combinatorialdegreefor organismsreally hasremainedinvari-
ant over the history of life. The reasonis that theremay be, for more complex organismsbut
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Figure5: Distribution of numbersof tissuesperorganin vertebrates.Arrow indicatesthemean.Or-
gansusedare: heart,aorta,tonsil, lymph node,spleen,thymus,skin, endocrineandapocrinesweat
glands,sweatandsebaceousglands,hair follicle andnail, tongue,submandibulargland,parotidgland,
sublingualgland,soft palate,teeth,lip, esophagus,esophagogastricjunction,stomach,gastroduodenal
junction,duodenum,jejunum,ileum, colon,appendix,anorectaljunction,liver, gallbladder, pancreas,
olfactorymucosa,larynx, tracheaandbronchus,bronchioleandrespiratorypassages,alveoli, kidney,
ureter, urinary bladder, pituitary gland, pineal gland, parathyroidand thyroid glands,thyroid folli-
cle cells,adrenalgland,testis,ductuli efferentesandepididymis,spermaticcordandductusdeferens,
prostategland,seminalvesicle,ovary, corpusluteum,oviduct-uterinetube,uterus,cervix, placenta,
vagina,mammaryglands,eye,ear, organof corti.
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not lesscomplex organisms,hierarchicallevelsbetweenthecell level andthehighest,“organism-
expression,” level. That is, vertebratesmayhave hierarchicallevelsbetweenthecell level andthe
toplevel, but someancestormaynothave. As wewill discussSection4,whennew hierarchicallev-
elsareaddedin betweentwo existing levels,theconsequenceis anincreasedcombinatorialdegree
betweenthe original two levels. Thus,sincewe might reasonablyexpect that hierarchicallevels
have beenaddedover thehistoryof life, we would accordinglyexpectthecombinatorialdegreeto
increase.Moredataandanalysiswill beneededto searchfor signsof hierarchyadditions.

3.2.4 Ontogenyof cell typesversusmass

We have discussedcell/organism-expression hierarchicalcomplexity at the largestphylogenetic
scale.Wemaynaturallywish to know how thesehierarchicallevelsbehave duringontogeny. As an
organismdevelops,its numberof cell typesincreasesasdoesits numberof organism-expressions.
How dothey scalerelativeto oneanotherduringontogeny? If wecontinueto usemassasaproxyfor
thenumberof organism-expressions,thenit is relatively simpleto obtainmeasuresfor expressive
complexity asafunctionof developmentaltime. Acquiring thenumberof cell typesin anorganism
as a function of time, however, is very difficult. The nematodeworm Caenorhabditis elegans
providesuswith agoodstartingpoint: it hasonly aroundathousandcellsin all, weknow whatthey
are,andhow many therearethroughouttheworm’s development(SulstonandWhite in Appendix
1 of WoodRef. [10]).

Figure6 shows a log-logplot of thenumberof cell typesin C. elegans asa functionof its mass
throughoutits gastrulation,which is its primary growth phase;the legenddetailsthe 27 kinds of
cell typesI distinguished.

The plot appearsto stronglyfollow Possibility(a), but the slopeis essentially1, andthusthe
cell/organism-expression systemis not acting combinatoriallyover the developmentalstage. If
they werefoundto actcombinatorially, thenthiswould suggestthat,ateachstageof development,
theworm utilizes its currentcell typesto, in a language-like fashion,build combinatoriallymany
organism-expressions.Instead,theplot suggeststhatthis is not thecase:cell typesarecreatedonly
with their ultimate“adult use” in mind. Alternatively, it may be that during ontogeny the Copy-
InvarianceAssumptionis no longer justified, in which casewe cannotusemassto measurethe
numberof organism-expressions.

3.2.5 Subcellular parts

As a final topic concerninghierarchicalcomplexity in organisms,we will briefly discusshow sub-
cellularpartsimplementcellularfunctions,orcell-expressions(asopposedtoorganism-expressions).
Overall thekindsof hierarchicalsystemI have thusfar studied,thereis a tendency for thenumber
of componenttypesto increase—meaningeitherPossibility (a) or Possibility (c) applies. Let us
supposefor the momentthat this alsoholdsfor subcellularcomponentscombiningto implement
cell types.

With this suppositionwe may make a predictionconcerningthe differencein internal com-
plexity betweenfree-living eukaryoticcells (protists)andcells in certainmulticellular organisms
(metazoansandlandplants). It is plausiblethat,on average,free-living cellsmustcarryout more
cell functionsthancells in multicellularorganisms,the latterwhich maybemorespecializedand
incapableof certainfunctions(e.g.,reproduction).In otherwords,onereasoncellsin multicellular
organismsmayhave fewercell-level functionsis becausethefunctionalityhasbeenpushedup to a
still greaterhierarchicallevel.� � � � Anotherreasonis thathigherlevel functionalityrequirescoordina-
tionamongthelower-level components,whichin turnrequiresconstraint;thus,cellsin multicellular
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Figure6: Logarithm(base10) of numberof cell typesversuslogarithmof total numberof cells in C.
Elegans duringgastrulation.Thescalingexponentis 0.98( ßáàjâäãmå æbçbèbé , êëâìébé ), or nearly1. Here
I list the cell type distinctionsmade;in squarebracketsnext to eachtype I have put (a) the label, if
thereis one,for the typeof cell from SulstonandWhite in Appendix1 of Wood (1988),and(b) the
numberof cells of that type. Six kinds of epithelialcell types: (1) main hypodermis[hyp7, 83], (2)
rectalhypodermis[rect,4], (3) headhypodermis[27], (4) tail hypodermis[hyp8–12,6], (5) interfacial
[arc,9], (6) seam[35]. Threekindsof nervoustissue:(7) neuron[302], (8) socket [23], (9) sheath[23].
Ten kinds of mesoderm:(10) head[hmc, 1], (11) analdepressor[mu anal,1], (12) body [mu body,
79], (13) intestinal[mu int, 2], (14) pharynx[m, 46], (15) sphincter[mu sph,1], (16) uterine[mu ut,
8], (17) vulval [mu vul, 8], (18) coelomocyte [cc, 6], (19) pharyngealmarginal [mc, 9]. Two kindsof
intestinaltissue;(20) tube[int, 20], (21) valve [v, 8]. Two kindsof gland: (22) g1 [g1, 3], (23) g2 [g2,
2]. Finally, four kindsof excratorycell: (24) exc cell [1], (25) duct[1], (26) gland[2], (27) socket [1].
Dataarefor hermaphroditeonly, andthefounderandblastcellswereexcludedfrom theanalysis.
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organismsshouldhave fewer cell-level functions.í î î ï If free-living cellshave morecell-level func-
tions,or expressions,at theirdisposal,andif cellsascombinatorialsystemsincreasethenumberof
componenttypesto obtaingreaterexpressive complexity, thenfree-living cellswould bepredicted
to have a greaternumberof subcellularparttypesthancells in multicellularorganisms.Thatis, as
cells becomemembersof colonies,their internalcomplexity shouldtendto decrease.Analogous
argumentshold for thedifferencebetweenany kind of free-living unit versusunitswithin colonies.
Preliminaryresearchí î î ðmî ñ ï (McShea,2000,2001;McSheaandAnderson,2001)providesevidence
confirmingthis prediction. Subcellularpart type countsfor metazoansandland plantstendto be
significantlylower thanthatfor protists,choanoflagellatesandgreenalgae.

