e —— e —— e

r commodore

COMPUTER

RS:232C
Adapter

For use with VIC-20
and

COMMODORE-64

c: commodore

COMPUTER

TABLE OF CONTENTS

RS-232C Interiace Cartiioee . .= o ot <« oo atuis av v sawws s 1
ConnectingTheCartridge 1
Using The VIC/C64’s RS-232 Capabilities 1
Commodore InformationNetwork 7.

Getting Deeper Into The RS-232Connection 2

RS-232 Interface Description —

Built- Ir SO N I Sl Tt s s o e b e s 3
OpeningAnRS-232Channel 3
Getting DataFromRS-232Channel 4
SendingDataToAnRS-232Channel 7
ClosingAnRS-232DataChannel 8

Explanationof RS-232CSignal 12
VIC/ICB4UserPartConnecion:o envas 12
RS-232C CartridgeConnector 13
Interface Handshake Sequence Of

LB e T e s e s e 14

Appendiiil. . - it TR L 5 e v e s mons s A-1
UserCallableKernalRoutines A-2
Receiver/Transmitter Buffer Base

LoCaHON POMIOIE & . - s ool ve vevins sin sn vn sivie s A7
Zero-Page Memory Locations And

Usage For RS-232 SystemInterface A-8
Nonzero-Page Memory Locations And

Usage For RS-232 SystemInterface A-8

Copyright © 1982 by
Commodore Business
Machines, Inc.

All rights reserved

RS-232C INTERFACE CARTRIDGE

This RS-232C “TERMINAL-TYPE"” CARTRIDGE allows you to
use standard RS-232 devices with your VIC 20/C64, through the
User Port. The cartridge conforms to EIA Standard (Aug. 1979) for
RS-232 Interface.

CONNECTING THE CARTRIDGE

Following these steps to connect your RS-232 cartridge:
1. Turn OFF the VIC/C64 ON/OFF switch.

2. Connect an RS-232 cable between the RS-232 Interface
Cartridge and RS-232 device (i.e. modem). (RS-232 Cables are
sold by most computer and electronic stores.)

3. Insert the RS-232 Cartridge into the User Port slot in the back
left-hand corner of the VIC/C64. The cartridge’s metal label should
be facing UP.

4. Turn ON the VIC-20/C64.

USING THE VIC/C64’s RS-232 CAPABILITIES

If you're using an RS-232 modem with VIC/C64 you can now
switch to the manual which comes with your modem and
proceed...whether you're communicating with other VIC/C64’s
or accessing a telecomputing service.

COMMODORE INFORMATION NETWORK

Commodore has set up a special “Commodore Information
Network™ which CompuServe subscribers can access to get cur-
rent product information and technical assistance, or exchange
tips with other Commodore owners. Here are a few of the services
provided through this network. The subscriber will be billed for
his continued use of the services provided through this network:

1. Commodore Hotline 2. Commodore Newsletter
3. User Bulletin Board 4. Product Announcements
5. User Club Directory 6. Programming Tips

7. Technical Support 8. Commodore Graphics

9. *Program of the Month 10. *Public Domain Software

To get started, join the CompuServe service, hook up your
modem, follow the instructions in the CompuServe manual, sign
onto CompuServe and at the first prompt type:

GO CBM

Note: These features will be available at a later date. Announcements will be made
as services are expanded.

GETTING DEEPER INTO THE RS-232
CONNECTION

The following exerpt from the VIC 20 PROGRAMMER'S
REFERENCE GUIDE provides more technical information about
the VIC/C64’s RS-232 interface capability, including special
RS-232 programming information.

RS-232 INTERFACE
DESCRIPTION -
BUILT-IN SOFTWARE

The RS-232 interface software can be accessed from BASIC or
from the KERNAL for machine language programming. RS-232
on the BASIC level uses the normal BASIC commands: OPEN,
CLOSE, CMD, INPUT#, GET#, PRINT#, and the reserved
variable ST. INPUT# (CHRIN for the machine language program-
mers in the audience) and GET# (GETIN) fetch data from the
receiving buffer, while PRINT# (chrout) and CMD place data into
the transmitting buffer. The use of these commands (and
examples) will be described more fully later.

