
A PARALLEL RANDOM NUMBER GENERATOR FOR SHARED MEMORY
ARCHITECTURE MACHINE USING OPENMP

Sayed Ahmed
Department of Computer Science
University of Manitoba, Canada
email:sayed@cs.umanitoba.ca

Rasit Eskicioglu
Department of Computer Science
University of Manitoba, Canada

email:rasit@cs.umanitoba.ca

Lutful Karim
Department of Computer Science
University of Manitoba, Canada
email:lkarim@cs.umanitoba.ca

ABSTRACT
The fields of probability and statistics are built over the ab-
stract concepts of probability space and random variables.
This has given rise to elegant and powerful mathematical
theory but exact implementation of these concepts on con-
ventional computers seems impossible. In practice, ran-
dom variables (called pseudo-random numbers) are simu-
lated using deterministic algorithms whose behavior is very
hard to distinguish from that of their truly random coun-
terparts. Finding high-quality and efficient algorithms for
random number generation on parallel computers is even
more difficult. One of the reasons good parallel random
number generators are so hard to create is that any small
correlations that exist in the sequential generator may be
amplified by the method used to distribute the sequence
among the processors, producing stronger correlations in
the subsequences on each processor. Inter-processor corre-
lations may also be introduced. Also, the method to specify
the seeds for each processor is greatly important, since any
correlations between the seeds on the different processors
could produce strong inter-processor correlations. How-
ever, we found the random number generator by L’ecuyer
based on the combination of four linear congruential gen-
erators(LCGs) is a good example for both sequential and
parallel implementations having a large domain and inher-
ently parallel property where each processor is assigned
to generate one or more sequence independently and our
parallel implementation generates the same random num-
ber sequence as the sequential implementation. We mainly
present the issues related to the parallel implementation
of this algorithm using a shared memory workstation in
OpenMP. In the implementation, multiple virtual genera-
tors work in parallel. Our solution is scalable with the num-
ber of processors, and provides locality also maintains all
properties of its sequential implementation with significant
absolute and relative speedup, and significant efficiency
and iso-efficiency.

KEY WORDS
Random Number, Random Number Generator, Shared
Memory Machine, OpenMP

1 Introduction

Random number generators are extensively used for com-
puter simulations in computational science andengineer-
ing [3]. Computer simulations provide a sound understand-
ing of many real systems and hence play significant role to
design, implement, even to modify an existing system. In
urban planning, in transport scheduling, in production en-
gineering, in job scheduling, in designing slot machines,
in study of nuclear reactors and in many other fields com-
puter simulations are of significantly important. In com-
puter simulations random numbers have a significant im-
portance to simulate various stochastic input parameters.
In large simulation systems, the number of input parame-
ters are huge. Hence, for larger simulation systems the
random number generator should have a large domain to
support huge number of input parameters. Besides, to un-
derstand the behavior of any system huge number of simu-
lation runs are needed with parameter values from a large
and variable domain. Specially for Monte Carlo simula-
tions huge number of simulation runs are needed when the
system is large. Hence, random number generator must
have larger domain to support huge number of simulation
runs with different parameter values for each run. More-
over, to handle huge systems and to minimize total simula-
tion time today simulation programs are executed in super
fast multi-processor parallel computers. Hence, an efficient
parallel random number generator having a large domain is
of great importance in computer simulations.

Simulation programming languages as well as general
purpose programming languages usually provide a random
number generator. The package usually provides a sin-
gle generator where multiple sequence (to support multiple
simulation run) of random numbers are generated where
each sequence provides data for multiple input parameters
in a single simulation. These generators use the same gen-
erator but different starting seeds in the main sequence.
L’Ecuyer and cote [7] proposed a random number generator
that uses 32 generators (virtual) where the seeds for each
generator is 250 values apart. Hence, each generator has
250 values. The algorithm is based on the combined linear
generators having period length 261. Each generator again
is split into 220 segments (V) and 230 offsets (W). When
a generator generates random numbers it uses a pointer
to move from one segment to another segment within the

same virtual generator and takes next offset value as the
next random number. However, only 32 generators and the
small number of segment and offset values are not adequate
for many huge current and future applications.

