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ABSTRACT 
 
Placing n mutually non-attacking queens on an n by n 
chessboard is a classical problem in the artificial 
intelligence (AI) area. Over the past few decades, this 
problem has become important to computer scientists for 
providing solutions to many useful and practical 
applications. In this paper, we present a novel approach to 
solving the n-queens problem in a considerably less 
execution time. The proposed technique works by directly 
placing the queens on the board in a regular pattern based 
on some queen-movement rules.  
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1.  INTRODUCTION 

 
The n-queens problem, originating from the 8-queens 
problem, has been studied for more than a century. The n-
queens problem, originally introduced in 1850 by Carl 
Gauss, may be stated as follows: find a placement of n 
queens on an n by n chessboard so that no two queens 
attack each other (i.e., so that no two are in the same row, 
column or diagonal). This classical combinatorial search 
problem has traditionally been used for exploring new AI 
search strategies and algorithms. To date, this problem 
has found many scientific and engineering applications 
including VLSI routing and testing, maximum full range 
communication, parallel optical computing, and many 
more.   
 
Solutions to the n-queens problem can be represented as 
an n-tuples (q1, q2, q3,… qn) since each queen must be on 
a different row and column. Position of a number in the 
tuples represents the column position of a queen while the 
value of the number represents the row position of the 
queen (counting from the top).  Figure 1 shows a 5-
tuples, which represents a solution to the 5-queens 
problem. Empirical observations show that the number of 
solutions increases exponentially with increasing n [2].  

Table 1 gives the number of solutions vs. the number of 
queens, based on the empirical results [1]. 
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Figure 1: Solution to 5-queens problem 
  

n Number of 
Solutions  

6 4 
7 40 
8 92 
9 352 

10 724 
11 2680 
12 14200 

 
Table 1: The number of solutions for the n-queens 

problem 
 

The n-queens problem has three variants: finding one 
solution, finding a family of solutions, and finding all 
solutions. This paper presents a direct placement 
algorithm for solving n-queens problem. The proposed 
algorithm gives only one solution for a particular value of 
n. The algorithm works by directly placing the queens on 
the chessboard according to some queen-movement rules 
and does not require any kind of searching or 
backtracking.  
 
The remainder of the paper is organized as follows. 
Section 2 reviews the related work done in the literature. 
Section 3 then presents the proposed technique for solving 
n-queens problem. Finally, the paper ends with 
conclusions and future research directions in section 5. 

 



2. RELATED WORK 
 

Numerous solutions to n-queens problem have been 
published since the original problem was proposed. This 
section presents a representative set of approaches that 
attempts to solve the n-queens problem.   
 
A number of search based algorithms have been 
developed to generate all possible solution sets for a 
given n by n board. Backtracking [3, 4, 5] algorithms are 
among the most widely used search algorithms for 
solving n-queens problem that systematically generate all 
possible solutions. The basic idea of backtracking 
algorithms is to build up the solution vector one 
component at a time and test it according to the criterion 
function to determine whether the vector being formed 
still has a chance of success. To explore all possible 
vectors possible vectors, the algorithm starts by placing a 
queen on the first column of the first row and continues 
placing the queens on the other rows, while maintaining 
the constraints that are imposed by the previously placed 
queens. If the algorithm reaches a row for which all 
squares are already attacked by the other queens, it 
backtracks to the previous row and explores other 
vectors. In practice, however, backtracking approaches 
provide a very limited class of solutions for large size 
boards because it is difficult for a backtracking search to 
find solutions that are significantly distinct in the solution 
space [2].  
 
Several authors have proposed other efficient search 
techniques to overcome this problem. These methods 
include search heuristic methods [3] and local search and 
conflict minimization techniques [2]. A probabilistic 
algorithm utilizes gradient-based heuristic search [6]. 
This algorithm is able to generate a solution for extremely 
large values of n. In this algorithm, a random permutation 
generator is used to place the queens on the board. A 
permutation guarantees that no two queens are either on 
the same row or on the same column. This generally 
produces collisions along the diagonals. The gradient-
based heuristic is applied to all possible pairs of queens 
until there is no collision along the diagonals. The main 
idea is to reduce the number of collisions by swapping a 
pair of queens. The swapping is actually performed if the 
swapping of two queens lessens the number of collisions. 
If this procedure does not reach a solution, a new 
permutation is generated and a new search is applied. The 
empirical results show that the number of permutations 
necessary to generate a solution is usually very small.  
 
