
A Novel Approach to Solving N-Queens Problem

Md. Golam KAOSAR
Department of Computer Engineering

King Fahd University of Petroleum and Minerals
Dhahran 31261, KSA

and

Mohammad SHORFUZZAMAN and Sayed AHMED

Department of Computer Science
University of Manitoba

Winnipeg, MB R3T 2N2, Canada

ABSTRACT

Placing n mutually non-attacking queens on an n by n
chessboard is a classical problem in the artificial
intelligence (AI) area. Over the past few decades, this
problem has become important to computer scientists for
providing solutions to many useful and practical
applications. In this paper, we present a novel approach to
solving the n-queens problem in a considerably less
execution time. The proposed technique works by directly
placing the queens on the board in a regular pattern based
on some queen-movement rules.

Keywords: Artificial Intelligence, backtracking, horse
movement, divide-and-conquer, permutation.

1. INTRODUCTION

The n-queens problem, originating from the 8-queens
problem, has been studied for more than a century. The n-
queens problem, originally introduced in 1850 by Carl
Gauss, may be stated as follows: find a placement of n
queens on an n by n chessboard so that no two queens
attack each other (i.e., so that no two are in the same row,
column or diagonal). This classical combinatorial search
problem has traditionally been used for exploring new AI
search strategies and algorithms. To date, this problem
has found many scientific and engineering applications
including VLSI routing and testing, maximum full range
communication, parallel optical computing, and many
more.

Solutions to the n-queens problem can be represented as
an n-tuples (q1, q2, q3,… qn) since each queen must be on
a different row and column. Position of a number in the
tuples represents the column position of a queen while the
value of the number represents the row position of the
queen (counting from the top). Figure 1 shows a 5-
tuples, which represents a solution to the 5-queens
problem. Empirical observations show that the number of
solutions increases exponentially with increasing n [2].

Table 1 gives the number of solutions vs. the number of
queens, based on the empirical results [1].

 Q
Q
 Q
 Q
 Q

(2, 4, 1, 3, 5)

Figure 1: Solution to 5-queens problem

n Number of
Solutions

6 4
7 40
8 92
9 352

10 724
11 2680
12 14200

Table 1: The number of solutions for the n-queens

problem

The n-queens problem has three variants: finding one
solution, finding a family of solutions, and finding all
solutions. This paper presents a direct placement
algorithm for solving n-queens problem. The proposed
algorithm gives only one solution for a particular value of
n. The algorithm works by directly placing the queens on
the chessboard according to some queen-movement rules
and does not require any kind of searching or
backtracking.

The remainder of the paper is organized as follows.
Section 2 reviews the related work done in the literature.
Section 3 then presents the proposed technique for solving
n-queens problem. Finally, the paper ends with
conclusions and future research directions in section 5.

2. RELATED WORK

Numerous solutions to n-queens problem have been
published since the original problem was proposed. This
section presents a representative set of approaches that
attempts to solve the n-queens problem.

A number of search based algorithms have been
developed to generate all possible solution sets for a
given n by n board. Backtracking [3, 4, 5] algorithms are
among the most widely used search algorithms for
solving n-queens problem that systematically generate all
possible solutions. The basic idea of backtracking
algorithms is to build up the solution vector one
component at a time and test it according to the criterion
function to determine whether the vector being formed
still has a chance of success. To explore all possible
vectors possible vectors, the algorithm starts by placing a
queen on the first column of the first row and continues
placing the queens on the other rows, while maintaining
the constraints that are imposed by the previously placed
queens. If the algorithm reaches a row for which all
squares are already attacked by the other queens, it
backtracks to the previous row and explores other
vectors. In practice, however, backtracking approaches
provide a very limited class of solutions for large size
boards because it is difficult for a backtracking search to
find solutions that are significantly distinct in the solution
space [2].