The RS-232 KERNAL byte/bit level handlers run under the con-
trol of the 6522 device timers and interrupts. The 6522 generates
NMI requests for RS-232 processing. This allows background
RS-232 processing to take place during BASIC and machine
language programs. There are built-in hold-offs in the KERNAL
cassette and serial bus routines to prevent disruption of data
storage/transmission by the NMI’s generated by the RS-232
routines. During cassette or serial bus activities data cannot
be received from RS-232 devices. Because these hold-offs are
internal to VIC-20/C64 (assuming care is taken in programming)
no interference should result.

There are two buffers in the VIC-20/C64 RS-232 interface to help
prevent loss of data when transmitting or receiving RS-232. The
VIC/C64 RS-232 KERNAL buffers consist of two first-in/first-out
(FIFO) buffers, each 256 bytes long, at the top of memory. The
opening of an RS-232 channel automatically allocates 512 bytes of
memory for these buffers. If there is not enough free space beyond
the end of your BASIC program no error message will be printed,
and the end of your program will be destroyed. SO BE CAREFUL!

These buffers are automatically removed by the CLOSE
command.

OPENING AN RS-232 CHANNEL

Only one RS-232 channel should be open at any time; a second
OPEN statement will cause the buffer pointers to be reset. Any
characters in either the transmit buffer or the received buffer will
be lost.

Up to 4 characters may be sent in the filename field. The first two
are the control and command register characters; the other two
are reserved for future system options. Baud rate, parity, and other
options can be selected through this feature.

No error-checking is done on the control word to detect a
nonimplemented baud rate, so that any illegal control word will
cause the system output to operate at a very slow rate (below
50 baud).

BASIC SYNTAX

OPENIf,2,0,"<control register><command register>"

If—Normal logical file id (1-255). If If >127 then linefeed follows
carriage return.

<control register>—Single byte character (see Figure 1)
(required to specify baud rate)

<command register>—Single byte character (see Figure 2)
(this character is NOT required)

KERNAL ENTRY

OPEN ($FFCO) — See Appendix A for more information on
entry and exit conditions.

NOTE

IMPORTANT: In a BASIC program, the RS-232 OPEN com-
mand should be performed before using any variable or DIM
statement, since an automatic CLR is performed when an
RS-232 channel is OPENed (because of the allocation of 512
bytes at the top of memory.) Also remember that your program
will be destroyed if 512 bytes of space are not available at the
time of the OPEN statement.

GETTING DATA FROM RS-232 CHANNEL

When getting data, the VIC-20/C64 receiver buffer will hold
255 characters before a buffer overflow. This is indicated in the
RS-232 status word (ST from BASIC, RSSTAT ($297) from
machine language). If this occurs, all characters received during a
full buffer condition are lost. Obviously it pays to keep the buffer
as clear as possible.

If you wish to receive RS-232 data at high speeds (BASIC can
only go so fast, especially considering string garbage collection.
When BASIC takes the time to do garbage collection the receiver
buffer can overflow because BASIC will not pay attention to
RS-232 during collection), you will have to use machine language
routines to handle the data bursts.

."

[EE [

11110 300

WORD LENGTH

BAUD RATE
0|0]|o0| 0| USER RATE [NI]
STOP BITS — ojofo]1 50 BAUD
oy 1 o[o[i[o]
ojlof1]1] 110
of1|0{o| 1345
o|l1|o|1| 150
0
0
1

1/1]1]| 600

BIT DATA

615 | WORD LENGTH 0j0|0(1200

0|0 8 BITS 1]10(0|1]| 1800 2400

0|1 7 BITS 110|1|0| 2400

1]0 6 BITS 110]|1|1]| 3600 [NI1]

1.4 3 5 BITS 1]11]0|0| 4800 NI
1({1({0]1]| 7200 [NI]