Permutation generation algorithms [7] provide a trial and 
error solution to the n-queens problem. These algorithms 
are based on generating all of the permutations of n 
different elements. The brute-force trial and error 
algorithm allows a configuration with more than one 
queen on each column before-testing the solution. In 
order to abide this restriction, the board is represented by 

a vector of n different numbers. All possible permutations 
of these n numbers are generated and tested-to see 
whether they are solutions to the problem or not. One 
problem with these algorithms is that they do not test the 
partial arrangements. 
 
Topor [8] develops an algorithm that uses a direct method 
for generating fundamental solutions. The solutions 
which can be transformed to each other by rotations form 
a group. This algorithm utilizes the group property of the 
n-queens problem to generate the fundamental solutions. 
The algorithm uses the concept of orbits. An orbit of a 
square under a group is defined as the set of squares to 
which the given square can be mapped by elements of the 
group. Given the symmetry group G, all the squares in 
the orbit of the candidate square under G are equivalent. 
Thus, placing a queen on any square in the orbit leads to 
an equivalent solution. 
 
Recently, advances in research in the area of neural 
networks have led to several solutions to the n-queens 
problem using neural networks [9, 10]. Specifically, the 
use of Hopfield networks has been applied to the n-
queens problem by Mandziuk [10]. The Hopfield neural 
network is a simple artificial network which is able to 
store certain patterns in a manner similar to the brain in 
that the full pattern for a given problem can be recovered 
if the network is presented with only partial information. 
The ability of neural networks to adapt and learn from 
information has applications in optimization problems 
beyond the n-queens problem. 
 
Abramson and Yung [11] present a divide-and-conquer 
algorithm that provides a family of solutions by means of 
splitting the input into distinct subsets.  Most recent study 
shows that genetic algorithms [12] can be used to solve n-
queens problem. These algorithms are search and 
optimization procedures based on three basic biological 
principles: selection, crossover, and mutation. Potential 
solutions are represented as individuals that are evaluated 
using a fitness function that determines how close a 
wrong solution is to a correct one. A global parallel 
implementation of this algorithm is also presented to 
increase computation speed.  
 

3. PROPOSED SOLUTION 
 
We propose a direct placement method to solve the n-
queens problem. Our algorithm is based on the principle 
of finding one solution for a particular value of n and 
adopts a very simple technique to place queens on the 
board. The technique is simple in the sense that it does 
not require any searching or backtracking to find the 
positions of queens. The remainder of this section 
describes the algorithm and pinpoints its key features.  
 
After performing a considerable investigation, we come 
up with a series of numbers that indicate the values of n: 



8, 9, 14, 15, 20, 21, 26, 27, 32, 33, 38, 39, 44, 45, 50…  
It can be represented as: 
Start with n=8 and 

1. n, (n+1) 
2. n=n+6, Repeat 1. 
 

This series possesses a nice property that makes the 
placement of queens on the board much easier. For every 
fifth element (i.e., value of n) in the series, the 
arrangement of queens on the board follows the same 
rule. For example, the rule used to place queens when the 
value of n is 8, 20, or 32 is same. As every fifth element 
in the series holds the same arrangement of queens, we 
get four distinct secondary series like (i) 8, 20, 32, 44... 
(ii) 9, 21, 33, 45... (iii) 14, 26, 38, 50… and (iv) 15, 27, 
39, 51… where each of these series has unique 
arrangement of queens. So, for the main series we have 
four types of arrangements. Besides, for all the values of 
n that do not fit in the series, there is only one unique 
arrangement of queens on the board. Therefore, our 
proposed algorithm considers five types of arrangements 
of queens for any value of n.  
 
Arrangement 1 
The secondary series 8, 20, 32, 44 ... fall under this 
arrangement of queens. This arrangement works as 
follows.  
Step 1: Start placing a queen in position (2, 1). (We count 
rows and columns from the upper left corner of the n by n 
chessboard.)   
Step 2: Place the next queen with a horse movement (row 
and column are increased by two and one respectively). 
Continue placing n/2 queens this way. 
Step 3: Place a queen in position (1, n/2 + 2).  
Step 4: Place remaining queens according to two 
movement rules alternatively: a reverse horse movement 
(row is increased by two and column is decreased by one) 
and a custom movement (row is increased by two and 
column is increased by three). Start placing with the 
reverse horse movement. 
 
Table 2 shows the solution for 8-queens problem 
according to this arrangement. Numbers in the board 
represents queens.  
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Table 2: Solution for 8-queens problem 
 
 
 

Arrangement 2 
The secondary series 9, 21, 33, 45 ... fall under this 
arrangement of queens. This arrangement works as 
follows.  
Step 1: Start placing a queen in position (1, 3).  
Step 2: Place the next queen with a horse movement (row 
and column are increased by two and one respectively). 
Continue placing (n/2 +1) queens this way. 
Step 3: Place a queen in position (2, n/2 + 5).  
Step 4: Place remaining queens (except last two) 
according to two movement rules alternatively: a reverse 
horse movement (row is increased by two and column is 
decreased by one) and a custom movement (row is 
increased by two and column is increased by three). Start 
placing with the reverse horse movement. 
Step 5: Place last two queens starting from position (n -1, 
1) and a horse movement (row is decreased by two and 
column is increased by one). 
 
