
TRLabs Report

on

Query for Sensor Networks: Issues, Techniques, and
Directions

By

Sayed Ahmed
sayed@cs.umanitoba.ca

May 26, 2004

Supervisor
Prof. Rasit M. Eskicioglu

rasit@cs.umanitoba.ca



Abstract
Advances in hardware for sensor nodes that combine sensing devices, embedded

processors, and communication components have made the large-scale deployment of
sensor networks a reality. Various sensor network applications ranging from habitat
monitoring to military applications require sensor nodes to collect huge amount of data
over a continuous time period. For the placement, management, and processing of the
sensor data, a data storage, management and query processing policy is necessary. Pre-
viously, sensor data was only carried to the base stations and stored there for offline
processing and querying, and there were no storage at the sensor nodes. However,
now-a-days the view of the sensor database is treated as a distributed database. For
efficiency purpose and to conserve battery power sensor data is also temporarily stored
in tiny databases at sensor nodes and some processing is also done at the tiny sensor
nodes. Besides, the individual sensor network spread over a large geographical area
can also be interconnected to form a wide area sensor network like the Internet. The
Intel IrisNet is such an example. In such configuration, the base station databases are
definitely distributed over a large area and the data can also be replicated to inter-
mediate workstations to provide faster query response. Efficient querying and caching
strategy for this wide area sensor database is provided. In this paper, we motivate the
view of the sensor database as a distributed database and attempt to identify the key
query processing techniques used in sensor networks, evaluate them in terms of effi-
ciency, scalability, and applicability and outline the most challenging future research
directions. We start by identifying a set of design goals and challenges related to query
processing over sensor networks. The evaluation of the techniques is guided by the
distinctive query processing features supported by both conventional and wide area
sensor networks.

Keywords: Sensor networks, conventional and wide area sensor networks, query
processor, distributed database, streaming data, continuous queries.

1 Introduction: Motivation and Objectives

Recent improvements in technology have enabled the widespread deployment of sen-

sor networks consisting of a large number of sensor nodes with sensing, computation,

and communication capabilities. Sensor networks aim at providing an efficient and

effective bridge between physical and computational worlds. Typical sensor network

applications show a great deal of diversity including contaminant transport monitoring,

marine microorganisms analysis, habitat sensing, seismic and home monitoring, and

more. From small, low-powered, and wireless sensors to web cams, microphones, and

pressure gauges, pervasive sensors provide excellent new services for these applications.

Querying and monitoring the physical world is one of these services bearing utmost

importance. Consider for example, a conventional sensor network used to detect the

presence and location of a specific bird in a forest matching the birds murmurings and

2



physical characteristics. Sensors are arbitrarily and densely deployed throughout the

forest and the sensors collect data over a continuous time period. The data can be

directly transferred to the base stations for analyzing the existence of a bird at the

base stations while storing the data in tiny databases in sensor nodes temporarily,

analyzing the data and coordinating with neighbors also performing some aggregation

and operation to decide whether the data is useful or not and then sending the useful

data to the base stations can effectively reduce communications and preserve battery

life. For such application, a tiny database is required at each or most of the sensor

nodes, an efficient query plan is needed to decide which intermediate nodes will store

and perform aggregation, processing or filtering also a plan is needed to decide what

part of query processing should be done in-network and what part should be carried

out in the base stations. Now consider a Trip Planner service, another example of wide

area sensor network, used for finding out the current traffic condition of streets leading

to a users destination. The user enters into a PDA (or a car navigation system) his ori-

gin and destination and gets back information regarding the traffic condition of every

possible street that leads to the destination. A three-fold requirement is envisioned to

create such a Trip Planner service. First, sensors networks located in different locations

spread over the streets capable of determining the current traffic rate. Second, a sensor

database is needed that can store dynamic information such as the current traffic rate

and the speed of vehicles along with some static information such as possible ways to

reach the destination. Third, a web accessible query processing system is needed to

provide replies to high-level user queries.

Unfortunately, the resource constraints related to sensor nodes such as computa-

tion, communication, power consumption, uncertainty in sensor readings have posed a

numerous challenges in query processing for sensor networks. Therefore, research on

efficient query processing for conventional sensor networks has become an important

activity. Besides in wide area sensor network an easy web accessible interface is needed

for the users to pose their queries also directing the queries to the appropriate site is

very important as response time is critical. To this end, databases in sensor networks

are recently attaining a great attention of researchers.

So far, reasonable work has been done on different query processing techniques in

the context of both conventional and wide area sensor networks. Conventional sensor

networks consist of very small, power-constrained, wireless sensors having very simple

processors, little memory and limited sensing capabilities. The Directed diffusion [12],

the Cougar approach [3, 23, 24], the TAG [16], the Fjords [15] and some other tech-

3



niques have been devised for querying the conventional networks. These query process-

ing techniques operate directly on continuous and never-ending streams of sensor data

and take special care on using low power as the sensor nodes are power-constrained.

Wide area sensor networks interconnect conventional sensor networks spread over a

large geographical area. Besides, wide area sensor networks can have large (powered

and high-bit-rate), intelligent sensors [10] like web cams, pressure gauges with storage

and processing power. Web cams can be placed in all the parking spaces in a wide re-

gion to overlook the free parking spaces. The web cams of a parking space form a local

sensor network while networks in different places create a wide area sensor network as

a whole when interconnected to each other or when all of them are connected to the

Internet. Databases used by these networks are also dispersed and contain data that

correspond to the most recent updates by the sensors. Unfortunately, little research

has been conducted on the query processing in wide area sensor databases. The IrisNet

(Internet-scale Resource-intensive Sensor Network Services) project works with wide

area sensor databases and develops a novel query processing technique that is applica-

ble to hierarchical distributed databases created by any wide area sensor network.