UNUSED
1|1|1]0]| 9600 [N
1|1]|1]1]19200 [N1]

NI — Not Implemented

Figure 1. Control Register

(el

PARITY OPTIONS L HANDSHAKE
B;T BéT BSIT OPERATIONS 0-3 LINE
o |PARITY DISABLED, NONE 1-X LINE
GENERATED/RECEIVED
o | o | |ODD PARITY
RECEIVER/TRANSMITTER
ol 1|1 |EVEN PARITY
RECEIVER/TRANSMITTER
+ | o [y |MARK TRANSMITTED
PARITY CHECK DISABLED
. [|4 |SPACE TRANSMITTED ‘
PARITY CHECK DISABLED

DUPLEX

O-FULL DUPLEX
1-HALF DUPLEX

UNUSED

UNUSED

UNUSED 1

Figure 2. Command Register

BASIC SYNTAX
Recommended: GET#If,<string variable>
NOT Recommended: INPUT#If, <variable list>

KERNAL ENTRY

CHKIN ($FFC8)-See Appendix A for more information on entry
and exit conditions.

GETIN ($FFE4)-See Appendix A for more information on entry
and exit conditions.

CHRIN ($FFCF)—-See Appendix A for more information on entry
and exit conditions.

NOTES

If the word length is less than 8 bits, all unused bit(s) will be
assigned a value of zero.

If a GET# does not find any data in the buffer, the character'*”’ (a
null) is returned.

If INPUT# is used, then the system will hang until a non-null
character and a following carriage return is received. Thus, if the
CTS (Clear to Send Data) or DSR (Data Set Ready to Receive)
line(s) disappear during character INPUT #, the system will hangin
a RESTORE-only state. This is why the INPUT # and CHRIN
routines are NOT recommended.

The routine CHKIN handles the x-line handshake which follows
the EIA standard (August 1979) for RS-232C interfaces. (The RTS,
and DCD lines are implemented with the VIC computer defined
as the Data Terminal device.)

SENDING DATA TO AN RS-232 CHANNEL

When sending data, the output buffer can hold 256 characters
before a full buffer hold-off occurs. The system will wait in the
CHROUT routine until transmission is allowed or the RUN/STOP-
RESTORE keys are used to recover the system through a WARM
START.

BASIC SYNTAX

CMD lf—acts same as in BASIC specifications
(see VIC-20 User Reference Manual)
PRINT#If,<variable list>

KERNAL ENTRIES

CHKOUT ($FFC9)-See Appendix A for more information on
entry and exit conditions.

CHROUT ($FFD2)-See Appendix A for more information on
entry and exit conditions.

NOTES

IMPORTANT: There is no carriage-return delay built into the
output channel so a normal RS-232 printer cannot correctly
print, unless some form of hold-off (asking the VIC-20/C64 to wait)
or internal buffering is implemented by the printer. The hold-off can
easily be implemented in your program. If a CTS (x-line) hand-
shake is implemented, the VIC-20/C64 buffer will fill and hold off
more output until transmission is allowed by the RS-232 device.

The routine CHKOUT handles the x-line handshake, which
follows the EIA standard (August 1979) for RS-232-C interfaces.
The RTS, and DCD lines are implemented with the VIC defined as
the Data Terminal Device.

CLOSING AN RS-232 DATA CHANNEL

Closing an RS-232 file discards all data in the buffers at the
time of execution (whether or not it had been transmitted or printed
out), stops all RS-232 transmitting and receiving, sets the RTS and
Sout lines high, and removes both RS-232 buffers.

BASIC SYNTAX
CLOSE If

KERNAL ENTRY

CLOSE ($FFC3)-See Appendix A for more information on
entry and exit conditions.