Table 3 shows the solution for 9-queens problem 
according to this arrangement.  
 
Arrangement 3 
The secondary series 14, 26, 38, 50... fall under this 
arrangement of queens. This arrangement works as 
follows.  
Step 1: Start placing a queen in position (2, 2).  
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Table 3: Solution for 9-queens problem 
 

Step 2: Place the next queen with a horse movement (row 
and column are increased by two and one respectively). 
Continue placing n/2 queens this way. 
Step 3: Place a queen in position (1, n/2 + 3).  
Step 4: Place remaining queens (except the last one) 
according to two movement rules alternatively: a reverse 
horse movement (row is increased by two and column is 
decreased by one) and a custom movement (row is 
increased by two and column is increased by three). Start 
placing with the reverse horse movement. 
Step 5: Place the last queen in position (n-1, 1).  
 
Table 4 shows the solution for 14-queens problem 
according to this arrangement. 
 
Arrangement 4 
The secondary series 15, 27, 39, 51 ... fall under this arra- 
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Table 4: Solution for 14-queens problem 
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Table 5: Solution for 15-queens problem 

 
-ngement of queens. This arrangement works as follows: 
Step 1: Start placing a queen in position (2, 3).  
Step 2: Place the next queen with a horse movement (row 
and column are increased by two and one respectively). 
Continue placing n/2 queens this way. 
Step 3: Place a queen in position (1, n/2 + 4).  
Step 4: Place remaining queens (except last two) 
according to two movement rules alternatively: a reverse 
horse movement (row is increased by two and column is 
decreased by one) and a custom movement (row is 
increased by two and column is increased by three). Start 
placing with the reverse horse movement. 
Step 5: Place last two queens starting from position (n, 1) 
and a horse movement (row is decreased by two and 
column is increased by one). 
Table 5 shows the solution for 15-queens problem 
according to this arrangement.  
 
Arrangement 5 
The values of n that do not fit in the main series fall under 
this arrangement of queens. This arrangement works as 
follows.  

Step 1: Start placing a queen in position (2, 1).  
Step 2: Place the next queen with a horse movement (row 
and column are increased by two and one respectively). 
Continue placing n/2 queens this way. 
Step 3: Place a queen in position (1, n/2 +1).  
Step 4: Place remaining queens with the horse 
movement. 
 
Table 6 shows the solution for 7-queens problem 
according to this arrangement.  
 
 

The algorithm works by checking the value of n whether 
it fits into the series and then using the appropriate 
arrangement type accordingly. Checking is done by 
generating the series. The series is generated using the 
general expression mentioned earlier. If the value of n fits 
into the series, the appropriate arrangement type is found 
by taking modulus of n by 4. Arrangement type 1, 2, 3, 
and 4 are chosen for the modulus result 0, 1, 2, and 3 
respectively. If the value of n does not fit into the series, 
arrangement type 5 is chosen. 
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Table 6: Solution for 7-queens problem 
 

We have verified the soundness of the proposed 
algorithm by checking the conflict between any two 
queens. To avoid a conflict, it is obvious that each queen 
must be in a separate row and column from each of the 
others. This condition can be checked by using the n-
tuples representation of a solution. Earlier we mentioned 
that any solution can be expressed as an n-tuples (q1, q2, 
…,qn), where qi (with i=1, 2, 3… n) gives the row of the 
queen in column i. Thus, the solution from Table 6 (for 
example) can be expressed as follows. Row and column 
conflict can be detected by merely comparing the values 
of qi and i respectively.  
 

qi = 2  4  6  1 3  5  7 
i 1  2  3  4 5  6  7 

 
To assure that we do not have any diagonal conflict, we 
require that for all nji ≤≤≤1  

.ijqq ij −≠−   

 
4. CONCLUSIONS 

 
This paper investigated the property of a nice series and 
presented a fast algorithm that works by directly placing 
the queens on the board using that series. Four types of 
queen arrangements are considered for solving the 
problem that fits into the series and a unique arrangement 
works for any value of n that does not fit into the series. 
We have verified the soundness of the algorithm by 
checking conflict between any two queens. We claim our 
proposed algorithm to be the one to solve the n-queens 
problem in considerably less execution time. The future 
work would be to investigate for producing a family of 
solutions within the boundary of direct placement of 
queens.   
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