Our overall strategic goal is to identify the key features adopted by current query

processing techniques for sensor networks, evaluate them in terms of efficiency, scala-

bility, applicability, and reliability and to outline the most challenging future research

directions for the development of new techniques. We envision providing emphasis on:

Identifying the requirements and challenges for sensor networks queries:

The requirements for query processing may vary depending on the types of sensor

networks and the applications being deployed. Nevertheless, a number of common re-

quirements are shared among all sensor network applications regardless of the usage

such as a simple query language, aggregation of query data, less query response time,

and multi query management. At the same time, sensor networks pose a number of

query processing challenges due to the resource constrained sensor nodes (low power,

small size, and less storage) and the nature of sensor data.

Identifying the interoperability and integration issues: Query processing

techniques should be compatible to both conventional and wide area sensor networks.

Besides, integration of conventional and wide area sensor databases should be sup-

ported to provide a common query language interface.

Optimum design: The first tendency could be to optimize each and every compo-

4



nent to the maximal extent. Identifying the area where to put the main optimization

effort is important. For example, supporting more in-node aggregation operations, fil-

tering sensor data, and supporting the usage of intermediate result for different queries

could be important design issues.

Identifying trade-offs due to resource constraint: A number of possible trade-

offs should be considered depending on the sensor node resources. For example, in-

creasing node computation to minimize the amount of communication in order for the

power consumption to be kept a minimum could be a design goal where the underlying

network architecture supports sufficient local storage.

The remainder of the paper is organized as follows. Section 2 outlines important

query processing challenges. Section 3 then presents different query processing tech-

niques and evaluates them. Next, section 4 provides an integrated (conventional and

wide area sensor database) query processing architecture, section 5 provides the chal-

lenging future research directions for the development of new querying techniques.

Finally, the paper ends with conclusions in section 6.

2 Query Processing Challenges

In this section, an overview of research problems for query processing in sensor net-

works is presented in the context of both conventional and wide area sensor networks.

Mentionable, as conventional sensor networks are part of the wide area sensor net-

works therefore challenges for conventional sensor networks are also part of the wide

area sensor networks.

2.1 Conventional Sensor Network Databases

Streaming Data: In traditional database systems, data is static and the query pro-

cessor pulls data from the disk, organizes the movement and handling of data but sensor

networks involve streaming data where data is continuously pushed to the query pro-

cessor, which must react to the arriving data. The data arrival rate sometimes is

extremely high or bursty, hence processing time or memory usage should be handled

carefully. Data is dynamic in nature so must be processed dynamically as it arrives

and can be spooled to the disk in background mode [20].

5



Continuous Queries: Monitoring applications are common sensor applications

where queries remain continuously active. When new data comes or an event happens,

data are supplied to the stored and continuously active queries whereas in a tradi-

tional database system, the arrival of queries initiates access to the static database.

The streams pushed to continuous queries can be effectively infinite leading the query

processors to include different query semantics, non-blocking query operators, and tol-

erance of failure [20]. Continuous queries can be extremely long lived, which makes

them vulnerable to changes over time in performance or data characteristics and qual-

ities.

Resource Constrained Sensor Nodes: Sensor nodes are resource-constrained

having very low power, limited memory, very simple processors, and limited sensing

capabilities. Besides, wireless communications consume much battery power. There-

fore, the query processor should be designed so as to overcome these limitations [23].

Aggregation: Aggregation refers to collecting, filtering, and processing sensor

data in the network, and supplying the result to the central nodes. Aggregation re-

duces wireless communication and hereby minimizes power usage. Hence, an efficient

aggregation plan is needed considering the volatility of the underlying data [23].

Query Languages: Technological development is leading to various sensor based

applications driving to diverse requirements for the query language. Hence, the devel-

opment of a user friendly, efficient, generalized query language is at a difficult point [23].

Query Optimization: A complex query can consist of a lot of parameters and

operators along with diversified user requirements. A great variety of optimization

options are also available for such complex queries but it is the query processors re-

sponsibility to find a good plan within a short computational time to execute these

queries [23].

Catalog Management: To generate a good plan within a short time for user

queries, the query optimizer needs to know the current status of the network. Data

about the network topology and status of the network helps to calculate the costs and

benefits of different query plans and make a good selection among them [23].

Multi Query Optimization: Simultaneous multiple query support and optimiza-

tion is another challenging issue [23].

6



2.2 Wide Area Sensor Network Databases

In addition to the above mentioned query processing challenges wide area sensor net-

works offer some unique query processing challenges not common to the conventional

sensor networks. They are as follows:

Data Partitioning and Placement: Physical placement and keeping track of

sensor data is an important issue due to the huge volume of data and multiple and

geographically dispersed databases. The data is partitioned in such a way that query

processor can find appropriate site for providing results within a short period [8].

Caching: An efficient caching strategy can help a lot. If data is cached depending

on the query and application in different sites they can provide dramatic decrease in

query response time [8].

Query Processing and Query Language: The query language should support

diverse applications and at the same time should be efficient and user friendly. The

query processing technique should be able to handle a large number of sensors, diverse

queries, multiple concurrent queries, and large volumes of data [8].

