12 ILLUSTRATIONS

12.1 Figures

- **2.1** Scanning Electron Beam Microscopy images from healthy and osteoporotic trabecular bone showing reduction in bone thickness and interconnectivity.
- **2.2** *Mediolateral cross-section through the human hip joint showing bones, muscles and other tissue.*
- **2.3** Polished and tapered chrome-nickel steel Exeter hip stem and ball.
- **2.4** *Endo-klinik classification of Grades of bone stock loss.*
- **2.5** *Intra-operative photos of implant removal (A), removed implant (B) and reaming of the femoral canal (C).*
- **2.6** Intra-operative photos of determining plug insertion depth with the guide wire (A), plug insertion (B) and graft milling $(C)^{[32]}$.
- **2.7** *Impaction Grafting tool kit and its application*^[41].
- **2.8** Intra-operative photos of graft charging (A), delivery of impaction hammer blows (B) and distal impaction. $(C)^{[32]}$.
- **2.9** Intra-operative photos of proximal impaction of reconstructed femur (A), handheld impaction (B) and completed impaction with phantom $(C)^{[32]}$.
- **2.9** Intra-operative photos of neo-medullary canal (A), retrograde cementing (B) and stem insertion $(C)^{[32]}$.
- **2.10** Cross-section through impaction grafted hip $^{[41]}$.
- **2.12** Phase triangle of bioglass identifying the biological effects of phase compositions. Area A: Bone Bonding; B: bioinert; C: resorbable; D: unstable; E: bone and tissue bonding; F: bioactive apatite glass ceramic; G: bioactive gels and glasses [132].
- **2.13** *Number of patent applications filed between 1980 and 1997 in the USA.*
- **2.14** Transversal cross-section of an impaction grafted Sawbone [®] femur indicating the geometry of the biomechanical problem.
- **2.15** Norwich® bone mill dismantled to show components (left) and assembled (right).
- **2.16** *Morsellising graft with the Howex*® *bone mill.*
- **2.17** The Howex[®] bone mill blades (Right: coarse; Left: fine)
- **2.18** Hexgonal molecular structure of synthetic stoichiometric hydroxyl-apatite projected into the a,b-plane. The triangles and single and double lined circles represent the ions and the numbers give their height in atomic units [Å] above the a,b-plane [211].
- **2.19** Reference XRD signal intensity versus diffraction angle for stoichiometric HA.
- **2.20** Reference XRD signal intensity versus diffraction angle for stoichiometric TCP.
- **2.21** XRD signal intensity versus diffraction angle for a 20:80 HA/TCP composite ceramic.
- **2.22** *CAD-drawing of shear box principle.*
- **2.23** Definition of the shear resistance values cohesion c and shear angle φ using the Mohr-Coulomb circle and failure criterion.

CHAPTER 3

- **3.1** *Human femoral heads prior to milling. High variation in size and appearance.*
- **3.2** *Removal of soft tissue like cartilage from the human femoral heads.*
- **3.3** *Ovine humeral heads prior to milling.*
- **3.4** Comparison of human and ovine bone graft morsellised with a Norwich bone mill. Grafts are compared fresh from mill and washed and dried.
- **3.5** Sectioned bovine humeral heads prior to milling (left). Comparison of human and bovine graft morsellised with the coarse and fine blades of the Howex mill (right).
- 3.6 50cm³ charge of the experimental ceramic bone graft substitutes in standard property configuration: 80:20 HA/TCP, T_{sint} = 1150°C, 2-4mm.
- **3.7** Experimental ceramic bone graft substitutes (80:20 HA/TCP, T_{sint} = 1150°C, 25% porosity) sieved to three different size intervals.
- **3.8** *SEM micrographs showing the typical surface topology of a HA/TCP ceramic sintered without organic additives for porosity creation (0% porosity).*
- **3.9** *Different volumetric mixes between ovine bone and the standard ceramic.*