However, organismswith a greaternumberof cell typesmay, over all the cell types,have a
greaternumbercell-level expressionsthanany free-living cell. Thatis, thetotalnumberof cell-level
expressionsin amulticellularorganismis greaterthemorecell typesthereare,andprobablygreater
thanthenumberof cell-level expressionsafree-living cell is capableof, eventhoughthefree-living
cell may have morecell-level expressionsthanany onecell type in a multicellular organism. If
oneorganismhas,over all its cell types,morecell-level expressionsthandoesanotherorganism,
we expectthattheremustbe,over all its cell types,moresubcellularparttypesthandoestheother
organism. So, for example,we would expectthat, over all cell typesin human,the total number
of subcellularpart typeswould be greaterthantheunionof all subcellularpart typesfound in C.
Elegans. (This is truedespitethe fact thateachcell type in eachorganismmayhave, on average,
thesamenumberof subcellularparttypes.)This is apredictionI would like to testin thefuture.

3.3 Hierar chiesin behavior

We have now studiedhierarchicalcomplexity in artificial systems,andfor someof thestructureof
organisms.We have not, however, touchedon hierarchiesconcernedwith the brain. Although I
wouldeventuallylike to studyneuroanatomicalhierarchicallevels,at thispoint I haveconcentrated
only on hierarchicalcomplexity in behavioral organization:namely, bird vocalization,humanlan-
guageandmammalianbehaviors.

3.3.1 Bird vocalization

Bird vocalizationis a convenient hierarchicalsystemwithin behavior to study becausethe be-
havioral componentsandexpressionsare relatively easyto distinguish(comparedto many non-
linguistic behaviors). In this case,the componentsarecalled syllables,and the expressionsare
songs.Do birdsthathave moresongsin their repertoirehave moresyllabletypes,or do they have
longersongs(andgreatercombinatorialdegree)?Is therea law-like relationshipatall?

Figure 7 shows the datafor a log-log plot and a semilogplot, and the dataclearly conform
betterto thelog-logplot. Birdsappearto increasetheir songrepertoiresizeby addingnew syllable
types,not by increasingtheir combinatorialdegree. In particular, the numberof syllable types
scalesagainstnumberof songswith exponent0.813,i.e., òôóöõø÷ ù ú î ñ ; the95%confidenceinterval
is [0.599,1.027]. The inverseof this exponentgivestheestimatedcombinatorialdegree,which is
1.23,with 95%confidenceinterval [0.97,1.67]. Thecombinatorialdegreeis thusnot significantly
differentfrom one,andwe shouldnot concludethatbird songsarecombinatorialat all. Birds with
twice asmany songstendto have roughlytwice asmany syllables.This is despitebirdshaving, on
average,around3 or 4 syllablespersong.[Inverselog of themeanof thelog numberof syllablesper
songis 3.72,andmedianis 3, for 109birdscataloguedby ReadandWeary. í î û ï ] Althoughsyllables
appearto act in a language-like mannerto achieve songs,this may be illusory, andsyllablesand
songsmaynotbeat differenthierarchicallevelsat all.
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Figure7: (A) Logarithm(base10) of numberof syllabletypesversuslogarithmof numberof songsin
28 birds. (B) Numberof syllabletypesversuslogarithmof numberof songsfor the samedata. The
birdsare: 10 thrushspecies,® ¯ ° ± 7 wrenspecies,® ¯ ² ± 5 maleBewick Wrens,® ¯ ² ± 1 magpie,® ¯ ³ ± Tuftedand
Bridled Titmouses,® ¯ ´ ± 1 canary, ® ° µ ¶ ° · ± andAlder andWillow Flycatchers.® ° ¸ ±
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3.3.2 English throughout history

Justasvocalbehaviors aremoreamenableto measurementin birds thanmany otherkindsof bird
behavior, languagein humansis moreamenableto studythanotherkinds of humanbehavior. In
particular, oneof the mostnaturalkinds of hierarchicalstructure,anda behavioral oneat that, is
theword/sentencehierarchicalsystem.Our systemwill be theEnglishlanguage,andnot for one
individual, but for the entirecommunityof Englishspeakers. We will treat the English-speaking
communityasanentity thathasa word typerepertoireanda sentencerepertoire.How many word
types—i.e.,entriesin the dictionary, suchas ‘dog’, ‘race’ and ‘the’—doesthis entity have at its
disposal?And, how many thingsdoesentity expressusingthosewords?If we couldanswerthose
questionsfor the currentEnglish-speakingcommunity, we would thenhave one datapoint. How
mayweacquireotherdatapointswherethenumberof sentencesin theentity’s repertoirewouldbe
very different,in orderto getscalinginformation?TheEnglish-speakingcommunityhasgrown in
populationover time, andaccordinglythis entity hashadmoreandmorethingsto say. Thus,we
maylook at this sameEnglish-speakingcommunityover time.