Several authors have proposed other efficient search
techniques to overcome this problem. These methods
include search heuristic methods [3] and local search and
conflict minimization techniques [2]. A probabilistic
algorithm utilizes gradient-based heuristic search [6].
This algorithm is able to generate a solution for extremely
large values of n. In this algorithm, a random permutation
generator is used to place the queens on the board. A
permutation guarantees that no two queens are either on
the same row or on the same column. This generally
produces collisions along the diagonals. The gradient-
based heuristic is applied to all possible pairs of queens
until there is no collision along the diagonals. The main
idea is to reduce the number of collisions by swapping a
pair of queens. The swapping is actually performed if the
swapping of two queens lessens the number of collisions.
If this procedure does not reach a solution, a new
permutation is generated and a new search is applied. The
empirical results show that the number of permutations
necessary to generate a solution is usually very small.

Permutation generation algorithms [7] provide a trial and
error solution to the n-queens problem. These algorithms
are based on generating all of the permutations of n
different elements. The brute-force trial and error
algorithm allows a configuration with more than one
queen on each column before-testing the solution. In
order to abide this restriction, the board is represented by

a vector of n different numbers. All possible permutations
of these n numbers are generated and tested-to see
whether they are solutions to the problem or not. One
problem with these algorithms is that they do not test the
partial arrangements.

Topor [8] develops an algorithm that uses a direct method
for generating fundamental solutions. The solutions
which can be transformed to each other by rotations form
a group. This algorithm utilizes the group property of the
n-queens problem to generate the fundamental solutions.
The algorithm uses the concept of orbits. An orbit of a
square under a group is defined as the set of squares to
which the given square can be mapped by elements of the
group. Given the symmetry group G, all the squares in
the orbit of the candidate square under G are equivalent.
Thus, placing a queen on any square in the orbit leads to
an equivalent solution.

Recently, advances in research in the area of neural
networks have led to several solutions to the n-queens
problem using neural networks [9, 10]. Specifically, the
use of Hopfield networks has been applied to the n-
queens problem by Mandziuk [10]. The Hopfield neural
network is a simple artificial network which is able to
store certain patterns in a manner similar to the brain in
that the full pattern for a given problem can be recovered
if the network is presented with only partial information.
The ability of neural networks to adapt and learn from
information has applications in optimization problems
beyond the n-queens problem.

Abramson and Yung [11] present a divide-and-conquer
algorithm that provides a family of solutions by means of
splitting the input into distinct subsets. Most recent study
shows that genetic algorithms [12] can be used to solve n-
queens problem. These algorithms are search and
optimization procedures based on three basic biological
principles: selection, crossover, and mutation. Potential
solutions are represented as individuals that are evaluated
using a fitness function that determines how close a
wrong solution is to a correct one. A global parallel
implementation of this algorithm is also presented to
increase computation speed.

3. PROPOSED SOLUTION

We propose a direct placement method to solve the n-
queens problem. Our algorithm is based on the principle
of finding one solution for a particular value of n and
adopts a very simple technique to place queens on the
board. The technique is simple in the sense that it does
not require any searching or backtracking to find the
positions of queens. The remainder of this section
describes the algorithm and pinpoints its key features.

After performing a considerable investigation, we come
up with a series of numbers that indicate the values of n:

8, 9, 14, 15, 20, 21, 26, 27, 32, 33, 38, 39, 44, 45, 50…
It can be represented as:
Start with n=8 and

1. n, (n+1)
2. n=n+6, Repeat 1.

This series possesses a nice property that makes the
placement of queens on the board much easier. For every
fifth element (i.e., value of n) in the series, the
arrangement of queens on the board follows the same
rule. For example, the rule used to place queens when the
value of n is 8, 20, or 32 is same. As every fifth element
in the series holds the same arrangement of queens, we
get four distinct secondary series like (i) 8, 20, 32, 44...
(ii) 9, 21, 33, 45... (iii) 14, 26, 38, 50… and (iv) 15, 27,
39, 51… where each of these series has unique
arrangement of queens. So, for the main series we have
four types of arrangements. Besides, for all the values of
n that do not fit in the series, there is only one unique
arrangement of queens on the board. Therefore, our
proposed algorithm considers five types of arrangements
of queens for any value of n.