To cope up with huge simulations based on the pre-
vious algorithm L’Ecyer and Andres [6] later proposed
another package having more robust backbone generators
which have period length 2121 and improved structural
properties. As the period length is much larger, the number
of segments and offsets can also be much more than pre-
vious. Besides, the choice of the number of segments and
offsets are now on the user so they are flexible to choice the
segment and offset count hence the total number of gener-
ators is user dependent. Users can select generator number
based on the number of simulation runs, simulation vol-
ume, and simulation nature. Each generator is VW values
apart. The seed of the first generator is specified using a
four value vectors. The other seeds of the other generators
are automatically generated using this seed.

In this paper, we presented our parallel implementa-
tion of the algorithm by L’Ecuyer and Andres [6] using
OpenMP. OpenMP is a multi-threaded parallel program-
ming interface comes as an extension to C/C++. OpenMP
uses light weight thread where each thread is assigned a
particular responsibility and the threads work in parallel
with each other. The threads share the common data struc-
tures among them if needed. OpenMP provides exclusive
excess to a data item by the threads to provide data consis-
tency [11]. In our parallel random number generator each
thread executes a different generator (virtual) where each
generator has a different domain and seed values. This is
the same as sequential implementation and hence parallel
algorithm can not introduce any new correlation. We tested
our algorithm in a 8 processor shared memory parallel com-
puter. We calculated the absolute and relative speedup, and
efficiency and iso-efficiency of our implementation.

In the following sections, first, we provided related
works in section 2. In section 3, we provided the theory
behind combined linear congruential generators. Based on
the theory, a sequential algorithm is provided in section 4.
In section 5, parallelization issues are presented also a par-
allel algorithm is proposed. In section 6, the parallel as-
pects of our implementation are explained. Finally, the pa-
per concludes with conclusions and future works in section
7.

2 Related Works

Extensive research has been done on the generation of ran-
dom numbers. The principal algorithms used for sequential
random number generators are Linear Congruential Gener-
ator, Lagged Fibonacci Generator, Shift Register Genera-
tor, Combined Linear or Multiplicative Generators [2]. The
principal techniques used for parallelizing random number
generators usually distribute the random number sequences
produced by a sequential generator among the processors
in different ways such as Leapfrog, Sequence Splitting, In-

dependent Sequences [2]. Random number generators spe-
cially for parallel computers are very hard to be trusted. All
simulations should be tested with two or more different po-
tential generators and the results should be compared for
better accuracy of the simulation results. On a sequential
computer good generators to use are Multiplicative Lagged
Fibonacci Generators with a lag of at least 127 and prefer-
ably 1279 or more, 48 bit or preferably 64 bit Linear Con-
gruential Generators that performs well in Spectral test and
has prime modulus, 32 bit or more Combined Linear Con-
gruential Generators with empirically well chosen parame-
ters (such as in [6]) [2]. Extensive study shows that the
best suited random number generators for parallel com-
puters are Combined Linear Congruential Generators us-
ing sequence splitting, and Lagged Fibonacci Generators
using independent sequences with careful initialization to
ensure the seed tables on each processor are random and
uncorrelated. In this paper, we presented our implementa-
tion of a parallel random number generator based on the
Combined Linear Congruential Generators provided in [6].
For parallelization, we used sequence splitting among dif-
ferent processors . Our study shows it’s among the mostly
recommended random number generator for parallel com-
puters. Moreover, to our knowledge there is no such work
in OpenMP for shared memory.

3 Random Number Generators based on
Four LCGs

The most commonly used generator for pseudo-random
numbers is the Linear Congruential Generator. We denote
this pseudo-random number generator with the underlying
recursion.

xn = axn−1 + b (mod m) (1)

The values a, b and m are pre-selected constants. a
is known as the multiplier, b is the increment or additive
constant, and m is the modulus. The size of the modulus
constrains the period, and it is usually chosen to be either
prime or a power of 2.