I estimatedthegrowth in thenumberof Englishword typesby usingtheOxford EnglishDic-
tionary (OED), SecondEdition. It is possibleto searchfor yearswithin only the etymological
informationfor all entriesin theOED. In this way it waspossibleto estimatethenumberof new
word typesper decadeover the last 800 years. To obtainan estimateof the growth rate for the
numberof sentencestheEnglish-speakingentity expresses,I usedthenumberof bookspublished
in any given yearasan estimateof the numberof new sentencesin that year. This would be a
problematicmeasureif differentbookstendedto highly overlapin their sentences,but sincenearly
every written sentenceis novel, never having beenutteredbefore,thereis essentiallyno overlap
of sentencesbetweenbooks. This would alsobea problematicmeasureif the lengthof books,in
termsof the numberof sentences,hasbeenchangingthroughtime; I have no datain this regard,
but it seemsplausibleto assumethat any suchtrendis not particularlydramatic. The numberof
new bookspublishedperyearwasobtainedby searchingfor publicationdateswithin theyearfor
literaturelistedin WorldCat,anonlinecatalogof morethan40 million recordsfoundin thousands
of OCLC (OnlineComputerLibrary Center)memberlibrariesaroundtheworld. In this way I was
ableto estimatethenumberof new booksperdecadeover thelast800years,thesametime period
for which I obtainedword typedata.

What relationshipshouldwe expect betweenthe numberof word typesand the numberof
sentences?First,weknow thegrammarof Englishwell enoughto concludethatit is combinatorial.
The numberof word typesshould, then, scaledisproportionatelyslowly againstthe numberof
expressions.However, the grammarof naturallanguagedoesnot constrainthe numberof word
types,nordoesit constrainhow long sentencesmaybe. Thus,if therearescalinglaws relatingthe
numberof word typesto thenumberof sentencesutteredby theEnglish-speakingcommunity, they
areextra-grammaticalconstraints.Whichof Possibilities(a) through(d) applies?

Figure8 shows thelogarithmof thenumberof new word typesandbooksperdecadeover the
last800years,measuredasdescribedabove. Notethat theplot shows estimatesfor thenumberof
new word typesperdecade,andthenumberof new sentencesperdecade;i.e., it measures¹�º¼» ¹ ½
and ¹ ¾¿» ¹ ½ versustime. Theplot doesnot, therefore,show thegrowth in theactualmagnitudeof
thenumberof word typesor thenumberof sentences.But it is thescalingrelationshipbetweenthe
actualmagnitudesof º and ¾ we careabout,sowhatcanwe do with a plot of growth ratesover
time? Notefirst that thegrowth ratesfor eachareexponential(this is becausetheplots fall along
straightlineswhenthe À axis is logarithmicandthe Á axisnot). If a growth ratefor somequantityÂ increasesexponentiallywith time, thenthis means¹ Â » ¹ ½\ÃÅÄ Æ Ç . And if you recallyourcalculus,
it follows thatthequantityitself scalesexponentiallywith time,and,in fact,it scalesproportionally
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Figure8: Growth ratesin the decadesfrom the years1200to 1990for the numberof new English
word typesandthe numberof new Englishbooks. Regressionequationsandcorrelationcoefficients
areshown for each(79datapointseach).Unsureetymologicaldatestendto clusterat centuryandhalf
centurymarksandthereforecenturyandhalf-centurymarkstendto beovercounted;accordingly, they
werenot includedin thecounts.TheOEDis conservativeandundercountsrecentlycoinedword types;
consequently, the exponentialdecayregion (the last five squaredatapoints)wasnot includedwhen
computinglinear regression. I do not have any way to similarly measurethe numberof word type
extinctionsperyear, andsoI have not incorporatedthis; my working assumptionis thattheextinction
rateis smallcomparedto thegrowth rate,but it shouldberecognizedthattheestimatedcombinatorial
degreeis thereforeanunderestimate.
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with thegrowth rate: i.e., SUTWV SYX V Z . Thus,Figure8 haseffectively measuredthegrowth in the
numberof word typesandthenumberof books.By looking at thegrowth in thenumberof word
typescomparedto that for thenumberof books,we candeterminehow thefirst scalesagainstthe
second.

Fromthefigurewecan,then,determinethat

V\[]X V Z^T_[`T`a b c d c c e f g h i^Tkj c d c c l m f g i n
and

V opX V ZqTkorT`a b c d c c s t h l i^Tkj c d c e m m g i u
Wemaynow solve for [ in termsof o , andwe obtain

[_Tko c d c c l m f g i v c d c e m m g i^w o c d e m m x u
Thenumberof word typesscalesasa power law againstthenumberof sentences,and,unsurpris-
ingly, thecombinatorialdegreeis lessthanoneandthusEnglishis combinatorial.Thus,via some
kind of extra-grammatical,or defacto,constraint,greaterexpressive complexity wasachievedover
the last 800 yearsnot by increasingthe combinatorialdegree(or averagesentencelength), but,
instead,by increasingthenumberof word typeswith which to build sentences.

Thescalingexponentof around0.2impliesanestimatedcombinatorialdegreeof about5. There
appearsto be nothing about the English grammarthat implies a fixed combinatorialdegree(or
sentencelength),muchlessany particularvalueof it. What explainsthis valueof 5? [Or, a little
morethan5; seelegendof Figure8 concerningword typeextinctions.] It cannotsimply bedueto
thetypicalnumberof wordsin anEnglishsentence,sincetherearetypically many morewordsthan
that,namelyaround10 to 30 words.y e h zYe t {

To make senseof the combinatorialdegree,we mustdistinguishbetweentwo kinds of word
in English: content andfunction. Thesetof contentwords,which refer to entities,events,states,
relationsandpropertiesin theworld, is large (hundredsof thousands)andexperiencessignificant
growth.y e f { Thesetof functionwords,ontheotherhand,whichincludesprepositions,conjunctions,
articles,auxiliary verbsandpronouns,is small (around500)andrelatively stablethroughtime.y e f {
Thescale-invariantcombinatorialdegreeof Englishsuggeststhattheaveragenumberof wordsper
sentenceis invariant.Imagine,for simplicity, thatthere,on average| placesfor contentwordsin a
sentence,and } placesfor functionwords,andthat thesevalues,too, areinvariant. (And thusthe
averagesentencelengthis |�~�} .) Thetotalnumberof possiblesentencesis then

orTk���\�_��n
where� is thetotalnumberof contentwordsin Englishand � thetotalnumberof functionwords.
| and } areinvariant,asmentionedjust above, andso is the total numberof functionwords � .
Thus,theequationabove simplifiesto thepower law equation

o`Tk����u
Also, notethat the numberof contentwords, � , is essentiallyall the words,sinceit dwarfs the
numberof functionwords;i.e., [_�k� . Thus, orT_[ � , andso,