Arrangement 1
The secondary series 8, 20, 32, 44 ... fall under this
arrangement of queens. This arrangement works as
follows.
Step 1: Start placing a queen in position (2, 1). (We count
rows and columns from the upper left corner of the n by n
chessboard.)
Step 2: Place the next queen with a horse movement (row
and column are increased by two and one respectively).
Continue placing n/2 queens this way.
Step 3: Place a queen in position (1, n/2 + 2).
Step 4: Place remaining queens according to two
movement rules alternatively: a reverse horse movement
(row is increased by two and column is decreased by one)
and a custom movement (row is increased by two and
column is increased by three). Start placing with the
reverse horse movement.

Table 2 shows the solution for 8-queens problem
according to this arrangement. Numbers in the board
represents queens.

 5
1
 6
 2
 7
 3
 8
 4

Table 2: Solution for 8-queens problem

Arrangement 2
The secondary series 9, 21, 33, 45 ... fall under this
arrangement of queens. This arrangement works as
follows.
Step 1: Start placing a queen in position (1, 3).
Step 2: Place the next queen with a horse movement (row
and column are increased by two and one respectively).
Continue placing (n/2 +1) queens this way.
Step 3: Place a queen in position (2, n/2 + 5).
Step 4: Place remaining queens (except last two)
according to two movement rules alternatively: a reverse
horse movement (row is increased by two and column is
decreased by one) and a custom movement (row is
increased by two and column is increased by three). Start
placing with the reverse horse movement.
Step 5: Place last two queens starting from position (n -1,
1) and a horse movement (row is decreased by two and
column is increased by one).

Table 3 shows the solution for 9-queens problem
according to this arrangement.

Arrangement 3
The secondary series 14, 26, 38, 50... fall under this
arrangement of queens. This arrangement works as
follows.
Step 1: Start placing a queen in position (2, 2).

 1
 6
 2
 7
 3
 9
 4
8
 5

Table 3: Solution for 9-queens problem

Step 2: Place the next queen with a horse movement (row
and column are increased by two and one respectively).
Continue placing n/2 queens this way.
Step 3: Place a queen in position (1, n/2 + 3).
Step 4: Place remaining queens (except the last one)
according to two movement rules alternatively: a reverse
horse movement (row is increased by two and column is
decreased by one) and a custom movement (row is
increased by two and column is increased by three). Start
placing with the reverse horse movement.
Step 5: Place the last queen in position (n-1, 1).

Table 4 shows the solution for 14-queens problem
according to this arrangement.

Arrangement 4
The secondary series 15, 27, 39, 51 ... fall under this arra-

 8
 1
 9
 2
 10
 3
 11
 4
 12
 5
 13
 6
14
 7

Table 4: Solution for 14-queens problem

 8
 1
 9
 2
 10
 3
 11
 4
 12
 5
 13
 6
 15
 7
14

Table 5: Solution for 15-queens problem

-ngement of queens. This arrangement works as follows:
Step 1: Start placing a queen in position (2, 3).
Step 2: Place the next queen with a horse movement (row
and column are increased by two and one respectively).
Continue placing n/2 queens this way.
Step 3: Place a queen in position (1, n/2 + 4).
Step 4: Place remaining queens (except last two)
according to two movement rules alternatively: a reverse
horse movement (row is increased by two and column is
decreased by one) and a custom movement (row is
increased by two and column is increased by three). Start
placing with the reverse horse movement.
Step 5: Place last two queens starting from position (n, 1)
and a horse movement (row is decreased by two and
column is increased by one).
Table 5 shows the solution for 15-queens problem
according to this arrangement.

Arrangement 5
The values of n that do not fit in the main series fall under
this arrangement of queens. This arrangement works as
follows.

Step 1: Start placing a queen in position (2, 1).
Step 2: Place the next queen with a horse movement (row
and column are increased by two and one respectively).
Continue placing n/2 queens this way.
Step 3: Place a queen in position (1, n/2 +1).
Step 4: Place remaining queens with the horse
movement.