VIC-20 NOTE
Care should be taken to ensure all data is transmitted before clos-
ing the channel. A way to check this from BASIC is:

360 IF ST=0 AND (PEEK(37151) AND 64)=64: GOTO 360
370 CLOSE If.

Table 1. VIC-20 USER - PORT LINES
(6522 DEVICE #1 loc $9110 - PORT B OUTPUT Register)

PIN 6522 IN/

D ID DESCRIPTION EIA ABV OUT

MODES

C PBO RECEIVED DATA (BB) Sin IN 12
D PB1 REQUEST TO SEND (CA) RTS OUT 1*2
E PB2 DATA TERMINAL READY (CD) DTR OUT 1*2
F PB3 RING INDICATOR (CENRI IN 3
H PB4 RECEIVED LINE SIGNAL (CF) DCDIN 2
J PB5 UNASSIGNED () XXXIN 3
K PB6 CLEAR TO SEND* (CB)CTSIN 2
L PB7 DATA SET READY (CC)DSRIN 2
B CB1 RECEIVED DATA (BB) Sin IN 12
M CB2 TRANSMITTED DATA (BA) Sout OUT 1 2
A GND PROTECTIVE GROUND (AA) GND 12
N GND SIGNAL GROUND (AB)GND 123
MODES

1)—3-LINE INTERFACE (Sin,Sout,GND)

2)—X-LINE INTERFACE

3)—USER AVAILABLE ONLY (Unused/unimplemented in code.)
*—These lines are held high during 3-LINE mode.

*Note: The CLEAR TO SEND (CTS) signal used with the X-line interface is not
implemented. It is possible to read the CTS signal directly from the 6522 chip with a
machine language program,

(7106][51[4][3][2][1][0](Machine lang.—rsstat)
. . . .+ . . __PARITY ERROR BIT

FRAMING ERROR BIT

RECEIVER BUFFER
OVERRUN BIT

UNUSED BIT

CTS SIGNAL MISSING
BIT

UNUSED BIT

DSR SIGNAL MISSING BIT

BREAK DETECTED BIT

Figure 3. RS-232 Status Register

Status register can be accessed in BASIC by the com-
mand ST and in machine code register $0297 can be read
for the status.

NOTES

If the BIT =0, then no error has been detected.

The RS-232 status register can be read from BASIC using the
variable ST.

If ST is read by BASIC or by using the KERNAL READST routine
the RS-232 status word is cleared upon exit. If multiple uses of the
STATUS word are necessary the ST should be assigned to another
variable, i.e.

SR=ST: REM ASSIGNS ST TO SR

The RS-232 status is read (and cleared) only when the RS-232
channel was the last external I/O used.

C64 NOTE
Care should be taken to ensure all data is transmitted before
closing the channel. A way to check this from BASIC is:

100 SS = ST: IF(SS = 0 OR SS = 8) THEN 100
110 CLOSE Ifn

Table 2. C64 USER-PORT LINES
(6526 DEVICE #2 loc $DD00-$DDOF)

PIN | 6526 IN/

D D DESCRIPTION EIA ABV ouT MODES
C | PBO | Received Data BB)| Sin | IN |12
D | PB1 | Requestto Send (CA) | RTS | OUT | 1*2

E | PB2 | Data Terminal Ready | (CD) | DTR | QUT | 1*2

F | PB3 | Ring Indicator (CE) | RI IN 3
H | PB4 | Received Line Signal | (CF) | DCD| IN 2

J PB5 | Unassigned ()| XXX | IN 3
K | PB6 | Clearto Send (CB) | CTS | IN 2

L | PB7 | Data Set Ready (CC)| DSR| IN 2

B [FLAG2| Received Data BB)| Sin [IN [12
M | PA2 | Transmitted Data (BA) | Sout [OUT |1 2
A | GND | Protective Ground (AA) | GND 1 2
N | GND | Signal Ground (AB) | GND 123

MODES:

1) — 3-LINE INTERFACE (Sin, Sout, GND)
2) — X-LINE INTERFACE
3) - USER AVAILABLE ONLY (Unused/unimplemented in code.)

" — These lines are held high during 3-LINE mode.