The quality of the generator is strongly dependent
upon the choice of these constants. The method is appeal-
ing however, because once a good set of the parameters is
found, it is very easy to program. One fairly obvious goal
is to make the period (the time before the generator repeats
the sequence) long, this implies that m should be as large as
possible. This means that 16 bit random numbers generated
by this method have at most a period of 65,536, which is
not nearly long enough for serious applications. Hence, in
huge simulations 32, 64 or 128 bit random number genera-
tors are used. Another common use is to combine multiple
random generators to provide a random number generator
of very large period.

By combining two or more linear congruential gen-
erators may increase the length of the period and results in
other better statistics. Such kind of generators are termed as

combined generators. This paper presents the parallel im-
plementation of the combined generator by L’Ecuyer and
Andres. Generally LCGs are best parallelized by parame-
terizing the iteration process, either through the multiplier
or the additive constant. Based on the modulus, different
parameterizations have been tried.

Wichman and Hill in [12], and L’Ecuyer [5] proposed
two different methods for combining LCGs with distinct
prime moduli. L’Ecuyer and Tezuka [9] later found that
a combined generator by Wichman and Hill is truely an
LCG with modulus equal to the product of the moduli of
the individual components. To understand the combination
method by L’Ecuyer and Andres consider J LCGS based on
the recurrences

xj,n = ajxj,n−1 mod mj (2)

For j=1....J L’Ecuyer and Andres [6] assume that the
moduli mj are distinct primes and that the jth LCG has
maximal period lengthρj = mj − 1. δ1....δJ are arbitrary
integers such that for eachj , δj andmj have no common
factor. They define the two combinations as follows:

zn = (
∑

j=1..J δjxj,n) mod m1i
un = zn / m1 (3)

and wn = (
∑

j=1..J
δjxj,n

mj
) mod 1 (4)

Let

m = Πj=1..J mj (5)

The following theorm is provided in [9]

• ”The sequences{un} and {wn} both have period
lengthρ = lcm(ρ1....ρJ) (the least common multi-
ple of ρj) eachρj is even and the maximum possible
value ofρ is ρ = (m1 − 1)....(mJ − 1)/2J−1

• Thewn obey the recurrence

xn = axn−1 mod m;wn = xn/m

where a can be computed by a formula given in [9]
and does not depend on theδj

• One hasun = wn + εn with ∆− ≤ εn ≤ ∆+ where
∆− and∆+ can be computed as explained in [9] and
are very small when themj are very close to each
other.”

Therefore, the combinations of equation 3 and 4 are a
practical way of implementing an LCG with large modulus
m and multiplier a. In that case the structural analysis of
the corresponding LCG define the criteria to choice equa-
tion parameters. The parameters then do not depend on the
analysis of individual components.

3.1 Finding a Good Combination

The combined generator based on four LCGs (i.e. four
components) should have the following properties [6].

• Each component should be an LCG with prime modu-
lusmj which is slightly smaller than 231, multiplier aj
so that(mj mod aj) < mj/aj , and full period
lengthρj = mj − 1

• The moduli should satisfymj < mj−1 − 100 for j
> 1 and(m1 − 1)/2....(m4 − 1)/2 should have no
common factor to keep period length of the combined
generator equal to the product of theρj divided by 8

• The combined generator must have a significant
quality of its lattice structure [8]. Hence, should
have the best possible figure of merit [8].

L’Ecuyer and Andres made an intensive computer
search to find a combined generator with these proper-
ties and with the best possible value of figure of merit.
They came up with the following parameters [6].

j mj aj

1 2147483647 45991
2 2147483543 207707
3 2147483423 138556
4 2147483323 49689

The LCG corresponding to the combined genera-
tor has modulus, multiplier and period length

m = 21267641435849934371830464348413044909
a = 5494569482908716143153333426731027229
ρ = (231 - 2)(231 - 106)(231 - 226)(231 - 326) ≈ 2121

4 Sequential Algorithm

The algorithm works in two phase initialize phase and gen-
eration phase. In initialize phase, seed values of all the
generators are generated. In generate phase, random num-
bers are generated. Each generator g has an initial seed Ig
(initially generated or assigned), a last seed Lg (the starting
point of its current segment) and a current seed Cg (the cur-
rent state of the generator). When a random number is pro-
duced in generation phase by this generator, Cg is advanced
to the next state in the generators sequence by changing the
segment number. Cg jumps back and forth between the dif-
ferent segments of any given generator and take the next
offset value in that segment as the next random number.
The sequential algorithm is provided in Figure 1.