3 Different Query Processing Techniques

This section presents different query processing techniques for both conventional and

wide area sensor networks with their relative advantages and limitations. First we dis-

cuss different query processing issues in conventional sensor networks that work as the

terminal of wide area sensor networks. Therefore, query processing and optimization

architectures in conventional sensor networks affect the wide area sensor network in a

great extent. Besides, a conventional sensor networks in many instances are treated as

distributed databases such as the Cougar Approach, TinyDB. As a result distributed

query processing techniques are also applicable to these instances.

7



3.1 Conventional Sensor Networks

3.1.1 Directed Diffusion

Directed diffusion defines a data centric dissemination and co-ordination paradigm for

delivering sensed data to the user. User queries or tasks are inserted as descriptive

interest messages through a sink or entry node such as Type = four footed animal,

Interval = 20 ms Duration = 10s, Rectangle = [-100,100,200,400]. The interest query

traverses from the sink node to the destination nodes using broadcast/multicast to the

neighbors. During the traverse, gradients are created to keep track of delivering nodes

from which interest messages are received with some identification of the interest mes-

sage. Target nodes and neighbors co-operate to sense an object and the results traverse

back to the sink following the gradients to the sink [12]. Each node contains an interest

cache to store the distinct interests. From the same sink multiple queries can be posed

or different users can pose different or same queries from multiple sites. So an interest

cache contains multiple distinct interest entries. Under each distinct interest entry

there are several gradients containing data rate and duration fields with the address

of the node from where interest message is received. When an object is detected data

messages traverse through gradients from sources to sinks. Each node also contains

cache for distinct data messages so that the same message is not forwarded multiple

times. Here we see at each node a storage is needed. The size of the storage is depen-

dent on the user requirements and the number of queries and events. Efficient query

plan is needed to better utilize the stored data also aggregation on the stored data

can provide faster and accurate event detection. Co-ordination plan among multiple

sensors (i.e. database sites) can help [12].

Directed Diffusion is non-declarative and significantly lower-level and not much user

friendly. Hence Directed Diffusion pays a lot in respect of usability and it is not much

suitable for aggregate queries. However, in directed diffusion, limited data aggregation

is performed on every node on the path from the source of the data to the sink of

the interest. Directed diffusion has significant energy efficiency; even with relatively

un-optimized path selection it provides sufficient savings in energy efficiency [12].

3.1.2 Cougar Approach

Cougar approach mainly focuses on in-network distributed query processing. In case of

centralized traditional sensor networks, sensors are preprogrammed, and always send

data to the central node for offline querying and processing. In addition, the network

8



and the applications are static. Besides, there is huge consumption of battery power

due to huge wireless communications [3, 23, 24].

Cougar approach solves these problems to a great extent. The main idea of cougar

approach is in-network data processing. The sensors are capable of storing some data

and perform processing like aggregating records or eliminating irrelevant records and

send only the necessary data to the base station. Besides, a declarative, user friendly

query language is developed. Hence, users are shielded from the internal structure of

sensor networks.

There is a query proxy layer in each sensor node in between network and application

layer. Whenever the gateway nodes (adjacent to base) receive queries from the users

at base stations a query optimizer residing in the gateway node generates distributed

query plans. Query plan specifies data flow routes and exact computation plan i.e.

which node will do computation and which node will collect data. The plan is then

delivered to all the related sensors of this plan. Also control structures are needed to

synchronize sensor behavior. Query optimizer assigns a leader for a group of sensors

called slaves or non-leader nodes who will collect data and send data to the correspond-

ing leader node. Leader nodes do computation [3, 23, 24]. To the end, Cougar approach

introduces aggregation, in-network-query processing, query proxy layer, a declarative

query language in addition to using less battery-power [3, 23, 24].

Cougar approach views the sensor network as a huge distributed database system

where each sensor node is a database site that holds part of the data. So, cougar ap-

proach tries to adapt existing techniques from distributed and heterogeneous database

systems to sensor networks. Cougar approach proposes a loosely coupled distributed

architecture to provide aggregation and computation [3, 23, 24].

Query plan for a non-leader node is shown in figure 1. Non-leader nodes read sensor

values using a scan operator periodically or depending on the event and then send data

to the leader node.

The query plan for the leader node is shown in figure 2. The leader node in the

figure2 contains an AVG operator to compute the average of all the sensor readings

sent to him by the non-leader nodes under this leader node. The leader nodes can

contain several application oriented operators and rules [3, 23, 24].

9



Figure 1: Query plan at non-leader nodes [23].

Figure 2: Query plan at leader nodes [23].

3.1.3 Acquisitional Query Processing (ACQP)

ACQP works in such a setting where the data to be processed does not exist at the sites

when the query is issued but data is gathered by collecting samples from special sensing

devices on the fly. ACQP uses different techniques to decide when and where to sample

and also which data to be delivered to the central nodes with the combination of in-

network aggregate processing like cougar approach. Based on these concepts, TinyDB,

a DBMS for sensor networks is built. Unlike many solutions for sensor query, TinyDB

systems do not need to be programmed with C code for sensors. Instead, similar to

traditional DBMS systems, TinyDB provides a simple, SQL-like interface to specify

the query. In addition, the query can integrate additional parameters such as the rate

10



at which data should be refreshed. Upon receiving a user query, TinyDB collects data

from the sensor nodes, filters, aggregates, and then delivers to a workstation using

power efficient in network processing [14, 17].