SIMPLE BASIC PROGRAM FOR VIC-20

10 REM THIS PROGRAM SENDS AND RECEIVES DATA
TO/FROM A SILENT 700 TERMINAL MODIFIED FOR PET
ASCII

20 REM TI SILENT 700 SET-UP: 300 BAUD, 7-BIT ASCII,
MARK PARITY, FULL DUPLEX

30 REM SAME SET-UP AT COMPUTER USING 3-LINE
INTERFACE
100 OPEN 2,2,3,CHR$ (6 + 32) + CHR$ (32 + 128): REM OPEN
THE CHANNEL
110 GET#2,A%$: REM TURN ON THE RECEIVER CHANNEL
(TOSS A NULL)

200 REM MAIN LOOP

210 GET B$: REM GET FROM COMPUTER KEYBOARD
220 IF B$<>""" THEN PRINT#,B$;: REM IF A KEY
PRESSED, SEND TO TERMINAL

230 GET#2,C$: REM GET A KEY FROM THE TERMINAL
240°PRINT B$;C$;: REM PRINT ALL INPUTS TO THE
COMPUTER SCREEN

250 SR = ST: IF SR =0 THEN 200: REM CHECK STATUS, IF
GOOD THEN CONTINUE

300 REM ERROR REPORTING

310 PRINT “ERROR: ";

320 IF SR AND 1 THEN PRINT “PARITY"

330 IF SR AND 2 THEN PRINT “FRAME”

340 IF SR AND 4 THEN PRINT "“RECEIVER BUFFER FULL”
350 IF SR AND 128 THEN PRINT “BREAK”

360 IF ST =0 AND (PEEK(37151) AND 64) =64 THEN 360: REM
WAIT UNTIL ALL CHARACTERS ARE TRANSMITTED

370 CLOSE 2: END
Note for C64- Change line 360 to read:

- oo =

360 SS=ST: IF (§S=0 OR SS=8) THEN 360

EXPLANATION OF RS-232C SIGNAL

The signal in VIC/C64 and that of the user port are at
OV~ + 5VTTL level. These signals are converted into those
at—9V T 3V~ + 9V * 3V level by RS-232 C adapter.

VIC/C64 USER PORT CONNECTOR

210 9 8 ¥ 65 4 -3 .21
S o S 0 VAN) D) D g5 OO g 5 e (R 1 B S oy g

O xS e o 30 O s I O e) i B e) O
N el e R BE B CA

FIGURE 4. External View of VIC/C64 User Port Connector

on RS232 Connector

T'::r"al Signal Explanation g;";l;'::l Mode
A GND Ground 12
B Sin Received Data Input |1 2
C Sin Received Data Input |1 2
D RTS Request to Send Qutput |1* 2
E DTR Data Terminal Output [1* 2

Ready
E (NC) No Connection
H DCD in Detect Carrier Input 2
J DCD out Detection Carrier |Output |**
K CTS Clear To Send Input
L, DSR Data Set Ready Input 2
M S out Transmitted Data [Qutput|1 2
N GND Signal Ground
1 GND Ground
2 Vee +5V
3 thru 9| NC No Connection
10 | ACSV ACOV (***)
11 AC94 AC94
12 GND Signal Ground

Mode:
1....3line (S in, S out, GND).
2....Xline
(Note) * These lines will be kept HIGH during 3-
line mode
** Jumper is not connected.

*** For only VIC 1011B CURRENT LOOP
TYPE. A limited number of RS-232 “Cur-
rent Loop” cartridges are available, by
special order.