[_Tkope v �Ou
That is, the combinatorialdegreeis expectedto be equalto the typical numberof content words
per sentence—notthe typical total numberof wordsper sentence—and,up to a constantfactor,
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Figure9: Distribution of numbersof contentwordspersentencein English. Arrow indicatesthe log-
transformedmean.984sentencesfrom 155authorsweremeasuredfrom texts in philosophy, fiction,
science,politics andhistory. I chosethe secondsentenceon eachodd numberedpage. A word was
deemeda functionword if it wasamonga list of 437suchwordsI generated.A stringof wordswas
deemeda sentenceif it representeda completethoughtor proposition. So, for example,semicolons
were treatedassentencedelimiters,multiple sentencescombinedinto one long sentenceby “, and”
weretreatedasmultiple sentences,andextendedasideswithin dashesor parentheseswerenot treated
aspartof thesentence.
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they may be combinedin any order. To test this reasoning,I measuredthe numberof content
wordsin nearlyonethousandsentences(seelegendof Figure9). The distribution is log-normal
(Figure9), andthemeanof thelogsis 0.7325( ¼]½\¾ ¿ À Á Â ); thelog-transformedmeanis thus5.401,
andonestandarddeviation aroundthis correspondsto the interval [2.715,10.745]. This provides
confirmationof thehypothesisthatthecombinatorialdegreeis dueto therebeingfivecontentwords
persentence

But why aretheretypically five contentwordsper sentence?Oneobvious hypothesisis that
sentencescan convey only so much information beforethey overloadthe utterer’s or listener’s
ability to understandor absorbit. In this light, five contentwordspersentenceis probablydueto
our neurobiologicallimits on working memory, which is a bit above fiveÃ Ä Å Æ ; working memoryis
theextra-grammaticalconstraintfor thecombinatorialdegreeof around5. Thefingerprintof our
working memorymay, then,befoundin therelative rateat which new wordsarecoinedcompared
to thenumberof sentencesutteredby theEnglish-speakingcommunity.

3.3.3 Ontogenyof language

In additionto studyinghumanlanguageat thelevel of theentireEnglish-speakingcommunity, we
maystudyit at thelevel of anindividualdevelopingchild. Childrencombinephonemesinto words,
andwordsinto sentences,andthey eventuallybegin to do socombinatorially. Weknow thatdevel-
opingchildrenlearnnew phonemetypesandword typesthroughtime, andthuseitherPossibility
(a)or (c) apply. Developingchildrenalsohave anincreasingability to stringwordstogether. Ã Ä Ç È�É Ê Æ
It is thereforepossiblethattheir combinatorialdegreeincreasesthroughtime. However, recall that
thecombinatorialdegreeis operationallymeasuredby determininghow thenumberof component
typesscaleswith theactual numberof sentencesexpressed(namely, the inverseof thescalingex-
ponent),not thepotentialnumberof sentences.For all weknow atthemoment,developingchildren
couldindeedincreasetheirability to stringcomponentstogether, but they maynotactuallyusethis
ability to expressall that is within their power, in which casetheir combinatorialdegreemay not
increaseasfastastheir (latent)ability to string wordstogether. To testwhetherchildren’s com-
binatorialdegreekeepspacewith their ability to combine,we may comparetheir combinatorial
degreeandtheir expressionlengthsthroughdevelopment.If combinatorialdegree“keepsup” with
expressionlength,thenthis impliesthatchildrenareusingtheircombinatorialpowersto thefullest.
If thecombinatorialdegreelagsbehind,growing disproportionatelyslowly, thenchildrenmaybe
able to combinecomponentsinto longerexpressions,asevidencedby their longersentences,but
they do not actuallymuchusethis ability. I presentdata—forjust two children—below for the
phoneme/wordhierarchicalsystemandfor theword/sentencehierarchicalsystem,eachfor individ-
ualdevelopingchildren,andwewill seethatin eachcasechildrendoappearto haveacombinatorial
degreethat is increasingassentencelengthincreases:at any point in development,they usetheir
productive power to its fullest.

Ontogeny of words and sentences
To studythedevelopingword/sentencehierarchicalsystemin children,I compileddatafor the

numberof word typesandthenumberof distinctsentencesproducedby a child namedDamonfor
41weeksfrom 12 to 22monthsof age.Ã É Ë Æ Thenumbersof word typesandsentencesdonotappear
to be relatedby a power law, ascanbeseenin Figure10 by how theplot flattensout, decreasing
its slope. A logarithmic plot (not shown)—i.e., Ì versusÍ Î ÏqÐ —appearscomparatively linear,
providing supportfor Possibility(c), which is whatweexpected.

Theplot is probablybestinterpretedasconsistingof two power law regimes.In thefirst regime
the estimatedcombinatorialdegreeis about1, meaningthat the child hasnot yet begun to treat
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Figure10: Logarithm(base10) of thenumberof word typesversuslogarithmof thenumberof sen-
tences,asproducedby onechild namedDamonfrom 12to 22months.

; < = >
Plot is confinedto multiword

utteranceages,whichbeganat about14 months.

wordsandsentencesasdistincthierarchicallevels;it is asif hissentencesareall built with justone
word. In thesecondregime,afterthebend,theestimatedcombinatorialdegreeincreasesto around
2.5, meaningthat the child hasbegun usingwordsin a combinatorialfashionto build sentences.
Sentencelengthdatadonotexist for Damon,andit is notpossibleto directlycomparehiscombina-
torial degreeincreasewith hissentencelengthincrease.However, this is consistentwith thetypical
increasesin themeanlengthutterancesof childrenduringthisperiod.

; < ? >

Ontogeny of phonemes and words
To study the developing phoneme/word hierarchicalsystem,I compiled from Velten

; < @ >
the

numberof phonemetypesandthenumberof morphemes,asproducedby achild namedJeanfrom
11 to 30 monthsof age.[A morpheme is thesmallestmeaningfullinguistic unit.] Figure11 shows
the log-log plot of thenumberof phonemetypesversusthenumberof morphemetypes,andone
canseethattheslopetendsto decreasesomewhatthroughdevelopment,meaningthecombinatorial
degreeis increasing.Theplot of (unlogged)numberof phonemetypesversusthelogarithmof the
numberof morphemes(notshown here)is comparatively linear, againsuggestingPossibility(c), as
we expected.Doesthis increasingcombinatorialdegreekeepup with thechild’s apparentability
to combinephonemesinto words?Thecombinatorialdegreeincreasesfrom around2 to around4,
andscalesup well with themaximumnumberof phonemespermorphemeover thisperiod(Figure
11). This, again,suggeststhat this child utilizeshis combinatorialpotentialto its fullest. It is asif
thechild hassomany expressionsit wishesto saythatit saysall thatis possiblewith its abilitiesat
any time.