- **4.1** Schematic drawing of die-plunger device (left) and chart representing the compression test regime with its two compression, relaxation and recoil phases.
- **4.2** *Die, plunger capped with porous disk and bottom disk. Die-plunger mounted in a Dartec HC10 test machine with computer-based control and data acquisition.*
- **4.3** *Derivation of compression secant modulus and relax-ation value.*
- **4.4** Typical compression force versus time curves for human bone graft freshly milled with a Norwich bone mill. Black line: 1st compression 0-500N; grey line: 2nd compression 0-1000N.
- **4.5** Superimposed force vs. strain curves of a typical bone graft sample during initial 0-500N (black) and secondary 0-1000N compression (grey).
- **4.6** Force-strain curves of human graft compressed with a solid plunger (fresh, dry, standard and low strain rate) and with a porous plunger (fresh).
- **4.7** Force-strain curves of human bone grafts freshly milled with either the Norwich or the Howex (coarse blade) bone mill. Initial compression to 500N peak load.
- **4.8** Force-strain curves of human bone grafts freshly milled with either the Norwich or the Howex (coarse blade) bone mill. 2nd compression to 1000N peak load.
- **4.9** Compression stiffness for differently prepared human bone grafts. Secant moduli calculated during initial 0-500N compression.
- **4.10** Relaxation for differently prepared human bone grafts—calculated as the relative drop in reaction force from 500N peak load after a 2min period.
- **4.11** Compression force vs. strain curves for human bone graft plus ovine and bovine xenografts during the initial 0-500N compression.
- **4.13** Representative time-relaxation curves for bone grafts and a typical ceramic graft substitute indicating. Left: linear time scale, Right: logarithmic time scale.
- **4.14** Sets of time-relaxation curves for different bone grafts indicating the variability of results within one sample group and the bandwidth of relaxation values between different groups of graft.

4.15 Relaxation after the initial 0-500N compression for human, ovine and bovine bone prepared and stored under different conditions.

- **4.16** Recoil as relative increase in volume over a two minute period after sample un-loading for human bone graft plus ovine and bovine xenografts.
- **4.17** Compression force vs. strain curves for human bone graft plus ovine and bovine xenografts during secondary 0-1000N compression.
- **4.19** *Typical compression force vs. time curve for one sample of the standard ceramic configuration tested.*
- **4.21** Compression force-strain curves for two HA/TCP ceramic graft configurations with extreme stiffness properties in comparison to typical bone grafts.
- **4.22** Compression force vs. strain curves for two HA/TCP ceramic graft configurations and a highly porous HA with extreme stiffness properties in comparison to human bone graft.
- **4.23** Compression moduli for different ceramic graft materials during the initial 0-500N compression compared to typical bone grafts.
- **4.24** Relaxation for different ceramic graft materials during the initial 0-500N compression compared to typical bone grafts.
- **4.25** Superposition of the force -strain curves of a typical ceramic graft for the initial 0-500N compression and the secondary 0-1000N compression.
- **4.26** Recoil of ceramic samples after initial compression from 0-500N calculated as the relative increase in sample height from maximum deflection after unloading.
- **4.27** Recoil calculated for ceramic and bone grafts with relation to the sample height at maximum compression (left) and with relation to the displacement (right).
- **4.28** Compression force vs. strain curves during secondary compression from 0-1000N for the standard ceramic and the stiffest and least stiff ceramic configuration.
- **4.29** Compression force vs. strain curves during secondary compression from 0-1000N for the stiffest and least stiff HA/TCP configuration, a highly porous HA and typical bone grafts.
- **4.30** Relative modulus increase between the secondary 0-500N compression (left) or the 600-1000N compression phase (right) and the initial 0-500N compression.
- **4.31** Superimposed relative relaxation versus time curves from 500N and 1000N for the standard ceramic. Peak force normalised to 100%, linear (left) and log-scale (right).
- **4.32** Particle size distribution after compression testing as weight-% per size class (left) or accumulated weight-% below size class (right). Varied: Ceramic porosity.
- **4.33** Particle size distribution after compression testing as weight-% per size class (left) or accumulated weight-% below size class (right). Varied: Ceramic sintering temperature.
- **4.34** Particle size distribution after compression testing as weight-% per size class (left) or accumulated weight-% below size class (right). Varied: Particle size prior to testing.
- **4.35** Particle size distribution after compression testing as weight-% per size class (left) or accumulated weight-% below size class (right). Varied ceramic chemical composition.
- **4.36** Density of loosely packed granular ceramics designed as bone graft extenders.
- **4.37** *Typical compression force vs. time curve for a 1:1 volumetric bone plus ceramic graft mix.*
- **4.38** Compression force vs. time curves for different volume mixes of bone graft with the standard ceramic extender compared to pure bone and pure ceramic for reference.
- **4.39** Time-relaxation curves for a 1:1 b/c mix compared to its pure constituents, ovine bone plus ceramic and human bone. Left: linear time scale, Right: logarithmic time scale.