RS-232C CARTRIDGE CONNECTOR

1. 2 8 48 & 7 8 9 10 1171213
O0CO0O00000O000O0O0
O0OO0O0O00000O0O0O0

14 15 16 17 18 19 20 21 22 23 24 25

Figure 5. RS-232C Interface Cartridge Connector,
Facing The Cable

PIN | SIGNAL
ND. SIGNAL EXPLANATION EIA DIRECTION MODE
1 GND Ground 1 2
2 SD Transmitted Data |BA |Output |1 2
3 RD Received Data BA | Input 4 2
4 RS Request To Send |CA | Output [1* 2
5 CS Transmission Is CB | Input 2
Possible
6 DR Data Set CC | Output
Ready
7 GND | Signal Ground
8 CD Carrier Detect CF | Output 2
9 CL+ Current Loop+ Yok
| S~ Current Loop— s
11-19 No Connection
20 | ER Data Terminal CD | Input |1*
Ready
21-25 No Connection

INTERFACE HANDSHAKE SEQUENCE
OF X-LINE MODE

DATA OUT Handshake (CHKOUT)
IF (DSR) = LOW THEN <DSR ERROR & EXIT>
IF (RTS) = LOW
[LOOP:UNTIL (ALL IMMEDIATE CHARS INPUT)
LOOP: UNTIL (CTS) = LOW
(RTS): = HIGH
LOOP
IF (DSR) = LOW THEN <DSR ERROR & EXIT>
UNTIL (CTS) = HIGH

]
SEND DATA

DATA IN Handshake (CHKIN)
IF (DSR) = LOW THEN <DSR ERROR FLAG & EXIT>
IF (RTS) = HIGH THEN
[LOOP:UNTIL (ALL IMMEDIATE CHARS SENT)
(RTS): = LOW
LOOP:UNTIL (DCD) = HIGH

]
WAIT FOR INPUT DATA

APPENDIX A

USER CALLABLE KERNAL ROUTINES

Function name: CHKIN

Purpose: Open a channel for input

Call address: $FFC6

Communication registers: .X

Preparatory routines: (OPEN)

Error returns: 3,5,6

Stack requirements: None

Registers affected: .A, .X

Description: Any logical file that has already been opened by
the KERNAL OPEN routine can be defined as an input channel by
this routine. Naturally, the device on the channel must be an input
device. Otherwise, an error will occur, and the routine will abort.

If you are getting data from anywhere other than the keyboard,
this routine must be called before using either the CHRIN or the
GETIN KERNAL routines for data input. If input from the keyboard
is desired, and no other input channels are opened, then the calls to
this routine, and to the OPEN routine, are not needed.

When this routine is used with a device on the serial bus, this
routine automatically sends the talk address (and the secondary
address if one was specified by the OPEN routine) over the bus.

To use this routine:

0) OPEN the logical file (if necessary; see description above).

1) Loadthe .X register with number of the logical file to be used.

2) Call this routine (using a JSR command).

Possible errors are:

#3: File not open
#5: Device not present
#6: File not an input file
EXAMPLE:
. PREPARE FOR INPUT FROM LOGICAL FILE 2

1) LDX #2
2) JSR CHKIN

Function name: CHKOUT

Purpose: Open a channel for output

Call address: $FFC9

Communication registers: .X

Preparatory routines: (OPEN)

Error returns: 3,5,7

Stack requirements: None

Registers Affected: A, .X

Description: Any logical file number which has been created by
the KERNAL routine OPEN can be defined as an output channel.
Of course, the device you intend opening a channel to must be an
output device. Otherwise, an error will occur, and the routine will be
aborted.

This routine must be called before any data is sent to any output
device unless you want to use the VIC screen as your output
device. If screen output is desired, and there are no other output
channels already defined, then the calls to this routine, and to the
OPEN routine are not needed.

When used to open a channel to a device on the serial bus, this
routine will automatically send the LISTEN address specified by the
OPEN routine (and a secondary address if there was one).

How to use: Remember: this routine is NOT NEEDED to send
data to the screen. 0) Use the KERNAL OPEN routine to specify a
logical file number, a LISTEN address, and a secondary address (if
needed).

1) Load the .X register with the logical file number used in the
open statement.

2) Call this routine (by using the JSR instruction).