5 Parallelization of Pseudo-random number
Generator

We used OpenMP for parallelization of the random num-
ber generator for a shared memory architecture worksta-
tion. OpenMP provides multiple thread parallelism. We
distribute the same code to all threads and all threads work
as a stand alone program concurrently. The threads run on
different processors of a SMP machine. It is also the case

 Initialize
• Initialize segment and offset count. Segment = V = 2v and

Offset = W = 2w where v >= 30 and w >= 41 and v + w <=
100.

• Initial seed of generator 0 is set to the vector {11111111,
22222222, 33333333, 44444444}

• Initialize seed for each generator. For the first generator I0 the
seed is the vector {s[0]…s[3]) following the rule
1<=s[0]<= 2147483646, 1<=s[1]<= 2147483542,
1<=s[2]<= 2147483422, 1<=s[3]<= 2147483322

• The initial seed for the other generators are computed from
the seed of the first generator so that seeds of different
generators are VW values apart

• Initialize generators to their initial or any other arbitrary seed
to start from

 Generation
 for each simulation/set/generator

for each variant/item/parameter
Generate an uniform random number within [0,1]
Switch to different segment of the same generator

end for
 end for

Figure 1. Sequential Algorithm

the thread number can be more than the number of proces-
sors then a processor handles multiple threads in time shar-
ing basis. If it is computation intensive application than if
number of threads equals to the number of processors then
we get better performance. Otherwise context switching
causes more execution time. Our pseudo-random number
generator is computation intensive. Ours is a parallelizable
problem as at a time we want to generate random numbers
for multiple simulations and there are a large number of
variables/variates in each simulation.

We assign a thread to generate the variables for a par-
ticular simulation/set. We assign a different generator for
each simulation. Hence, all threads in different processors
run the same code where each thread work for a differ-
ent simulation/set concurrently. As a result, efficiency in-
creases a lot. The parallel algorithm is provided in Figure
2.

6 Experimental Results

We used C to develop the sequential program and OpenMP
library for the multi-threaded parallel program. The
methodologies followed for the experiment are given be-
low:

• For every instance of graphs five runs were conducted
the runtime is average of these five runs.

• Runs on the same set of inputs were done with number
of processors ranging from 1 to 8.

 Initialize
• Initialize segment and offset count. Segment = V = 2v and Offset =

W = 2w where v >= 30 and w >= 41 and v + w <= 100.
• Initial seed of generator 0 is set to the vector {11111111, 22222222,

33333333, 44444444}
• For the first generator I0 the seed is the vector {s[0]…s[3]) following

the rule
1<=s[0]<= 2147483646, 1<=s[1]<= 2147483542,
1<=s[2]<= 2147483422, 1<=s[3]<= 2147483322

• Initialize generator I0 to its initial or any other arbitrary seed to start
from

 Generation
 for each simulation/set/generator pardo

if first iteration
o Initialize seed for each generator based on

generator/simulation/set ID
o The initial seed for the other generators are computed from

the seed of the first generator I0 so that seeds of different
generators are VW values apart

for each variant/item/parameter [pardo]
Generate an uniform random number within [0,1]
Switch to different segment of the same generator

end for
 end for

Figure 2. Parallel Algorithm

• The experiments were conducted for static scheduling
of OpenMP.

