CE H0200

Spring 2006
Homework 2
Due February 27, 2006

1. Suppose that a gravity model of trip distribution has been estimated as

$$
T_{i j}=\frac{O_{i}^{0.5} D_{j}^{0.2}}{\left(d_{i j}\right)^{2}}
$$

(a) What is $T_{i j}$ if $O_{i}=100, D_{j}=200$, and $d_{i j}=5$ miles? What if the distance is 10 miles instead of 5 miles?
(b) What happens to $T_{i j}$ if both O_{i} and D_{j} double in size?
2. A model of mode split (with two modes) has been estimated as

$$
\ln \left(\frac{P_{i j a}}{1-P_{i j a}}\right)=-8\left(t_{a}-t_{b}\right)-2\left(m_{a}-m_{b}\right)
$$

where mode a is auto and mode b is public transit, t (travel time) is measured in minutes, and m (money cost) is measured in cents.
(a) At what values of $\left(t_{a}-t_{b}\right)$ and $\left(m_{a}-m_{b}\right)$ is the probability of using the auto equal to 0.5 ?
(b) What is the value of reductions in commuting time implied by the estimated mode split function? What unit of measurement did you use to express the value of time?