:DEFINE LOGICAL FILE 3 AS AN OUTPUT CHANNEL

1) LDX #3

2) JSR CHKOUT

Possible error returns:
3: File not open

5: Device not present

7: Not an output file

Function name: CHRIN

B-4. Function name: CHRIN :

Purpose: Get a character from the input channel

Call address: $FFCF

Communication registers: .A

Preparatory routines: (OPEN, CHKIN)

Error returns: See READST

Stack requirements: None

Registers saffected: A, .X

Description: This routine will get a byte of data from the channel
already set up as the input channel by the KERNAL routine CHKIN.
If the CHKIN has not been used to define another input channel,
data is expected from the keyboard. The data byte is returned inthe
accumulator. The channel remains open after the call.

Input from the keyboard is handled in a special way. First, the
cursor is turned on, and will blink until a carriage return is typed on
the keyboard. All characters on the line (up to 88 characters) will be
stored in the BASIC input buffer. Then the characters can be
retrieved one at a time by calling this routine once for each
character. When the carriage return is retrieved, the entire line has
been processed. The next time this routine is called, the whole
process begins again, i.e., by flashing the cursor.

How to use:

FROM THE KEYBOARD

1) Call this routine (using the JSR instruction).

2) Retrieve a byte of data by calling this routine.

3) Store the data byte.

4) Checkifitisthe lastdatabyte (isita CR ?). If not, go to step 2.

EXAMPLE:

LDX $#00 :Store 00 in the .X register

1) JSR CHRIN

2) RD JSR CHRIN
STA DATA X ;store the Xth data byte in the Xth
INX Jlocation in the data area.

3) CMP #CR Is it a carriage return?

4) BNE RD :no, get another data byte

A-5

EXAMPLE:

JSR CHRIN
STA DATA

FROM OTHER DEVICES
0) Use the KERNAL OPEN and CHKIN routines.
1) Call this routine (using a JSR instruction).
2) Store the data.

EXAMPLE:

JSR CHRIN
STA DATA

Function name: CHROUT

Purpose: Output a character

Call address: $FFD2

Communication registers: .A

Preparatory routines: (CHKOUT, OPEN)

Error returns: See READST

Stack requirements: None

Registers affected: None

Description: This routine will output a character to an
already open channel. Use the KERNAL OPEN and CHKOUT
routines to set up the output channel before calling this
routine. If this call is omitted, data will be sent to the default
output device (number 3, on the screen). The data byte to
be outputis loaded into the accumulator, and this routine is
called. The data is then sent to the specified output device.
The channel is left after the call.

NOTE: Care must be taken when using this routine to
send data to a serial divice since data will be sent to all
open output channels on the bus. Unless this is desired,
all open output channels on the serial bus other than
the actually intended destination channel must be

closed by a call to the KERNAL close channel routine.
How to use:
0) Use the CHKOUT KERNAL routine if needed (see

description above).
1) Load the data to be output into the accumulator.
2) Call this routine.

Function name: CLOSE
Purpose: Close a logical file
Call address: $FFC3
Communication registers: .A
Preparatory routines: None
Error returns: None
Stack requirements; None
Registers affected: .A, .X

Description: This routine is used to close a logical file after all I/O
operations have been completed on that file. This routine is called
after the accumulator is loaded with the logical file number to be
closed (the same number used when the file was opened using the
OPEN routine).

How to use:

1) Load the accumulator with the number of the logical file to be
closed.

2) Call this routine using the JSR instruction.

EXAMPLE:

.CLOSE 15
LDA #15
JSR CLOSE

B-10. Function name: GETIN

Purpose: Get a character from the keyboard buffer

Call address: $FFE4

Communication registers: .A

Preparatory routines: None

Error returns: None

Stack requirements: None

Registers affected: A, .X

Description: This subroutine removes one character from the
keyboard queue and returns it as an ASCIl value in the
accumulator. If the queue is empty, the value returned in the
accumulator will be zero. Characters are put into the queue
automatically by an interrupt driven keyboard scan routine which
calls the SCNKEY routine. The keyboard buffer can hold up to ten
characters. After the buffer is filled, additional characters are
ignored until at least one character has been removed from the
queue.