3.3.4 Musclesand behavior

In our discussionof hierarchiesin behavior thusfar, thebehavior hasbeenlinguistic or vocal: bird
song,Englishthroughouthistory, andtheontogeny of humanlanguage.Wehavenotyetconsidered
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Figure11: (A) Logarithm(base10) of the numberof phonemetypesversuslogarithmof the num-
ber of morphemes,asproducedby onechild namedJeanfrom 11 to 30 months.- . / 0 Morphemesare
the smallestmeaningfullinguistic unit, andaremostly wordsin this case.(B) Maximum numberof
phonemespermorpheme(a measureof expressionlength)andcombinatorialdegreeversuslogarithm
of numberof morphemes.Combinatorialdegreeis measuredfrom the inverseof the instantaneous
slope(measuredvia linearregressionfor a moving window twelve datapointswide) from thelog-log
plot. Onecanseethatboth themaximumnumberof phonemespermorphemeandthecombinatorial
degreeincreasetogether, andarewell correlatedwith oneanother.
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Figure12: Logarithm(base10) of thenumberof muscletypesversuslogarithmof theencephalization
quotient,for 12 landmammalsandfor birds. Oneconcernis thathumansmayhave a greatermuscle
typecountpurelybecausethey aremuchmorewell studied,andthatthecorrelationmaybebeingdriven
by this. Removing humanfrom theplot leadsto theequationéëêíìïî ð ñ�ò�óõô÷ö�î ì�ò�ò with a correlation
only slightly reducedto øúùúêûìïî ñüö�ð . Numbersof muscletypesweretakenasthemaximumestimate
countedfrom the following sourcesfor eachanimal: human,ý þ ÿ �ïþ þ � macaque,ý þ � � cat,ý þ � ��� � � rat,ý � ù ��� � �
rabbit,ý � � ��� � � guineapig,ý � 	 � dog,ý � 
 � þ � � horse,ý � � � � ù � ox,ý � ÿ ��� � � pig,ý � � � elephant,ý � þ � bird,ý � � ��� 	 � opossum,ý 	 
 �
Encephalizationquotientswerecomputedusingbrainvolumesfrom Ref.91-98;andbodymassesfrom
Ref.98-99.

themorerun-of-the-millnon-linguisticbehaviors. Behaviors, generally, areimplementedvia com-
plex scoresof musclecontractionsý ù � �ïÿ � � ; muscle-contractionscombineto carryoutbehaviors. The
question,then,is whetheror not thereis aninvariantgrammargoverninghow muscle-contractions
makeupbehavioral expressions,andif so,whichof Possibilities(a)through(d) apply. Toattemptto
answerthis I concentratedon 12 landmammals(andonebird species),andcountedup thenumber
of musclestypesin each(seelegendof Figure12).

Thedifficulty wasin measuringthenumberof behaviors theanimalis capableof. Ethograms
provide onekind of measure,andI have begunto explore thepossibilityof usingthem,but in the
researchI describehereI usea notion of brain sizeasa proxy, the ideabeing that biggerbrain
shouldcorrelatewell with behavioral complexity. Using simply brain volume,however, is not a
goodcorrelatedproxy for behavioral complexity becauseanimalswith larger bodiestendto have
largerbrainsevenif they do notappearto besmarter. Thus,any interestingnotionof brainbigness
that is hopedto correlatewith intelligencewill have to factorout bodymass.Theencephalization
quotient doesjust this,measuringhow largethebrainis relative to whatwewouldexpectgiventhe
animal’s body size.ý ÿ ù � Since,acrossthe highermammaliantaxa,brain volumescalesroughly as
the �  � power of bodymassý ÿ ÿ � � � theencephalizationquotientis ��� � � � �� � ÿ � � , where ��� � � � � is the
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brain volumeand � thebody mass.The encephalizationquotientdoes,indeed,highly correlate
with theapparentintelligenceandbehavioral complexity of mammalsandbirds; however, we do
not know whatexactly therelationshipis betweenencephalizationquotientandsizeof behavioral
repertoire. I will make a working, and undefended,assumptionthat encephalizationquotientis
relatedto behavioral complexity by apowerlaw with someunknown exponent.Theencephalization
quotientwascomputedfor eachof the12mammalsandonebird species(seelegendof Figure12).

Figure 12 shows the log-log plot of the numberof muscletypesversusthe encephalization
quotient for the 13 species,and one may observe a law-like trend, with the numberof muscle
typesclearlyincreasing.ThissuggestsPossibility(a)or Possibility(c). A plot of thedataunderthe
assumptionthatPossibility(c) is true(notshown) actuallyleadsto aslightly betterfit; also,analysis
of the instantaneousslopeof the log-log plot shows significantlydecreasingslopeasbehavioral
complexity increases.Theseobservationsallow the tentative favoring of the hypothesisthat the
combinatorialdegreeactuallyincreasesasbehavioral complexity increases.This is not surprising
sincegreaterencephalizationmight be expectedto allow animalsto string togetherlonger and
more complex combinationsof musclecontractions(as well as coding for a greaternumberof
behavioral expressions).I do not have any conjecturesat this time for why mammalsappearto
follow Possibility(c) in this regard. Is thereanoptimaltradeoff betweenincreasingthenumberof
muscletypesandincreasingthecombinatorialdegreeleadingto thescalingrelationship?