Figure 3: TinyDB Architecture [14].

3.1.4 TinyDB

TinyDB features are as below [2]

• TinyDB runs over TinyOS operating system for sensor networks.

• TinyDB provides a simple, SQL-like interface to specify user query integrated

with additional parameters such as expected data rate to use.

• TinyDB, needs to be installed onto each mote in the sensor networks as well as

at the base stations.

• TinyDB provides a Java API for writing applications that query sensor networks.

• TinyDB also comes with a simple graphical query-builder and result display sys-

tem that uses the API.

In addition, TinyDB provides the following features [2] those indirectly help query

processing.

• Metadata Management: In TinyDB, the metadata catalog maintains the at-

tributes and commands available for querying and invocation. Attributes can be

sensor readings or internal software/hardware parameters.

11



• High Level Queries: TinyDB uses a SQL like declarative query language that

makes user queries as well as application programs to be written easily. With the

change in sensor network topology or hardware the query semantics need not to

be changed.

• Network Topology: TinyDB manages the network status and topology by

tracking neighbors, maintaining routing tables, and Ensuring that every mote in

the network can efficiently and (relatively) reliably deliver its data to the user.

• Multiple Queries: TinyDB allows simultaneous multiple queries that can be of

different sample rates, and access different sensor types. TinyDB can effectively

share works and intermediate results among simultaneous multiple queries.

Figure 4: A Fjord: Join [Remote Node, Sensor] with filters A and B [15].

3.1.5 Fjords Architecture

The Fjords architecture [15] supports and handles multiple simultaneous queries over

many sensors, and reduces sensor resource requirements while also ensures high query

throughput. The low level architecture of a sensor network stream query processor

is introduced using two techniques. First, Fjords architecture combines proxies, non-

blocking operators, and conventional query plans [15]. Second, sensor proxies serve as

a bridge between sensors and query plans, using sensors to facilitate query processing

while being efficient to use their power, processor, and communications limitations.

12



The Fjords architecture provides support for combining streaming data with disk data

i.e. previous data in the database. This database is queried by both traditional queries

and continuous queries. Fjords allow integration of multiple queries in a single query

plan and can efficiently handle multiple inputs and outputs concurrently. Traditional

databases only contain static data but do not have much support to integrate streaming

data with static data but for sensor network applications this combination is a must.

Therefore, Fjords provides a hybrid database storage approach and querying support

on the database. Such type of storage and querying approach is a must to handle

continuously changing stream sensor data also for any system that handles variable

nature data. Telegraph Query Processing System [5], tries to extend traditional query

processing techniques to a wide variety of nontraditional as well as variable nature data

sources. Telegraph when integrated with the Fjords, empowers a query processing sys-

tem that can query over networks of wireless, battery powered sensor devices efficiently

which is not possible using traditional query processing approaches [15]. A figure [15]

representing Fjords architecture is given in figure 4.

3.1.6 Continuous Queries

Recently, there has grown much interests in querying streaming data, and continuous

query processing system over streaming and continuous data from wide variety of

sources. TelegraphCQ [5] is a recent project at Berkeley to handle continuous queries

which focuses on the extreme adaptability of the query processor with streaming or

continuous or constantly changing data and it has the required novel architecture to

adapt. NiagaraCQ [6] is an XML-based engine that tests with different static plans

for continuous queries and using the efficient plans built a continuous query processing

system. Also in NiagaraCQ two queries having the same input can share a module.

Babu and Widom [1] deal with STREAM, which focuses on computing approximate

results, analyzing the memory requirements of posed queries and running queries in

a bounded amount of memory. The Aurora [4] system works with quality-of-service

for queries to meet the need for heterogeneous user requirements. The computation of

correlated aggregate queries over streams is addressed in Gehrke et al. [9]. Gehrke et

al. [9] also presents efficient techniques to obtain an approximate answer in a single pass.

Yang et al. [22] discusses data structures for computing and maintaining aggregates

over streams to support fast lookup of aggregate results based on time line. Sadri et

al. [19] proposes a query language to express continuous queries named as SQL-TS.

The SQL-TS is an extension to the SQL which expresses queries in terms of time-series

of data [19].

13



3.2 Wide Area Sensor Networks

There is little research on wide area sensor databases while the Intel IrisNet project

has done a major work to address the challenges to support a large number of sen-

sors and high query volumes in wide area sensor databases. The sensor database is

partitioned across multiple sites that operate in parallel. User queries are directed to

the sites that contain the results. A site manager called organizing agent works in

each site. Communications with the sensors are through sensor proxies called sens-

ing agents, which are the powered and internet connected PCs. Sensor proxies collect,

filter, and aggregate data then send update queries to the sites that own the data [8, 10].

To make queries flexible, easy to use and to support the growing trends to XML

standard in the IrisNet XML database system is used. XPATH or XSLT for query-

ing, and SixDML or XUpdate for updates are used. The distributed site hierarchy is

represented as an XML document. The data in sensor networks is fairly diverse and

heterogeneous, and hard to capture in a rigid data model. The schema of the data

needs to be constantly adapted to support the growing and diversified needs of the

users, and evolving capabilities of the sensors. Dynamic insertion and deletion of new

fields is easy in XML. Besides, as sensors take data from a geographic location, it is

quite natural to organize the sensor data into a geographic/political-boundary hier-

archy (as depicted in Figure 5). Representing and making use of such a hierarchy is

quite natural in XML, but very challenging in the relational, or an object-relational

data model [8].