We tested our implementation in two different hard-
ware platforms. Experimental results and discussions for
both of the platforms are provided below:

6.1 Pentium-3, Linux Platform

The experiments were conducted on an eight processor
i686 (Pentium-3) Symmetric Multiprocessor (SMP) Ma-
chine. The processor speed is 700.011 MHz. with a cache
size 0f 1024 KB and a total memory space of 6 GB.

The speed up we get is optimistic. We calculated the
speed up using the following equation:

Speedup = Time Required Using Sequential Code
Time Required Using Parallel Code

We ran our implementation for 1024 to 3072 simula-
tions where each simulation has 1024 variate or input pa-
rameters. We vary the thread number from 1 to 8. For 2
threads we got the speed up around 1.8 when the number
of the simulation is 3072. But for 4 threads we get speed
up near to 3(2.90). And for 8 threads we get a speed up
more than 3.6. This shows the scalability of our parallel
implementation.

Figure 3 shows the speed up result for 1024, 2048 and
3072 simulations where each simulation has 1024 input pa-
rameters. We see for 2048 simulations when thread number
is below 4 speedup is lower than 1024 simulations how-
ever after that the speedup for 2048 simulations exceeds
the speedup of 1024 simulation though it remains lower

Speedup vs. Threads

0

0.5

1

1.5

2

2.5

3

3.5

4

2 4 6 8
Threads

Sp
ee

dU
p

1024 Simulation

2048 Simulation

3072 Simulation

Figure 3. Speed up results for different threads

than the speedup of 3072 simulations. We get maximum
speedup of 3.6 when the number of thread is 8 and simula-
tion number is 3072. This is the highest load in our case.
The reason is that, we experiment our algorithm on 8 mul-
tiprocessor machine. When there are more work load, the
processors can utilize their full capacity. Therefore, it takes
relatively less time for larger problems when compared to
the sequential version of the same problem. Now it is in-
ferred that the load is balanced to each thread evenly.

Table 1: Efficiency
Simulation Count/Thread 2 4 6 8

1024 0.99 0.70 0.53 0.42
2048 0.95 0.67 0.57 0.44
3072 0.94 0.72 0.58 0.45

Table 1 shows the efficiency of our implementation.
We measure efficiency as follows:

efficiency = Speedup
Thread Count

For all of the simulations the efficiency is greater than
0.5 until thread number 6. However, the efficiency goes
below 0.5 when the number of threads is 8. The reason be-
hind this when there are more threads thread management
becomes important which takes some time and reduces ef-
ficiency. Besides, sharing common data structure among
threads become more conflicting hence reducing overall ef-
ficiency.

Table 2: Execution Time in Sec.
Simulation/Thr. 1 2 4 6 8

1024 15.77 7.94 5.63 4.90 4.75
2048 33.40 17.56 12.36 9.62 9.46
3072 48.49 25.66 16.66 13.83 13.44

From the Table 2, it is clear that the execution time
decreases as we increase the number of threads. We can
explain the behavior in such a way. When we use only
one thread the thread is overloaded. When the number
of threads increased the workload is distributed among the
threads hence reducing execution times.

Speedup vs. Simulation

0

0.5

1

1.5

2

2.5

3

3.5

4

1024 2048 3072
Simulation

Sp
ee

du
p

2 Threads 4 Threads

6 Threads 8 Threads

Figure 4. Speed up results for different number of Simula-
tions for fixed threads

Figure 4 shows the improvement of efficiency for
larger number of simulations. For simulation count 1024
we got the maximum speed up for 8 threads is 3.31. On
the other hand, for 2048 simulations, the maximum speed
up is 3.53. The speed up for 3072 simulations is 3.6. This
phenomena clearly indicates that the parallel random num-
ber generator works better when more works are distributed
among the threads. The reason is that when more work is
given, the amount of computation increases and the load is
distributed among the processors.

6.2 SUN Ultra Sparc-III

The experiments were conducted on machines containing
24, 1050 MHz UltraSparc-III CPUs, 48 gigabytes of mem-
ory, a terabyte of disk storage, L1 Cache, and L2 Cache. L1
cache consists of 64 KB 4-way data, 32 KB 4-way instruc-
tion, 2 KB Write, and 2 KB Prefetch. L2 Cache consists of
8 MB External On-chip controller and address tags.