4.40 Compression moduli for different mixes of fixed ovine bone and the standard ceramic graft during the initial 0-500N compression.

- **4.41** Relaxation for different mixes of fixed ovine bone and the standard ceramic graft during the initial 0-500N compression.
- **4.42** Recoil calculated for bone/ceramic graft mixes with relation to the sample height at maximum compression (left) and with relation to the maximum displacement (right).
- **4.43** Force-strain curves for different bone/ceramic mixes during secondary compression from 0-1000N in comparison to the pure ceramic and typical bone grafts.
- **4.44** Relative modulus increase between the secondary 0-500N compression (left) or the 600-1000N compression phase (right) and the initial 0-500N compression.

CHAPTER 5

- **5.1** *CAD-drawing of shear box principle.*
- 5.2 Photograph of working shear box apparatus with the components from left to right: Motor, screw, shear box, loading frame for normal stress and ring spring. The three dial gauges from left to right record dilation, shear displacement and ring deformation.
- **5.3** *Shear stress vs. shear deformation curves for different bone graft materials during shear-box testing.*
- **5.4** Vertical versus horizontal shear displacement during a shear-box testing of different bone graft materials at a constant medium normal load.
- 5.5 Exemplary derivation of the shear properties shear angle φ and cohesion c by extrapolation of the Mohr-Coulomb failure envelope for the 1:1 bone/ceramic graft mix.
- **5.6** Shear angles φ and cohesion c calculated for pure ovine bone, a 1:1 bone/ceramic mix and a 1:9 bone/ceramic mix.

- **6.1** *Illustration of the ovine tube-stem model and the loading geometry.*
- **6.2** Accumulated subsidence during cyclic block loading for exemplary samples of pure ovine bone and two bone/ceramic mixes with volume ratios of 1:1 b/c and 1:9 b/c.
- **6.3** Average accumulated stem subsidence during block loading of ovine bone and two bone/ceramic graft mixes at 1:1 and 1:9 volume ratio.
- **6.4** Standard deviations of stem subsidence measurements for different graft materials after completion of different load blocks.
- **6.5** Accumulated stem subsidence during block loading of an ovine bone sample (top), a 1:1 (centre) and a 1:9 bone/ ceramic mix (bottom).
- 6.6 Accumulated stem subsidence during block loading of an ovine bone (left) and a 1:1 b/c mix sample (right). The number of cycles are represented on a logarithmic scale.
- **6.7** Logarithmic trendlines of subsidence accumulated during cyclic block loading superimposed for typical samples of pure ovine bone, a 1:1 and a 1:9 b/c graft mix.
- **6.8** Average accumulated stem subsidence during block loading of ovine bone and two bone/ceramic graft mixes at 1:1 and 1:9 volume ratio.