Sensor data is placed in any number of host nodes and near to the sensors but for ef-

ficient querying data are cached to anywhere depending on the needs of the queries and

applications. An efficient partitioning and caching strategy supporting partial match

caching is presented which ensures that even partial matches on cached data can be

exploited and that correct answers are returned. A dynamic self starting distributed

query is supported where the queries based on the XPATH query statement and the

XML document find the least common ancestor (LCA) of the hierarchical database

fragments where query results exist and a DNS like server finds the IP address of the

LCA. Moreover, a novel query-evaluate-gather based on XSLT determines which data

of the local database is part of the query result and how to collect the missing data [8].

The IrisNet has similar structure with DNS [18] and LDAP [21] but DNS, and

LDAP support a small set of lookup queries whereas IrisNet supports rich query lan-

14



Figure 5: Site hierarchy [8].

guages. Latest works on peer-to-peer databases [7, 11] are quite similar to the IrisNet

works. The IrisNet is mostly hierarchical but for performance reasons, the partici-

pating sites are treated as co-operating peers. The IrisNet differs from peer-to-peer

databases because of its query processing part, caching, and partitioning strategies.

However, DNS, and LDAP support a small set of lookup queries whereas the IrisNet

supports rich query languages like XPATH and XSLT.

Latest works on peer-to-peer databases [7, 13] are quite similar to the IrisNet works.

The IrisNet databases are organized mostly hierarchically but for performance reasons,

the participating sites are treated as peers who co-operate with each other to store and

query data. However, the IrisNet differs considerably in query processing part than

these works because it uses XML and the XPATH query language.

3.2.1 Query Processing in Wide Area Sensor Networks

Consider the following XPATH query as provided in [8] as an example of a challenging

query in wide area sensor networks using XPATH query.

/usRegion[@id=NE] /state [@id=PA] /county [@id=Allegheny] /city[@id=Pittsburgh]

/neighborhood [@id=Oakland OR @id=Shadyside] /block [@id=1] /parkingSpace

[available=yes]

The query asks for the number of free parking spaces in Oakland and Shadyside.

Suppose, the query is executed in a site containing the following XML document frag-

ment [8].

15



<usRegion@id=NE><state@id=PA><county@id=Allegheny><city@id=Pittsburgh>

<neighborhood@id=Oakland><block@id=1>

</parkingSpace><parkingSpace@id=1><available>yes</available></parkingSpace>

</parkingSpace><parkingSpace@id=2><available>no</available></parkingSpace>

</block></neighborhood>

</city></county></state></usRegion>

The query result contains a free parking space in Oakland, block one. The chal-

lenge is to decide whether this is the complete answer or not as the result does not say

anything about Shadyside. Shadyside may not have a free parking space or the local

database does not contain information about Shadyside. However, the query result

does not indicate any of the two possible cases [8].

To remove the problem one might split the query into two queries, one for Oakland

and another for Shadyside. But the result is all the same. Second, placeholders might

be introduced in the database that tag missing data. However, data for all neighbor-

hoods in Pittsburgh should be included in the site which is not a scalable solution.

Finally, metadata like telling what part of the XML document is in the site database

can be introduced. A good approach is to integrate the database itself with metadata

on what part of the XML document is in the site database, as tag attributes associated

with the relevant portion of the database. The attributes must indicate what data

are present or missing also how to gather the missing data. However XPATH is not

sufficiently powerful to utilize these tag attributes. Hence, XSLT is used [8].

3.2.2 Proposed Solution to Query Processing Challenges

In this section different parts and schemes of the IrisNet query processor will be dis-

cussed.

1. Data Partitioning There are two distinct parts for data partitioning. First,

data ownership that indicates which node owns what part of the data, and second,

data storage which describes the actual data stored at each site. To facilitate data

partitioning certain nodes in a document are defined as IDable nodes (figure 6),

who have an id attribute which is unique among its siblings with the same element

name but whose ID type attribute (¡element name, id¿) is globally unique. The

root as well as the parents of the IDable nodes is also IDable nodes. IDable

16



Figure 6: IDable nodes in a document [8].

nodes contain two types of information. First, local information which is defined

to be the document fragment containing (1) all its attributes, (2) all non-IDable

children and descendants, and (3) the IDs of IDable children second, local ID

information which is defined to be the document fragment containing (1) ID of

the node (2) the IDs of all its IDable children [8].

2. Data Ownership & Storage

Each site owns an arbitrary set of nodes from the document following two rules [8].

First each node must be owned by exactly one site. Second, only IDable nodes

can have owners different than their parents. This provides great flexibility in

partitioning leading to many alternative partitions. For example a site may own

a node, a few grandchildren, and cousins, but not the intervening nodes in the hi-

erarchy. In spite of this flexibility, the algorithm is able to find the correct answer.

The data, stored at each site is an arbitrary combination of either the local ID

information or the local information of a set of nodes. Two constraints are main-

tained on the stored data. First, if a site owns a node it must store the local

information for the node. Second, if a site stores the ID of a node the site must

store the local ID information of its parent i.e. the local ID information of all the

ancestors of this node is also stored [8].

17



To ensure efficient and correct query processing, a special attribute called status

is maintained to summarize the stored data for a node. It has four values. First,

owned i.e. the site owns the node and contains local information of the node and

at least the local ID information of all its ancestors. Second, complete i.e. the

site contains the same information like owned but does not own the node. Third,

ID-complete i.e. the site has local ID information of this node and all its ancestors

but does not contain all the local information for the node. Fourth, incomplete

i.e. the site has only its ID. A site must fall into one of these categories [8].