How to use:

1) Call this routine using a JSR instruction

2) Check for a zero in the accumulator (empty buffer)

3) Process the data

EXAMPLE:

WAIT FOR A CHARACTER
WAIT JSR GETIN

CMP #0

BEQ WAIT

A-7

B-16. Function name: OPEN

Purpose: Open a logical file

Call address: $FFCO

Communication registers: None

Preparatory routines: SETLFS, SETNAM

Error returns: 1,2,4,5,6

Stack requirements: None

Registers affected: .A, X, .Y

Description: This routine is used to open a logical file. Once the
logical file is set up, it can be used for input/output operations. Most
of the /O KERNAL routines call on this routine to create the logical
files to operate on. No arguments need to be set up to use this
routine, but both the SETLFS and SETNAM KERNAL routines
must be called before using this routine.

How to use:

0) Use the SETLFS routine.

1) Use the SETNAM routine.

2) Call this routine.

EXAMPLE:

This is an implementation of the BASIC statement: OPEN
15,8,15,"1/10”
LDA #NAME2-NAME: LENGTH OF FILE NAME FOR

SETLFS
LDY #>NAME
JSR SETNAM
LDA #15
LDX #8
LDY #15
JSR SETLFS
JSR OPEN
NAME .BYT ‘11O’
NAME2

RECEIVER/TRANSMITTER BUFFER BASE
LOCATION POINTERS

$00F7-RIBUF A two byte pointer to the Receiver Buffer base
location.

$00F9-ROBUF A two byte pointer to the Transmitter Buffer base
location.

The two locations above are set up by the KERNAL OPEN
routine, each pointing to a different 256 byte buffer. They are
de-allocated by writing a zero into the high order bytes, ($00F8 and
$00FA), which is done by the KERNAL CLOSE entry, They may
also be allocated/de-allocated by the machine language program-
mer for his/her own purposes, removing/creating only the buffer(s)

required. Both the OPEN and CLOSE routines will not notice that
their jobs might have been done already. When using a machine
language program that allocates these buffers, care must be taken
to make sure that the top of memory pointers stay correct,
especially if BASIC programs are expected to run at the
same time.

ZERO-PAGE MEMORY LOCATIONS AND
USAGE FOR RS-232 SYSTEM INTERFACE

$00A7-INBIT Receiver input bit temp storage.

$00A8-BITCI Receiver bit count in.

$00A9-RINONE Receiver flag Start bit check.

$00AA-RIDATA Receiver byte buffer/assembly location.

$00AB-RIPRTY Receiver parity bit storage.

$00B4-BITTS Transmitter bit count out.

$00B5-NXTBIT Transmitter next bit to be sent

$00B6-RODATA Transmitter byte buffer/disassembly location.

All the above zero page locations are used locally and are only
given as a guide to understand the associated routines. These
cannot be used directly by the BASIC or KERNAL Level program-
mer to do RS-232 type things. The system RS-232 routines must
be used.

NONZERO-PAGE MEMORY LOCATIONS
AND USAGE FOR RS-232 SYSTEM INTERFACE

General RS-232 storage:

$0293-M51CTR Pseudo 6551 control register (see Figure 1).

$0294-M51CDR Pseudo 6551 command register (see Figure2).

$0295-M51AJB Two bytes following the control and command
registers in the file name field. (For future use.)

$0297-RSSTAT The RS-232 status register (see Figure 3).

$0298-BITNUM The number of bits to be sent/received.

$0299-BAUDOF Two bytes that are equal to the time of one bit
cell. (Based on system clock/baud rate.)

$029B-RIDBE The byte index to the end of the receiver FIFO
buffer.

$029C-RIDBS The byte index to the start of the receiver FIFO
buffer.

$029D-RODBS The byte index to the start of the transmitter
FIFO buffer.

$029E-RODBE The byte index to the end of the transmitter
FIFO buffer.

c: commodore

COMPUTER