The speed up we get for SUN Ultra Sparc-III is highly
optimistic. We ran our implementation for 1024, 2048,
3072, 4096, 8192, 10240 simulations where each simula-
tion has 1024 variate or input parameters. We varied the
thread number from 1 to 16.

Figure 3 shows the speed up result for 1024, 2048,
3072,4096, 8192 and 10240 simulations where each sim-
ulation has 1024 input parameters. We see for the same
problem size with the increase of the thread numbers
speedup increases significantly. Also with the increase of
problem size for the same number of threads speedup also
increases in most cases. The speedup indicates our imple-
mentation is quite suitable for parallel implementation and
pretty usable in parallel simulations to provide significant
efficiency. We get maximum speedup of 10.57 when the
number of thread is 16 and the number of simulations is
8192. This is the second highest load in our case. The rea-
son is that, we experiment our algorithm on 16 multiproces-
sor machine. When there are more work load, the proces-
sors can utilize their full capacity. Therefore, it takes rela-

Speedup vs Threads

0

2

4

6

8

10

12

2 4 8 16
Threads

Sp
ee

du
p

1024
2048
3072
4096
8192
10240

Figure 5. Speed up results for different threads

tively less time for larger problems when compared to the
sequential version of the same problem. Now it is inferred
that the load is balanced to each thread evenly. However,
for the problem size 10240 simulations, speedup somewhat
decreases. This might be because of the L2 cache size. Un-
til 8192 simulations cache hit rate is significant. After that
when the number of simulations increases cache failure rate
increases and speedup decreases.

Table 3: Efficiency
Simulation Count/Thread 2 4 8 16

1024 0.94 0.91 0.85 0.54
2048 0.95 0.93 0.89 0.61
3072 0.95 0.94 0.90 0.63
4096 0.95 0.94 0.92 0.65
8192 0.96 0.95 0.93 0.66
10240 0.92 0.84 0.75 0.50

For simulation number until 8192 and thread num-
ber 8 efficiency is almost greater than 90%. With the in-
crease of thread number efficiency is reduced slightly be-
cause of the thread initialization, thread termination also
due to the context switch. However, the reduction is not
that significant. With the increase of problem size for a
fixed thread number the efficiency increases as the proces-
sors are utilized much more. However, we see for thread
number 16 the efficiency reduces much this might hap-
pen due to many number of threads and context switching.
Also for 16 threads with the increase of problem size ef-
ficiency increases until problem size becomes 8192. But
when problem size is 10,240 efficiency reduces this might
be due to L2 cache size and increase in cache failure rate.
Besides, sharing common data structure among threads be-
comes more conflicting hence reducing overall efficiency.

Table 4: Execution Time

Simulation/Thr. 1 2 4 8 16
1024 1790 952.8 494.4 262.6 206.8
2048 3573.2 1882.2 958.6 500.6 366.8
3072 5357.8 2823.6 1432 744.4 532
4096 7143.2 3758.6 1893.8 974.2 691.2
8192 14278.8 7483.4 3774.6 1918.4 1350.8
10240 18441 9984 5425.6 3076.6 2343.8

From the Table 4, it is clear that the execution time de-
creases as we increase the number of threads. When we use
only one thread the thread is overloaded. When the number
of threads increased the workload is distributed among the
threads hence reducing execution times.

Speedup vs. Problem Size

0

2

4

6

8

10

12

1024 2048 3072 4096 8192 10240
Problem Size

Sp
ee

du
p 2

4
8
16

Figure 6. Speed up results for different number of Simula-
tions for fixed threads

Figure 4 shows the improvement of efficiency for
larger number of simulations. For simulation count 1024
we got the maximum speed up for 8 threads is 6.81. On
the other hand, for 2048 simulations, the maximum speed
up is 7.14. The speed up for 3072, 4096, 8192 simulations
are 7.2, 7.34, 7.45 respectively. This phenomena clearly
indicates that the parallel random number generator works
better when more works are distributed among the threads.
The reason is that when more work is given, the amount
of computation increases and the load is distributed among
the processors.

