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Abstract

One of the most important issues in distributed systems is time synchronization.
Many distributed applications that collects data require that the distributed objects
must be able to synchronize their time with a single reference point and time stamp the
data in order to perform global transactions with high precision and consistency. Time
synchronization is also needed to perform tasks to provide coordination and data con-
sistency. Time synchronization protocols for sensor networks must be suitable to the
resource and power limitations in sensor nodes. The existing protocols for other kind
of networks need to be extended and modified to fit the requirements of wireless sen-
sor networks. This project implements flooding time synchronization protocol(FTSP)
on a set of sensor motes running TinyOS operating system. The algorithm provides
high precision, negligible synchronization error, robustness against node failures and
topology changes for a small to medium sized sensor networks. Moreover, the algo-
rithm uses less communication bandwidth to provide power efficiency. In this report,
we presented our implementation of the FTSP protocol. We extensively studied and
tested the implementation to analyze different issues like initial synchronization time,
root election time, clock drifts, signal strength, scalability, effect to topology changes
and node failures for varying network structures using Mica2 and Mica2Dot motes. An

in depth analysis of our experiment is also provided in the report.

1 Introduction

Technological Advances in Electronics have led to highly efficient, low powered, inte-

grated communication devices and sensors. Sensors can be spread throughout a region



to build a network for many applications such as environment observation, habitat mon-
itoring, protecting a region from intruders, military applications and so on. Usually a
wireless sensor network consists of many sensors (clients) and a basestation (usually
a sensor). The client sensors are spread over a region and the base station is usually
connected to a workstation(PC) where the sensor network operating system runs. An
application operating in the workstation maintains and collects data from the sensor
network. Client sensors also run some application to send data to the workstation
through the base station for offline querying and processing. Recently, sensor networks
have become a very active topic of research due to its emerging importance in many
personal, home, industry, agriculture, and medical applications. In many applications,
the sent data needs to be time stamped by the sensors to be useful. Hence, time
synchronization is important in sensor networks. However, as sensors lack in resource,
power, and processing capability, the time synchronization protocols must be power
efficient.

In the project, we implemented the Flooding Time Synchronization Protocol which
is effective for both wide area multihop distributed sensor networks as well as for small
area, single hop networks. The protocol uses MAC layer time stamping and compensates
for the skew compensation due to the clock drifts (small difference in clocks) of the
sensor nodes using linear regression. Broadcast based synchronization and the skew
compensation reduces communication overhead helping in power conservation.

Our target platform [?] consists of Mica2 and Mica2Dot motes. Mica2 has 7.37 MHz
processor, 4KB of RAM, flash memory of 128KB, wireless transceiver of 916 MHz. It
also comes with sensors that sense temperature, humidity, and light. Mica2Dot has 10-

bit analog to digital converter, 916 MHz of base radio frequence and it also comes with



sensor boards to capture light, humidity and so on. Mica2 has 921.6 KHz timer where
Mica2dot has 500 KHz timer. nesC language is used to program the motes. TinyOS [?]
is an ”open source, event driven modular” operating system. TinyOS handles the
tasks of typical operating system like concurrency, scheduling, radio communications,
clocks, timers, power management, resource allocation, ADC, I/O, EEPROM and so
on. TinyOS can be used with the sensor networks to perform operations that are
associated with the sensors.

The protocol is implemented on Mica2/Mica2-Mica2dot platforms running TinyOS.
In all cases, we found the protocol is well suited for sensor networks providing precision
in the microsecond range and negligible synchronization error. The rest of the report
is organized as follows: In section 2, we describe the algorithm, the experimental test-
bed in section 3, in section 4, analysis and evaluation and finally, we conclude with

conclusions and future works.

2 Related Works

Many time synchronization protocols such as Network Time Protocol(NTP) [4], Ref-
erence Broadcast Synchronization(RBS) [2], and Timing-sync Protocol for Sensor Net-
works(TPSN) [5] have been developed. NTP uses GPS to synchronize to the NTP
time servers. N'TP is the most prominent in Internet domain and provides precision
in millisecond range. Non-determinism in wireless sensor networks(WSN) makes NTP
suitable only for low precision WSN applications. RBS uses reference broadcast and
recorded time interchange with broadcaster. However, RBS has not been extended for

multihop WSN. The TPSN uses a hierarchical structure and pair-wise synchronization



along the edges. TPSN does not support clock drifts and dynamic topology changes.