• CHAPTER 7

- 7.1 Proximal cross-section of a Sawbone femur showing a cemented impaction grafting.
- **7.2** Surgical stem alignment template superimposed onto an x-ray image of a typical hip to be revised by impaction grafting^[41].
- **7.3** Comparison between a sketch of the human size tube-cone model (left) and a drawing from the surgical instruction manual showing the trial reduction (right)^[41].
- **7.4** *Tube and cone of the human size impaction grafting model.*
- **7.5** Design sketch (left) and photo of the impactometer used for the controlled delivery of impaction energy and momentum.
- **7.6** Preparation of constant graft volumes for controlled charging and impaction with the human tubecone model by using cup-like containers. container shown: 30cm^3 volume of a 2:1 b/c mix..
- **7.7** Human tube-cone model after graft impaction and cone insertion mounted into Instron 8511 servo-hydraulic testing machine for cyclic block loading.
- **7.8** Pure ovine bone and the standard ceramic prior to mixing (1), 2:1 bone/ceramic mix (2), the standard 1:1 mix (3) and the 1:2 bone/ceramic mix (4).
- **7.9** Accumulated subsidence during cyclic block loading of a large bandwidth of typical samples of different graft materials and impaction energy levels.
- **7.10** Accumulated stem subsidence during block loading of a large bandwidth of typical samples of different graft materials and impaction energy levels (magnified chart section).
- **7.11** Accumulated stem subsidence during block loading of a highly stable 1:1 bone/extender graft mix containing non-porous ceramic granules (magnified chart section).
- **7.12** Accumulated subsidence during cyclic block loading for exemplary samples of pure ovine bone and to bone/ceramic mixes with volume ratios of 1:1 and 1:9 bone/ceramic.
- **7.13** Comparison of stem subsidence during block loading of ovine bone graft tested with the ovine model (light blue) and the human model (dark blue).
- **7.14** Comparison of two equivalent chart styles showing the accumulated stem subsidence as continuous curves (left or a connection of load block end positions (right).
- **7.15** Comparison of accumulated stem subsidence during block loading for pure human and ovine bone graft both pre-compacted with the standard 6.2J pre-compaction energy.
- **7.16** Comparison of accumulated stem subsidence during block loading for pure human and ovine bone graft both pre-compacted with the highest pre-compaction energy of 23.3J.
- **7.17** Comparison of accumulated stem subsidence during block loading for pure human and ovine bone graft versus a 1:1 bone/ceramic graft mix (6.2J pre-compaction energy).
- **7.18** Comparison of accumulated stem subsidence during block loading for pure bone grafts, the pure standard ceramic and a 1:1 bone/ceramic graft mix.
- **7.19** Comparison of accumulated stem subsidence during block loading for pure ovine bone and two 1:1 b/c mixes, one containing the standard ceramic and one containing a highly porous HA.
- **7.20** Comparison of accumulated stem subsidence during block loading for pure human and ovine bone graft versus a 1:1 b/c mix (standard ceramic, 23.3J pre-compaction energy).
- **7.21** Comparison of accumulated stem subsidence during block loading for pure human and ovine bone graft versus a 1:1 b/c mix (highly porous HA, 23.3J pre-compaction energy).

7.22 The influence of impaction energy levels on the stability against vertical subsidence for human bone graft pre-compacted with 6.2*J* (orange) and 23.3*J* (violet) energies.