Hence, when a site stores information about a node it also at least stores the IDs of

all its IDable children and also the IDs of all the ancestors and their siblings. The

site can use its document fragment to answer the query or it knows which parts

are missing. The missing parts are always the IDable nodes and the information

in the sub trees below them [8].

3. Caching

The purposes of caching are:

• Providing flexibility in data replication dynamically at multiple sites

• In spite of dynamic caching maintaining efficient and correct query processing

In the Intel IrisNet four caching strategy are provided

• Storing Additional Data

• Caching Query Results

• Partial Match Caching

• Evicting (Cached) Data

Storing Additional Data: In this scheme a site can hold an additional data

fragment along with its regular data fragment but the added document fragment

• (C1) must be a union of local information or local ID information of some

nodes [8].

• (C2) if contains local information or local ID information for a node, should

also contain the local ID information for its parent (i.e. all its ancestors) [8].

This addition of new document fragment should not violate the basic data parti-

tioning and fragmentation rules.

Caching Query Results: In the IrisNet a query is forwarded to the LCA first

and then it recursively goes down to the hierarchy to pull together the answer

18



and whenever a (partial) answer is returned to a site, the answer is cached at the

site. This approach has two benefits [8].

The same site can answer to later queries on the same data thus avoiding gathering

up the answer again [8]. The creation of additional copies of the result that

distribute the query workload over multiple sites [8].

Partial Match Caching: It guarantees that even partial matches on cached

data can be utilized in generating correct answers efficiently [8].

Evicting (Cached) Data: Any data from any site can be removed but the

removal must be in units of local informations or local ID informations of IDable

nodes and all the data partitioning rules mentioned above remain valid [8].

4. Finding Sites

Issue:

When a query is posed in the wide area sensor network the query should be routed

to the appropriate site using IP routing. In this section we shall discuss how the

system determines the IP address of any site needed during query processing [8]

IP addresses are needed when

• an user poses a query at an workstation in the wide area network [8]

• an organizing agent finds that a sub-query is needed to be posed to another

site to generate the remaining answer [8]

The solution uses DNS-style workstation names for nodes/sites and the names

can be constructed from the XPATH queries themselves [8] Searching into DNS

for the IP address of the desired site [8] Re-mapping of DNS entries whenever

topology changes or the nodes are remapped [8].

DNS Style Name IDable nodes containing part of the databases are uniquely

identified using a sequence of the IDs which refers a path from the root to the

node [8]. DNS-style names are simply the sequential concatenation of these IDs

extracted from the XPATH queries [8]. Consider a query:

/usRegion[@id=NE] /state[@id=PA] /county[@id=Allegheny] /city [@id=Pittsburgh]

/neighborhood [@id=Oakland OR @id =Shadyside] /block [@id=1] /parkingSpace

[available=yes] [8]

For the above query the DNS style name is pittsburgh.allegheny.pa.ne.parking.intel-

iris.net Can be generated for any needed IDable node that contains missing data

19



based only the information stored in the site database [8].

5. Query-Evaluate-Gather

When an organizing agent receives an XPATH query, it generates an XSLT pro-

gram from that query that executes the following algorithm [8].

1. Let cur is the current node, tag (cur) is the element name of cur and P is the

predicate set. Initially cur is set to the root of the document at the site.

2. Depending on the status of cur in the document, there are four possibilities:

(a) status = incomplete: Divide P such that P = Pid && Prest, and Pid

only contains the predicates of the id. If evaluating P against current node

returns true then form a sub-query which a post-processor step will use to

evaluate the rest of the query. Otherwise, the post-processor step will not

ask sub-query. If dividing P is not easy, the node may be part of the answer

and evaluate the rest of the query as above using a sub-query.

(b) status = id-complete: The actions are similar. But if tag (cur) is not

in LOCAL-INFO-REQUIRED and P = Pid then recurse on the children.

Otherwise, ask a sub-query to know the local information for this node,

required in the answer.

(c) status = owned: If P is satisfied, then recurse on the IDable children of cur,

and if tag (cur) is in LOCAL-INFOREQUIRED copy the local information

into the answer being formed. Otherwise, only local ID information is copied

(d) status = complete: The predicates who do not specify consistency require-

ments the actions are similar to the above case.

6. Experimental Results

In the experiment [8], an artificially generated database consisting of 2400 parking

spaces containing two cities, three neighbourhoods per city, 20 blocks per neigh-

bourhood, and 20 parking spaces per block were used. Four types of queries [8]

were used. First type of queries collects data from a single block where the full

path from the root to the block is specified. Second type of queries collects data

from two blocks from a single neighbourhood. Third type of queries collects

data from two blocks of two different neighbourhoods. Fourth type of queries

collects data from two blocks from two different cities [8]. Four types of architec-

tures (figure 7) were used to execute queries of these types along with a mixed

20



Figure 7: Architectures [8].

Figure 8: Throughputs [8].

query type. The centralized method (Architecture 1) is not scalable enough for

querying, and can grip very few queries efficiently. Distributing only the updates

(Architecture 2) can handle more updates, and improves query throughput by a

factor of two over the centralized solution. Using DNS for self starting distributed

queries (Architecture 3) the throughput for type 1 queries increases by a factor

of 3 over Architecture 2. However, all other queries still go through the central

server, which is the bottleneck for the other types of queries. The hierarchical

distribution of data (Architecture 4) can handle all kinds of queries quite well.