3 FTSP Algorithm

The FTSP protocol [3] provides global time synchronization in the network. All of the
nodes in the network including root, run the same FTSP algorithm. The nodes selects a
node among them as the root and synchronize the global time of each node to the local
time of the root. Root is usually the node having the minimum node id. To make each
node synchronized, each node periodically broadcasts Time Synchronization messages
containing estimate of global time and the local time once in every x( predefined)
seconds. Each node keeps a certain number of past messages (a new synchronization
point) in a table as local time and offset (globaltime-localtime) pair. Each node uses
this table to (re)calculate the skew and offset of his local clock vs global time when a new
TimeSync message comes. The local time of node A is assumed to be approximately
a linear function of local time of node B. So the algorithm uses linear regression. This
skew is needed to compensate for clock drifts. The equation a client uses to calculate
global time is as follows

globalTime = localTime + offset + skew * (localTime - syncPoint)

In case of single hop, all broadcasted message are heard by everyone. However,
in case of multihop only the neighbors can hear the time synchronization messages.
The global time (i.e. local time of the root) from root propagates to the farthest part
using neighborhood broadcast. Therefore in multihop environment root selection time

is greater. Also, the synchronization error is little bit greater.



4 Our Implementation of the FTSP Algorithm

We used the built-in SysTimeStamping component of the TinyOS to time stamp in-
coming and outgoing messages using MAC layer time stamping. The broadcasted Time
Synchronization message contains the node ID of the current synchronization root, the
node ID of the sender, a sequence number that is only incremented by the root, and

the global time of the sender at transmission time.

4.1 Phases of algorithm:

e INIT: This phase is triggered when we just turn on a mote. The mote first tries
to listen time synchronization messages from the network for certain amount of
time. If it does not receive any such message from the network it declares itself

to be the root and embeds its node-id as the root in outgoing messages.

e SENDING: This phase is triggered after a fixed time interval. We use TinyOS
TimerC component to provide timer fire event. At this event, each node broad-
casts time synchronization messages embedding current root id. Because of this,
ultimately the node with the smallest node ID is selected as the root of the net-
work. The root is the only node who increases the sequence number of the time
synchronization message. However, at the instant of finding a new node with
smaller id we do not force all the network to change its global time by a large
amount rather we wait for a certain period of time (ROOT_SWITCH_EVENT_COUNT),
during which the new root determines the skew and the offset of the global time
and only then announces itself to be the root. Skew and offset values do not

change if root does not change. We keep the skew value to be 0 to decrease the



error in arithmetic. A node also declares itself the root if he did not hear any time

synchronization messages for ROOT_SWITCH_EVENT_COUNT Timer events.

PROCESSING: This phase is triggered when a time synchronization message is
received. First, we check for the root id of the incoming message and if the root id
is smaller than our root id after waiting for ROOT_IGNORE_EVENT_COUNTS
timer events our root id is changed. Besides, we store the offset and localtime
pair in our data table if we get a new synchronization point and calculate the
skew and offset of our local time with respect to the global time. The message is
considered to be new only if it has higher sequence number than the last heard
message. The skew is normalized to zero by subtracting one from the slope of the
best fitting line to provide greater precision. Mentionable, in our experiment, we
simulated multihop routing where a node would process incoming message only
if the message is from the neighbors otherwise it would just drop the message.

Hence, clients can be placed close to each other or base station even in multihop.

5 Experimental Testbed

The experimental testbed is based on single hop and multihop routing strategies. We

implemented and tested the algorithm for both single hop and multihop setup. More-

over, we used homogeneous environment containing only mica2 motes and heteroge-

neous environment containing both mica2 and mica2dot motes for both single hop and

multihop setup.

e Single Hop Routing

In case of single hop setup, all broadcasted messages from all nodes are heard by
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everyone. All of them are within the radio range of the base station. Nodes hear
data from all other nodes and synchronize their time with the currently selected
root. Parallelly, root election algorithm works and consequently the node with

the smallest id becomes the root. The figure 1 shows single hop routing network.