3.3.5 Further behavioral dir ections

Thereareanumberof interestingdirectionsI would like to take in thefuture.
I have, as discussedalready, acquireddatafor how musclescombinetogetherto implement

behaviors, but theproxy for numberof behaviors wasencephalizationquotient,which, at best,is
known to correlatereasonablywell with behavioral complexity. Furthermore,encephalizationquo-
tientprobablybestcorrelateswith thehighesthierarchicallevelsof behavior, andtherearedoubtless
many hierarchicallevelsof behavior betweenmusclesandthehighestlevel. I would like to acquire
behavioral repertoiresizedatafrom publishedethogramsfor many kinds of animal,which exist
for a wide varietyof animalsincluding,but in no way confinedto, snailsandslugs� � � � � � � , squid,� � � �
beetles,� �  � � ! � true bugs,� " # � birds,� " $ � " % � fruit bats,� " � � horse,� " " � andmonkey. � " � � " � � Theexpectation
is that thebehaviors recordedin ethogramsareat a hierarchicallevel above musclesbut below the
highestlevel behaviors. For example,ethogramshave 120behaviors for rhesusmonkey, � " � � 111for
humanchildren(McGrew in Ref.48),67 for cat,� " ! � and27 for Leptothorax curvispinosus ants.� � # �
Commonsensetells us that rhesusmonkeys have ordersof magnitudemorebehaviors than120,
whichmeansethogramscatalogbehaviors at a lower hierarchicallevel, a level nearerto thelowest
level of muscles.I thereforeexpectthat thenumberof muscletypesshouldscaleup moreslowly
thanthenumberof ethogram-countedbehaviors, which, in turn, shouldscaleup moreslowly than
thenumberof higherlevel behaviors,asproxiedby theencephalizationquotient,andI hopein this
way to gainmoreinsightinto therulesgoverningbehavioral hierarchies.

It wouldalsobeinterestingto concentrateoncertainbehavioral subsystemsfor asinglespecies,
namelyhuman. The numberof humanmuscletypesand numberof humanbehaviors (as esti-
matedby encephalizationquotient)givesusonly onedatapoint,andno consequentunderstanding
of humansasbehavioral combinatorialsystems.But by partitioninghumanbehavior into certain
subsystems,it maybepossibleto acquirescalingdatafor how humanbrainscombinemusclesinto
behaviors. Onebehavioral subsystemwould bethevocalsystem,whereintherearea certainnum-
berof vocalmusclesandacertainnumberof thingswedo with thosemuscles.Thiswouldprovide
onedatapoint. Anotherbehavioral subsystemmight be thehumanarm(not including thehand):
how many muscletypesarein thehumanarm,androughlyhow many differentthingsdo humans
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do with their arms(e.g., throw, lift, turn, etc.)? As a third examplebehavioral subsystem,facial
musclescombineto make facialexpressions.Othersystemsincludehand,fingerandeye. In each
casethereis a relevant literaturefrom which it shouldbe possibleto get estimatesfor the num-
berof expressions—e.g.,phonemecountsfor vocalmusclesfrom thelinguisticsliterature;armor
handexpressioncountsfrom motordisorderliteratureandtheAmericanSignLanguageliterature;
facial expressioncountsfrom the psychologyof facial expressionliterature. Scalinginformation
obtainedfrom suchdatacould illuminatewhetheror not thehumanbrainhassomecharacteristic
combinatorialdegreefor musclecombinations.

Animal coloniesisanotherplaceripefor study. Insectandotherkindsof coloniesareconvenient
becausethenotionof abehavioral componenttypeis relatively easyto define:thesetof behavioral
componenttypesjust is thesetof highestlevel behaviors of the individual within thecolony, i.e.,
what an individual insectcando. Othermeasuresfor componenttypesmight be the numberof
castes,or thenumberof worker sizeswithin thecolony, theideabeingthatgreatersizevariability
tendsto correlatewith greaterrangeof lower level functionality. Data for the latter have been
collectedin Jaffe& ' ( ) (andfirst plottedin AndersonandMcShea,Ref. 52), andshow a significant
increasein sizevariability with colony size. An undergraduatestudentof minenamedMichaelA.
McDannaldhasput togethertwo exciting plots,eachmeasuringthenumberof antsizetypesversus
the colony size.& ' * ) The first is shown in Figure13 (A), andplots the logarithmof the numberof
distinct worker sizetypes,or physicalcastes,asa function of the logarithmof colony size. The
numberof physicalcastesclearlycorrelateswell with colony size,andincreasesdisproportionately
slowly, aswe would expectof a hierarchicalsystem.Thesecondplot is shown in Figure13 (B),
andit usestheratioof maximumto minimumheadwidth for workersin antcoloniesasaproxy for
thenumberof physicalanttypeswithin thecolony: if the“maxminheadratio” is doubled,thereis,
informally, twice asmuchroomfor physicalsizedifferencesin ants,andsowe might expectthis
measurementto beproportionalto thenumberphysicalsizetypes.Thelog-logplot of themaxmin
headratio versuscolony size(Figure13 (B)) leads,again,to a strongcorrelation;this servesasa
replicationof thefirst figure.Furthermore,theslopesof eachplot areverysimilar, hoveringaround+-, .

, suggestinga combinatorialdegreeof around
. +

. Might this bedueto therebeing,on average,
around10 antsinvolved in the implementationof a colony-level expression?And if so,why 10?
As for measuringthe total numberof expressionsin a colony, if anassumptionakin to theCopy-
InvarianceAssumptionfrom earlier (seeSubsection3.2) holds for colonies—i.e.,coloniesgain
in expressive complexity by having morekinds of expressions,not moreexpressionsin absolute
number(where,here,eachexpressionis a combinationof individual insectactions)—thencolony
sizecanbe usedasa proxy for the colony’s expressive complexity. Thus,preliminaryevidence
supportstheconclusionthatcoloniesascombinatorialsystemsincreasethenumberof component
types,andthusfollow eitherhypothesis(a) or (c) from theintroduction.