Table 6 shows the solution for 7-queens problem
according to this arrangement.

The algorithm works by checking the value of n whether
it fits into the series and then using the appropriate
arrangement type accordingly. Checking is done by
generating the series. The series is generated using the
general expression mentioned earlier. If the value of n fits
into the series, the appropriate arrangement type is found
by taking modulus of n by 4. Arrangement type 1, 2, 3,
and 4 are chosen for the modulus result 0, 1, 2, and 3
respectively. If the value of n does not fit into the series,
arrangement type 5 is chosen.

 4
1
 5
 2
 6
 3
 7

Table 6: Solution for 7-queens problem

We have verified the soundness of the proposed
algorithm by checking the conflict between any two
queens. To avoid a conflict, it is obvious that each queen
must be in a separate row and column from each of the
others. This condition can be checked by using the n-
tuples representation of a solution. Earlier we mentioned
that any solution can be expressed as an n-tuples (q1, q2,
…,qn), where qi (with i=1, 2, 3… n) gives the row of the
queen in column i. Thus, the solution from Table 6 (for
example) can be expressed as follows. Row and column
conflict can be detected by merely comparing the values
of qi and i respectively.

qi = 2 4 6 1 3 5 7
i 1 2 3 4 5 6 7

To assure that we do not have any diagonal conflict, we
require that for all nji ≤≤≤1

.ijqq ij −≠−

4. CONCLUSIONS

This paper investigated the property of a nice series and
presented a fast algorithm that works by directly placing
the queens on the board using that series. Four types of
queen arrangements are considered for solving the
problem that fits into the series and a unique arrangement
works for any value of n that does not fit into the series.
We have verified the soundness of the algorithm by
checking conflict between any two queens. We claim our
proposed algorithm to be the one to solve the n-queens
problem in considerably less execution time. The future
work would be to investigate for producing a family of
solutions within the boundary of direct placement of
queens.

5. REFERENCES

[1] C. Erbas, S. Sarkeshik, and M. M. Tanik. “Different
perspectives of the n-queens problem”. In Proceedings of
the ACM 1992 Computer Science Conference, 1992.
[2] R. Sosi and J. Gu. “Efficient local search with conflict
minimization: A case study of the n-queens problem”.
IEEE Transactions on Knowledge and Data
Engineering, Vol. 6, No. 5, pp. 61-68, 1994.

[3] Laxmikant V. Kale. “An almost perfect heuristic for
the n non-attacking queens problem”. Information
Processing Letters, 34:173-178, 1990.
[4] B.A. Nadel. “Representation selection for constraint
satisfaction: A case study using n-queens”. IEEE Expert,
June, pp. 16-23, 1990.
[5] H.S. Stone and J.M. Stone. “Efficient search
techniques - An empirical study of the n-queens
problem”. IBM Journal of Research and Development,
31: 464-474, 1987.
[6] R Sosic and J. Gu. “A polynomial time algorithm for
the n-queens problem”. SIGART, 1(3): 7-11, 1990.
[7] J.S. Rohl. “Generating permutation by choosing”. The
Computer Journal, Vol. 21, No 4, pp.302-305, 1978.
[8] R. W. Topor. “Fundamental solutions of the eight
queens problem”. BIT, Vol. 22, pp. 42-52, 1982.
[9] O. Shagrir. “A neural net with self-inhibiting units for
the n-queens problem”. International Journal of Neural
Systems, Vol. 3, No. 3, pp. 249-252, 1992.
[10] J. Mandziuk. “Solving the n-queens problem with a
binary Hopfield-type network synchronous and
asynchronous model”. Biological Cybernetics, Vol. 72,
No. 5, pp. 439-446, 1995.
[11] Bruce Abramson and Moti Yung. “Divide and
conquer under global constraints: A solution to the n-
queens problem”. Journal of Parallel and Distributed
Computing, 6:649-662, 1989.
[12] M. Bozikovic, M. Golub and L. Budin. “Solving n-
queen problem using global parallel genetic algorithm”.
EUROCON, Vol 2, pp 22-24, 2003.