In single hop routing, the nodes need to be within the radio range of the base

station. However, the nodes send the messages to the base station directly.

Multihop Routing

In case of multihop setup only the neighbors of a node can hear the time synchro-
nization messages from it. The time synchronization message from root propa-
gates to the farthest part using neighborhood broadcast. Therefore, in multihop
environment root selection time is greater than single hop. Also, the synchroniza-
tion error is little bit greater than single hop. In multihop architecture, the nodes
can be out of range of the base station. Message routing takes place by sending

the message to the neighboring nodes. If the clients or the root is not within
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the radio range of the base station they use some nodes as intermediate nodes
to deliver their data to the base station. The figure 2 shows multihop routing

network.

Based on Hardware Platform

Homogeneous Network:

Homogenous environment consists of client nodes of same architecture. We have

tested our implementation with keeping Mica2s.

Heterogeneous Network

Heterogeneous environment consists of client nodes of different architectures. In
heterogeneous setup, we used both Mica2 and Mica2dots as clients. Both types of
motes interacted with each other to transmit the time synchronization messages

among the nodes to make their time synchronized with the root. broadcaster.



Parameters to study

e Initial Time for Network Synchronization

At the network start up, initially it takes some time to select the proper root and
also to get all the clients synchronized with the root. For FTSP protocol, this

time is much less.

e Average and Maximum Synchronization error

To calculate average synchronization error, we first calculate the average of the
global times reported by all the clients at a particular time instant. Then for each
node the difference of their global time from this average is calculated. To get
average error, the average of these differences is calculated. To get max error, the
maximum of these differences is calculated. These are the average and maximum
synchronization error at that time instant. We calculated the average of all the
average and maximum synchronization error of every time instant to get the
global average and maximum synchronization error and we found the errors in

microsecond range.

e Polling Interval
The effectiveness of a time synchronization protocol also depends on the interval
time at which synchronization messages are broadcasted to the network. If a
protocol provides synchronization with reduced error when the interval is much
longer the protocol is a good one which can also be used to use less power.

e Arbitrary Client Failure

Client failure has no or minimal effect in time synchronization.

e Root Failure
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The root can also die due to insufficient power. If the already elected root dies
in the network then the leader election protocol must reelect a new root and
compute the global time and broadcast it to all the nodes to synchronize the
entire network. FTSP requires a very short interval to reelect the root and make

the network synchronized.

6 Analysis

A detailed analysis of our experiment is provided in this section. In homogeneous
environment, we used two Mica2 motes as the clients. The beacon broadcaster and the
base station were also Mica2 motes. In case of heterogeneous environment, we used
two Mica2s and three Mica2dot motes as clients. Again the reference broadcaster and
the base station were Mica2 motes. We programmed all the motes and turned on all
the motes nearly at the same time. After the network is synchronized with the root
we waited for some time (15-30 minutes) then turned off the root to observe the effects

on synchronization. Similar procedure was followed for all experiments.

6.1 Homogeneous Single Hop Environment

Figure 3 shows the average synchronization error before the synchronization point is
reached and the figure 4 shows the average synchronization error after synchronization
point for homogeneous single hop environment. Mentionable as we have only two client
motes average and maximum synchronization errors are all the same. All the nodes
were turned on almost at the same time. At the startup, since there is no root selected,

all nodes announce themselves as the root. After 3.5 minutes, the root (smallest node-
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id) is properly selected and all clients are able to identify the root. However, at this
moment all clients are not synchronized with the root. After 5.5 minutes, all nodes are
synchronized with the root. Synchronization error is the highest in this period (until
synchronization point is reached). Once, the root is decided, all nodes synchronize
with the root. Then we left the network to run for 30 minutes. During this time, the
average synchronization error is 0.56 micro sec where the maximum error reached to 2
micro sec in a very rare case. Then we turned off the root. For some time the clients
were reporting their previous root as the root. But after a short while (2.5 minutes),
again another node (smallest node-id) was properly selected as the root. As we have
only one node at this point the synchronization error is zero because the node is always

synchronized with itself.
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Figure 3: Before reaching the network synchronization