As a final future direction, one may look at ourselves as an examplecolony, wherehuman
workers (the components)combinetogetherin an economyto createproducts(the expressions).
Theeconomymaybestudiedasa combinatorialsystemlongitudinally, by studyingthegrowth in
thenumberof occupationtypesthroughtime andalsothenumberof differentproducttypesasa
functionof time.
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Figure13: (A) Logarithm(base10)of thenumberof physicalcastesfor workersin antcoloniesversus
the logarithm(base10) of thecolony size. Dataarefor 24 speciesfrom JaffeÊ Ë Ì Í and16 speciesfrom
otherplacesin theliteraturecompiledby my studentMichaelMcDannald.[Note thatJaffe mistakenly
saysin thelegendof hisTable1 thatthecastevaluesarethelogarithmof variation,but in personalcom-
municationwith him we learnedthatthequantitiesreferto thenumberof physicalcastes,asmeasured
by the numberof bumpsin the frequency distribution of sampledphysicalsizesin the colony.] (B)
Logarithm(base10) of theratio of themaximumto minimumheadwidth for workersin antcolonies
versusthelogarithm(base10) of thecolony size.We expectthatthis ratio shouldscaleproportionally
with thenumberof distinctphysicalsizetypes,andnotethatits slopeis similar to thatin (A). Also, for
eachplot, whencolony sizeis 1 we expectthenumberof castesandtheheadratio to be1, andwe see
thatthe Î -interceptsareindeedeachcloseto zero.
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4 Hierar chical laws and new levels

4.1 Why an invariant combinatorial degree?

In theprevioussectionwe saw thatanumberof radicallydifferentkindsof hierarchicalsystemap-
pearto conformto universallaws(seeTable1), suggestingthereareinvariantgrammarsunderlying
eachsystemof agivenkind. Furthermore,eachkind of systemstudiedthusfar increasesits expres-
sive complexity, at leastin part, by increasingthe numberof componenttypes,somethingthat is
not, in principle,anecessity(i.e.,Possibility(b)). In mostcasesthecombinatorialdegreeappeared
to beinvariant(Possibility(a)),andin someothercasesit appearedto increase(Possibility(c); see
Figure1). AlthoughI put forth ideasfor someof thekindsof systemfor why thescalingbehavior
maybewhat it is, andwhy thecombinatorialdegreemaybewhat it is, I have not discussedwhat
kindsof generalprinciplesmightbefoundacrossthesevariouskindsof system.

Thereareat leastthree(extra-grammatical)reasonswhy a hierarchicalsystemmight conform
to Possibility(a), i.e., to an invariantcombinatorialdegree. The first is simply that thereis some
upperlimit constrainingit. [This is alsothe easiestway to make senseof thosecaseswherethe
combinatorialdegreeis increasingaswell asthenumberof componenttypes:theupperlimit hap-
pensto be increasing.However, this doesnot helpus to understandtheprinciplesunderlyingthe
“decision” for a kind of systemto follow Possibility(c).] Thesecondis that theremaysometimes
be a pressureto minimize the growth in the total numberof components—notcomponenttypes.
The total numberof componentsin a systemis the numberof expressionstimes the numberof
componentsper expression,i.e., ÏÑÐ . Supposingthat the expressionlengthis proportionalto the
combinatorialdegree,to minimize ÏÑÐ requiresminimizing the growth rateof the combinatorial
degree,andkeepingit invariantis thusoptimal.Thispossibilityonly seemedrelevantin ourdiscus-
sionthecell/organism-expression hierarchicalsystem.ThelastreasonI have thoughtof for why a
kind of systemwould have invariantcombinatorialdegreeis thatwhensystemsof that kind have
moreexpressions,they have expressionsthathave, intuitively, completelynovel meaningsor func-
tions. Themeaningsaresonovel thatno combinationof componenttypesfrom a lessexpressive
systemcould possiblycapturethe meaning. Instead,a new componenttype had to be invented,
with its own novel constituentmeaning,andonly with it couldthenew neededexpressionsbebuilt.
This scenariorequiresthat the kind of systemhave a compositional semantics, which meansthat
componenttypeshave fixedmeanings,andthemeaningof anexpressionis a functionof themean-
ings of the constituentcomponenttypes,andof the expression’s syntax. A kind of systemthat
increasedexpressive complexity only in orderto obtainsuch“completelynovel” expressionsI will
call a rich kind of system.Rich kindsof systemswith compositionalsemanticswill have invariant
combinatorialdegreenot becauseof anupperboundon the invariantdegree,but becauseit never
servesany expressive purposeto increasethecombinatorialdegree,astheonly way to getthenew,
neededexpressionsis by theadditionof new componenttypesinstead.

4.2 Why hierarchical levelsat all?

Oneissuewe have not yet toucheduponis why thereshouldbehierarchicallevelsat all. We have
just takenthemfor granted,andsoughtto studythelaws governingthem,but givenno explanation
for why thereareany.

Themostobviousreasonconcernsthecombinatorialpowerthesystemachieves:asmallnumber
of componenttypessufficesfor theconstructionof anexhorbitantlylargernumberof expressions,
anda small increasein the numberof componenttypeshasa disproportionately large influence
on the numberof expressions. This is, for example, why there is not an extraordinarydiffer-
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encein thenumberof cell typesbetweenC. Elegans andmammals—about25 and100cell types,
respectively—andyet the differencein expressive complexity is probablymany ordersof magni-
tudes.This is alsowhy anadultindividualwith avocabulary of around50,000wordtypescanutter
aneffectively infinite numberof sentences.Bird vocalization,ontheotherhand,appearsthatit may
notbecombinatorial,or at leastnotvery;doublingthenumberof songsthereforerequiresdoubling
thenumberof syllabletypes.Thereis, however, acostto beingcombinatorial,i.e.,acostto having
hierarchy: the kind of systemmusthave someapparatusby which to imposea grammar, so that
componentscanbe combinedappropriatelyto obtainexpressions.Componentsmustbe guided
somehow, or guidethemselves,into only certainallowablearrangements.Suchguidancerequires
information,or programming,from somewhere. For electronicdevicesthe grammarfor the user
interfaceis in theheadsof theusers.For Englishthegrammaris, again,in thehead.For cell types
thecellspossesstheinformation,andmayutilize naturalprinciplesof self-organizationto domuch
of thework in determiningthegrammar. Ò Ó Ô Õ Bird vocalizationmayavoid this needfor a grammar:
thesesystemsmay, instead,just effectively adda new syllabletypeevery time they wish to adda
new song.In thissense,syllabletypesjust are thesongs.

4.3 Why new hierarchical levels?

In all thediscussionthusfar, only two hierarchicallevels werediscussed.In someof thestudied
kinds of system,the levels wereprobablynot adjacent;thereweresurely levels in between.For
example,theremaywell belevelsin betweenthatof cellsandorganism-expressions.And thereare
certainlyhierarchicallevelsbetweenmusclecontractionsandthetotal behavioral repertoire.