6.2.1 Scalability

Scalability is a measurement that indicates the capacity of
a parallel procedure to provide the same performance level
when the problem size and the number of available proces-
sors grow proportionally [4]. From the Figure 5 it is clearly
seen that our implementation is scalable. We started with
1024 simulations and 2 threads. Then we doubled the prob-
lem size (2048 simulations) and thread number (4 threads)
we get speedup 1.98 times than the speedup of 1024 cus-
tomers which is almost double. Then we increased problem
size to 4 times (4096 simulations) times and thread number
to 4 times (8 threads) we get speed up 3.90 times than 32
customers which is almost 4 times. This measure definitely

indicates that our implementation is scalable. However, for
16 threads and 8192 simulations the speedup is 5.63 times
than 1024 simulations. In ideal scalable system and algo-
rithm it (5.63) should be almost 8. In this case the problem
size is increased 8 times, system size is also increased to
8 times however, as now the cache size is not sufficient it
needs some more secondary ram access increasing the ex-
ecution time. In all the other cases intermediate ram access
is absent. Hopefully, proper increase in system capacity
would lead around 8 times gain here.

Scalability

0

2

4

6

8

10

12

1024 2048 3072 4096
Prob Size/Threads

Sp
ee

du
p

Scalability

Figure 7. Scalability Mesures

7 Conclusions

In this paper, we presented our parallel implementation of
the random number generator proposed in [6]. We found
our solution to be scalable with the number of processors
and input size. The implementation provides locality with
significant speedup and efficiency also maintains all prop-
erties of its sequential implementation providing all the
same random numbers as its sequential implementation.
Future works may focus on the better parallelization to in-
crease speedups. Some empirical tests can be performed to
study the randomness of the output. Using our generator
with Monte Carlo algorithms [10] used for simulating two
dimensional Ising model [1], can be an effective empirical
test. Besides, the implementation can be tested with work-
stations having more processors to better study the scala-
bility issue.

References

[1] B. A. Cipra. An introduction to the ising model. In
Amer. Math, volume 94, pages 937–959, 1987.

[2] P. D. Coddington. Random num-
ber generators for parallel computers.
npac.syr.edu/users/paulc/papers/NHSEreview1.1/
PRNGreview.ps, April 1997.

[3] C. Drake and A. Nicolson. A survey of pseudo-
random number generators. Technical report, De-
partment of Electrical Engineering and Computer Sci-
ence, University of Michigan.

[4] Crainic T. G. and M. Toulouse. Parallel metaheuris-
tics. InKluwer Academic Publishers, pages 205–251,
1998.

[5] P. L’Ecuyer. Efficient and portable combined random
number generators.Communications of the ACM,
31(6):742–749, 1988.

[6] P. L’Ecuyer and T. H. Andres. A random number gen-
erator based on the combination of four lcgs.Math-
ematics and Computer Simulations, 44(1):99–107,
1997.

[7] P. L’Ecuyer and S. Cote. Implementing a ran-
dom number package with splitting facilities.ACM
Transactions on Mathematical Software, 17(1):98–
111, 1991.

[8] P. L’Ecuyer and R. Coutre. An implementation of the
lattice and spectral tests for multiple recursive linear
random number generators.INFORMS Journal on
Computing, Circa, 1997.

[9] P. L’Ecuyer and S. Tezuka. Structural properties
for two classes of combined random number genera-
tors.Mathematics of Computation, 57(196):735–746,
1991.

[10] N. Metropolis and S. Ulam. The monte carlo
method.Journal of the American Statistical Associa-
tion, 44(247):335–341, 1949.

[11] OpenMP Architecture Review Board.OpenMP C and
C++ Application Program Interface, version 1.0 edi-
tion, 1998.

[12] B. A. Wichmann and I. D. Hill. An efficient and
portable pseudo-random number generator.Applied
Statistics, 31:188–190, 1982.