21



It does perform 25% worse than Architecture 3 for type 1 queries, because it is

using 25% fewer machines in processing these queries. However, it performs at

least 60% better than the other architectures on the mixed workload [8]. The

throughputs are provided in figure 8.

Figure 9: Query Processing Architecture.

4 Proposed Architecture

Based on the above discussion and our study, we propose an architecture for query

processing in future sensor networks.

1. Data aggregation and filtering capability in each sensor node as well as in the

base stations.

2. A query proxy layer at each sensor node helping to the query plan and query

optimization generated at the base stations.

3. A Query optimizer/parser is needed at base stations performing semantic analy-

sis, normalization, optimization of the queries posed at the base stations. Also at

each workstation in the wide area sensor networks that run sensor applications

(depending on the application) a simple parser can be placed. This parser at the

22



workstations in wide area sensor networks can use XML document, the fragmen-

tation strategy also the DNS like system to generate an efficient query plan in

addition to doing semantic analysis, normalization and so on.

4. At base stations gateway components to make necessary transformations (XPATH

to SQL or SQL to XPATH or a traditional query into a continuous/aggregate

query flavor) for the interoperability and integration between wide and conven-

tional sensor networks.

5. Security enabled service at each work station in wide area sensor database also

in the base stations along with a simple security module at each sensor nodes.

Security is not essential for every type of application so the security modules can

be developed depending on the applications.

6. Caching, partitioning and site finding component at the workstations in wide area

sensor network.

7. Catalog Management, Metadata Management is needed at base stations but sen-

sor nodes should also support them.

8. Data structures, algorithms and architectural supports (i.e. multiple gateways)

are needed to support multiple queries and share the common intermediate results

among the queries.

9. TCP is not suitable for end to end connection for conventional sensor networks

as sensor nodes are data centric attribute based and addressless. An appropriate

transport layer protocol is needed at sensor nodes. Base station can work as

a bridge between transport protocols for wide (TCP) and conventional sensor

networks.

10. Energy efficient, data centric routing algorithms are required.

The architecture described above is shown in figure 9.

5 Future Directions

The analysis of current querying techniques for sensor networks opens a plethora of

new research directions at the boundary of sensor database systems and networking:

1. We find that conventional sensor networks generally use SQL like declarative

language while their wide area counterpart uses XML and XPATH/XSLT query

language. So, coordination is needed between them to work together. Some proxy

layer can work in the terminal base stations to convert XML to SQL. Also XML

23



query can be utilized in the power constrained sensor networks in future. We

envision one step further integrating conventional and wide area sensor databases

to provide a common query language interface so that no proxy layer/converter

is needed. Besides, very changing nature of sensor data can well fit into XML

representation. So, we suggest XML and XPATH queries in both wide and local

area sensor networks. However, proper experiment and analysis would give the

right decision.

2. We see sensor network applications treat sensor data as a stream and continuous.

Besides base station database can be treated as hybrid where some static data

is kept and continuously updated data are coming. Also the static data may ex-

pire after sometimes. In some applications queries are continuous and long-lived.

Continuous queries can be active all the time or can act only in the presence

of an event. Supporting aggregate queries which reduce much communication

energy is also important. Hence, a generalized DBMS is required that can han-

dle diversified types of applications, situations and user needs. Since the sensor

nodes support limited storage, the code size should be small. Alternatively, the

base/central node can load appropriate modules to the sensor nodes depending

on the application. This on-demand loading of modules can use the concept of

swapping/paging in the base station hard drive, which requires communication

causing much power consumption. Hence, the algorithms need to be power effi-

cient.

3. In wide area sensor networks, different data mining approaches can also be uti-

lized over historical sensor data to find historical trends. Historical trends can

be used to provide better answers to user queries. For example, data mining

approaches can be used to find the trends how fast a parking space is filled or

when the parking space becomes busy. So in addition to mentioning the available

free space count data mining approaches will help the user know about the char-

acteristics of the parking lot and take proper decision [8]. The statistical or data

mining algorithms can be integrated within each database so that XPATH query

using the XML document can retrieve and use the information from appropriate

site.

4. None of the current querying techniques for sensor networks are concerned with

database security. Integration of security mechanisms inside database can pre-

24



vent unauthorized user from querying. We propose to introduce a security layer

in application layer of each sensor node. In the gateway node, the application

layer can add some identification of the authority to the query and the application

layer of the other sensor nodes will permit only the queries from valid authority.

Besides Encryption techniques in query request and reply can be introduced but

encrypting can use more energy leading to much research to utilize appropriate

encryption algorithm. Justification of the need of the security and the encryption

by the application is also required.

5. Continuous queries that are very frequent and natural to conventional sensor net-

works must also be supported and handled in wide area sensor databases to make

the networks practically useful. Both architectural support and query language

support also efficient optimization and query processing plans are needed to pose

continuous queries over wide area sensor networks. Yet the Intel IrisNet has not

implemented the support but they hope to support continuous queries where the

various data structures that the IrisNet used to collect information from different

organizing agents will be utilized for this purpose [8]. Continuous query pro-

cessing supports are provided in several works mentioned previously in section 3;

however most of them are for conventional sensor networks and are centralized. In

our case the system is distributed, and integrated with wide area sensor networks.