At somepoint in thehistoryof akind of hierarchicalsystemthathasmorethantwo levels,there
mayhave beenfewer levels,andat somepoint just two levels. What reasonsaretherefor adding
a new hierarchicallevel? Whatusedoesit serve thesystem?To understandthis, considera kind
of systemwith aninvariantgrammar, andhaving aninvariantcombinatorialdegree Ö ×ÙØ Ú dueto an
upperlimit. While thesystemhasonly two hierarchicallevels,thescalingrelationshipis givenby

ÛÝÜßÞáà â ã ä�å æ-ç

Now supposethat a new hierarchicallevel is addedbetweenthem,andthat the numberof entity
typesatthis level is è . I will call thelowestlevel objects

Û
-objects,themiddlelevel è -objects,and

thehighestlevel
Þ

-objects;thenumberof objecttypesat eachlevel is
Û

, è and
Þ

, respectively.
While it wasthecasethat

Û
-objectscombineddirectly to make

Þ
-objects,now

Û
-objectscombine

to make è -objects,which, in turn, combineto make
Þ

-objects.Let ussupposethat just asmanyÞ
-typesmustbeexpressedasbefore,it is just thatnow their componentsare è -objects.And, let

ussupposethateach
Þ

-type requiresjust asmany componentsasbefore;that is, each
Þ

-type,or
expression,now haséêè -objectsin it insteadof é Û -objects;moreweakly, I amsupposingthatthe
combinatorialdegreebetweenè and

Þ
is whatever it wasbetween

Û
and

Þ
, namelyÖ ×ÙØ Ú . So,

è ÜßÞ à â ã ä�å æ ç

The lowest level’s taskhasnow shifted: it mustnow just worry aboutmaking è -objects,not
Þ

-
objects.Supposenow thatthecombinatorialdegreefor

Û
-objectsis thesameasit usedto be, Ö ×ÙØ Ú .

That is,
Û

-objectshave gottenno better(or worse)at combininginto higherlevel objects.Thenit
follows that ÛëÜ è à â ã ä�å æ ç
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Now supposewe only have accessto ì and í , andwish to seehow they scalerelative to one
another. By combiningthelasttwo equationswe maysolve for ì in termsof í .

ìÝîßïñðò ó�ô õ1ö

ìÝîø÷ í ðò ó�ô õ�ù ðò ó�ô õ1ö
ìÝîßí ðò ó�ô õ�ú ðò ó�ô õ3ö
ìëîßí ðò ûó�ô õ3ü

Thatis, ì now scalesagainstí with exponentof not ý þ ÿ ��� � asbefore,but with exponentý þ � ÿ����� ��� .
Thus, the combinatorialdegreefor the ì / í pair of levels is no longer just ÿ ��� � , but ÿ����� � . By
addingjust onehierarchicallevel, thecombinatorialdegreefor the ì / í systemhasbeensquared.
If it was5, it will now be 25. The growth in the numberof lowest level componenttypes—ì
types—will thusbedramaticallyslowed,without losingexpressive power. This is anextraordinary
gainin combinatorialdegree.Moregenerally, adding	 new levelswouldmodify thecombinatorial
degreefrom ÿ ��� � to ÿ 
 ����� � . Adding hierarchicallevels, then,allows systemsto exponentiallyin-
creasetheir combinatorialdegree,andaccordinglyto keeptheirnumberof lowest-level component
typesvery low! Miniscule changesin the the numberof ì typesresultsin an explosionof new
expressionsat thehighestlevel.

This is why organismsvary soastronomicallyin complexity, yetvary solittle in numberof cell
types;therearehierarchicallevels in between.This is why sucha small numberof phonemes—
typically around40—canproduceeffectively infinitely many complex ideas;therearemany hierar-
chicallevelsin between.This is why thevariability in thenumberof muscletypesamongmammals
is low, andyet thehighestlevel behavioral repertoireswould appear, intuitively, to vary wildly be-
tweentheapparentlylessbehaviorally complex mammalsandourselves.Generally, if onelooksat
the towersof hierarchicallevels in organisms,andfocusesat whatever is the rock bottomlowest
level, weexpectto find thatthenumberof componenttypesat thatlevel hasstayedinvariantacross
organisms,thereasonbeingthatthecombinatorialdegreefor it in building whateveraretheobjects
at thehighestlevel shouldbeso large that thegrowth in thenumberof componenttypesis effec-
tively zero. For example,a combinatorialdegreeof 25 would imply that ì î í � � � � . Supposing
theproportionalityis equalityhere,when ì���� , í���� ü � ��� ý � � . Supposethatasystemwantsabit
moreexpressionsthanthis. Then ì will increaseto 3, in which casethesystemwill suddenlybe
capableof � ü ��� � ý � � � expressions,eventhoughit only initially wanteda little morethan � ü � ��� ý � �
expressions.This is morethan ý � ö � � � timesmorethanthe systeminitially wanted. As systems
of thatkind becomemoreexpressive, they will not needto increaseì againuntil their expressive
complexity increasesby morethan ý � ö � � � fold, andthey will thusappearto haveaninvariantnum-
berof componenttypes,when,in fact,they justhave a largecombinatorialdegreedueto themany
interveninghierarchicallevels. Combinatorialdegreesashigh as ý � � would bepossiblewith just
four levelswith combinatorialdegreesbetweenadjacentlevelsof, respectively, 5, 5 and4; in such
a case,thebottomlevel numberof componenttypesmaynever have to increaseover thecourseof
theuniverseto obtainthehighestlevel expressivecomplexity. It is for observationsof thiskind that,
for example,four basepairsmayforever sufficeasthebottom-level componenttypesin organisms;
or alternatively, why lessthantwo dozenaminoacidsmayforever besufficient building blocksfor
proteins.

Theseobservationsgive usanotherpossibleinterpretationfor hierarchicalsystemsthatappear
to follow Possibility(c), i.e., wherethenumberof componenttypesandthecombinatorialdegree
increases.Theearlierinterpretationwasthat theexpressionlengthwaslengthening,but it is also
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possible,instead,that a hierarchicallevel is being addedbetweenthe two. A new hierarchical
level will not appearall at once(as it did in my simpleexampleabove). Instead,it will appear
incrementally, andthuswe would expectto seethecombinatorialdegreeincreasingincrementally.
In a certainsense,addinga hierarchicallevel doesincreasethe expressionlength,sincethereare
more  objectsinvolved in each! -object,so increasingexpressionlengthis just a moregeneral
interpretation,consistentwith thepossibilityof theadditionof anew hierarchicallevel.
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