6.2 Homogeneous Multihop Environment

Figure 5 shows the average synchronization error before the synchronization point is
reached and Figure 6 shows the average synchronization error after the synchronization

point. Also, in this setup initially all nodes declare themselves to be the root but
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Figure 4: After reaching the network synchronization

ultimately at 4 minutes the root is properly selected. As time synchronization messages
pass only through neighbors, root is selected 30 seconds later than single hop. Network
was synchronized at 6 minutes. We ran this experiment for another 30 minutes before
turning the root off. The average synchronization error in this case is 0.37 micro sec
where the maximum error reached to 1.5 micro sec in a very rare case. Then we turned
off the root. For some time the clients were reporting their previous root as the root.
But after a short while 2.5 minute again another node was properly selected as the
root. As we have only one node, now the sync error in our case is zero because the

node is always synchronized with itself.

6.3 Heterogeneous Single Hop Environment

Figure 7 shows average and maximum synchronization error before synchronization
point is reached and figure 8 shows average and maximum synchronization error after
synchronization point is reached for heterogeneous single hop environment. At the
startup, everybody declares itself to be the root but after 5 minutes the root is prop-

erly selected. This selection time is larger than homogeneous environment as the Mica2
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and Mica2dot have clock difference between them. Moreover, other architectural dif-
ferences, processing capability, packet loss can cause this larger initial synchronization
time. However, yet the network is not synchronized with the root. At 6.5 minutes we
got every node synchronized with the root. Also this time is larger than homogeneous
environment because of the causes mentioned above. Note able synchronization error
is the maximum until synchronized point is reached. Once, the network is synchro-
nized, synchronization error reaches minimum. We kept the network in this state for

a while and the average and maximum synchronization error are 3.37 and 6.73 micro

Figure 6: After reaching the network synchronization

14




sec respectively. These errors are also higher than homogeneous environment

heterogeneous motes.
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6.4 Heterogeneous Multihop Environment

Figure 9 shows average and maximum synchronization error before synchronization

point is reached and figure 10 shows average and maximum synchronization error after

synchronization point is reached for heterogeneous multihop environment. At the start
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of the network everybody declares itself to be the root as no root is selected yet. After
6 minutes the root is properly selected. This selection time is larger than single hop
heterogeneous environment as time synchronization messages only traverse through
neighbors it takes more time to go through all nodes. However, yet the network is
not synchronized with the root. At 20 minutes we got every node to be synchronized
with the root. This synchronization time is larger than homogeneous environment also
larger than heterogeneous single hop environment. Because of multihop environment
the local time of root propagates only through the neighborhood broadcast taking long
time to reach to the farthest part. Besides, now the environment is heterogeneous.
Hence, it takes too long to get the network synchronized. In this period (until sync.
point), as usually the synchronization error is maximum. We kept the network in this
synchronization state until 31 minute. The average and maximum synchronization
error in this synchronization period are 3.44 and 5.37 respectively. The average error
is slightly more than single hop, but the max error is a little bit higher. After syn-
chronization as the network is stable, all nodes get data from their neighbors properly,

synchronization error does not differ much with the single hop scenario.
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7 Conclusions and Future Works

We have implemented the Flooding Time Synchronization Protocol for both single
hop and multihop wireless sensor networks. The implementation was done both for
homogeneous environment containing only Mica2 motes and heterogeneous environ-
ment containing both Mica2 and Mica2Dot motes running TinyOS operating system.
We found a very short initial synchronization time. Also, the implementation was ro-
bust to the root failure and client failure. For homogeneous environment the average
synchronization error is negligible. The error is 0.56 micro sec for single hop and 0.37
micro sec for multihop. We tested our implementation for a heterogeneous environ-
ment where the error was 3.37 micro sec for single hop and 3.44 micro sec for multihop.
Mentionable, to our knowledge no experimental result exist for a heterogeneous FTSP
environment. Our implementation provides results for the heterogeneous environment.
Our future work may focus on the testing of the implementation for a wide sensor net-
work consisting large number of sensors. Besides, the TSync [1] algorithm which was

implemented for sensors containing GPS can be implemented for Mica2 and Mica2dot
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environment with some modifications.
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