6. Although the Intel IrisNet project supports aggregate queries; the caching infras-

tructure is not sufficient for caching results from aggregate queries. Consequently

more sophisticated caching strategy is needed. View based semantic caching can

help in this respect [8]. Also sophisticated algorithms for evicting of cached data

are required.

6 Conclusions

The underlying query processing architectures for both wide and conventional sensor

networks are important considerations affecting their performance, scalability, and ap-

plicability. In essence, current and future capabilities of sensor networks mostly depend

on the query processing architecture. In this survey report, we identified the design

objectives and challenges related to query processing over sensor networks and to this

end investigated the key querying techniques with their relative advantages and lim-

itations. The analysis of these techniques has enabled us to set a plethora of future

25



research directions along with a future query processing architecture. The emphasis is

placed on the interoperability and integration issues related to conventional and wide

are sensor network query processing with an aim of pervasive deployment of sensor

network applications.

References

[1] S. Babu and J. Widom. Continuous queries over data streams. ACM SIGMOD

Record, 30(3):109–120, Sep 2001.

[2] UC Berkeley. Tinydb. http://telegraph.cs.berkeley.edu/tinydb/.

[3] P. Bonnet, J. E. Gehrke, and P. Seshadri. Towards sensor database systems. In

Proc. of the Second Int’l Conference on Mobile Data Management, pages 3–14,

2001.

[4] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stone-

braker, N. Tatbul, and S. B. Zdonik. Monitoring streams - a new class of

data management applications. In In Proc. of 28th conference of Very Large

Databases(VLDB), pages 215–226, Aug. 2002.

[5] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein,

W. Hong, S. Krishnamurthy, S. R. Madden, V. Raman, F. Reiss, , and M. A.

Shah. Telegraphcq: Continuous dataflow processing for an uncertain world. In

CIDR Data Engineering Bulletin, volume 26(1), Mar 2003.

[6] J. Chen, D. DeWitt, F. Tian, and Y. Wang. Niagaracq: A scalable continuous

query system for internet databases. ACM SIGMOD, pages 379–390, May 2000.

[7] A. Crespo and H. Garcia-Molina. Routing indices for peer-to-peer systems. In

Int’l Conference on Distributed Computing Systems, pages 23–30, Jul. 2002.

[8] A. Deshpande, S. Nath, P. B. Gibbons, and S. Seshan. Cache-and-query for wide

area sensor databases. ACM SIGMOD, pages 503–514, 2003.

[9] J. Gehrke, F. Korn, and D. Srivastava. On computing correlated aggregates over

continual data streams. ACM SIGMOD, 30(2):13 – 24, 2001.

[10] P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan. Irisnet: An architecture

for a world-wide sensor web. IEEE Pervasive Computing, 2(4):22–33, Oct.-Dec.

2003.

[11] M. Harren, J. Hellerstein, R. Huebsch, B. Loo, S. Shenker, and I. Stoica. Complex

queries in dht-based peer-to peer networks. In Int’l Workshop on Peer-to-Peer Sys-

26



tems ACM Revised Papers from the First Int’l Workshop on Peer-to-Peer Systems,

pages 242–259, Mar. 2002.

[12] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: a scalable

and robust communication paradigm for sensor networks. In Mobile Computing

and Networking, pages 56–67, 2000.

[13] P. Kalnis, W. S. Ng, B. C. Ooi, D. Papadias, and K. L. Tan. An adaptive peer-

to-peer network for distributed caching of olap results. In Proceedings of the 2002

ACM SIGMOD international conference on Management of data, pages 25–36,

2002.

[14] S. Madden. The Design and Evaluation of a Query Processing Architecture for

Sensor Networks. PhD thesis, UC Berkeley, Fall 2003.

[15] S. Madden and M. J. Franklin. Fjording the stream: An architecture for queries

over streaming sensor data. In 18th Int’l Conf. on Data Engineering, pages 555–

566, Feb. 2002.

[16] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tag: a tiny aggrega-

tion service for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev., 36(SI):131–146,

2002.

[17] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The design of an

acquisitional query processor for sensor networks. In Proceedings of the 2003 ACM

SIGMOD international conference on on Management of data, pages 491–502,

2003.

[18] P. V. Mockapetris and K. J. Dunlap. Development of the domain name system.

In SIGCOMM, volume 25(1), Jan 1995.

[19] R. Sadri, C. Zaniolo, A. Zarkesh, and J. Adibi. Optimization of sequence queries

in database systems. In PODS, pages 71–81, May 2001.

[20] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and M. J. Franklin. Flux:

An adaptive partitioning operator for continuous query systems. In ICDE, pages

25–32, Mar 2003.

[21] M. Wahl, T. Howes, and S. Kille. Lightweight directory access protocol. RFC,

Standards Track RFC 2251, M. Wahl, Critical Angle Inc., T. Howes, Netscape

Communications Corp., S. Kille, Isode Limited, Dec 1997.

[22] J. Yang and J. Widom. Incremental computation and maintenance of temporal

aggregates. In Proceedings of the 17th International Conference on Data Engi-

neering, pages 51–60. IEEE Computer Society, 2001.

27



[23] Y. Yao and J. E. Gehrke. The cougar approach to in-network query processing in

sensor networks. ACM Sigmod Record, 31(3), Sep 2002.

[24] Y. Yao and J. E. Gehrke. Query processing in sensor networks. In First Biennial

Conference on Innovative Data Systems Research (CIDR), Jan. 2003.

28