- **7.23** The influence of impaction energy levels on the stability against vertical subsidence for ovine bone graft pre-compacted at 3.1J (brown), 6.2J (orange), 9.3J (grey) and 23.3J (violet).
- **7.24** The influence of impaction energy levels on the stability against vertical subsidence for a 1:1 b/c mix with the standard ceramic pre-compacted at 3.1J (brown), 6.2J (orange) and 23.3J (violet).
- **7.25** The influence of hammer force or momentum during constant energy impaction on the stability against vertical subsidence for a 1:1 bone/ceramic mix.
- **7.26** The influence of graft mixing ratios on the stability against vertical subsidence for a 2:1, 1:1 and 1:2 b/c mix of ovine bone and the standard ceramic (3.1J pre-compaction energy).
- **7.27** The influence of graft mixing ratios on the stability against vertical subsidence for a 2:1, and a 1:1 mix of ovine bone and the standard ceramic (6.2J pre-compaction energy)..
- **7.28** Comparison of stability against vertical subsidence for 2:1 and 1:1 b/c graft mixes and their pure constituents ovine bone and the standard ceramic.
- **7.29** The influence of graft mixing ratios on the stability against vertical subsidence for a 2:1, 1:1 and 1:2 b/c mix of ovine bone and highly porous HA.
- **7.30** The influence of ceramic porosity on the stability against vertical subsidence for a 1:1 bone/ceramic mix.
- **7.31** The influence of ceramic sintering temperature on the stability against vertical subsidence for a 1:1 b/c mix.
- **7.32** The influence of ceramic granule size on the stability against vertical subsidence for a 1:1 bone/ceramic mix.
- **7.33** The influence of ceramic chemical composition on the stability against vertical subsidence for a 1:1 b/c mix.
- **7.34** Torque required for stem release after test completion versus stability measured as number of cycles to failure for all graft materials tested.
- **7.35** Torque required for stem release after test completion versus stability measured as number of cycles to failure for all graft materials tested excluding the pure ceramic grafts.
- **7.36** Torque required for stem release after test completion versus stability measured as number of cycles to failure for all graft materials tested.
- **7.37** Accumulated set during cone impaction for three samples with very different stability performance under cyclic loading. linear axis (left) and a log.- axis (right).
- **7.38** Accumulated set during cone impaction (left) in comparison with stability during block loading (right, cycles to failure) measured for three typical sample configurations.
- **7.39** Accumulated set during cone impaction (left) in comparison with stability during block loading (right) measured for different b/c mixing ratios.
- **7.40** Set per final hammer blow versus stability measured as number of cycles to failure for bone grafts (left) and various ceramic extenders plus b/c mixes (right).
- **7.41** Set per final hammer blow versus stability measured as number of cycles to failure for all samples. An exponential trendline highlights the set-stability relationship.

CHAPTER 8

8.1 Comparison between shear angles and cohesion (left) and stability against vertical subsidence (right) for ovine bone, a ceramic graft extender and bone/ceramic mixes.

- **8.2** Comparison between compression performance (left) and stability against vertical subsidence (right) for human and ovine bone.
- **8.3** Comparison between compression performance (left) and stability against vertical subsidence (right) for bone/ceramic graft mixes with standard ceramic.
- **8.4** Comparison between compression behaviour of bone and ceramic extenders (left) and stability against vertical subsidence (right) for b/c mixes with a highly 68% porous HA.
- **8.5** Compression stiffness of pure bone and pure ceramic graft extenders during initial compression (left) and re-compression (right).
- **8.6** Comparison between particle size distribution of ceramics after compression (left) and stability against subsidence for 1:1 b/c mixes. Varied parameter: Ceramic porosity.
- **8.7** Comparison between particle size distribution of ceramics after compression (left) and stability against subsidence for 1:1 b/c mixes. Varied parameter: Ceramic T_{Sint} .
- **8.8** Comparison between particle size distribution of ceramics after compression (left) and stability against subsidence for 1:1 b/c mixes. Varied parameter: Ceramic composition.

12.2 Tables

- **2.1** Design and material alternatives used in THA. Not all combinations are viable or currently in clinical use.
- **2.2** Comparison of different revision techniques for total hip arthroplasty.
- **2.3** *Impaction Grafting surgical procedure.*
- **2.4** Correlation between fracture rates (max. blue) and subsidence rates (max. orange) for clinical follow-up studies. Subs. levels considered critical varied between 3 and 10mm.
- **2.5** *Problems occurring with impaction grafting when using human allograft bone.*
- **2.6** Requirements list for a synthetic bone graft extender or full alternative.
- **2.7** *Synthetic bone graft alternatives available or in investigation.*
- **2.7** *List of commercial or developmental synthetic bone graft materials.*
- **2.8** Peak forces on femoral head recorded for different activities in-vivo via an implantable multi-channel telemetry system^[196-201].
- **2.9** Characteristic cortical and cancellous bone properties for different species. Values compiled from a range of publications^[208, 209].
- **2.10** Characteristic mechanical properties for cortical bone of different species loaded in two perpendicular directions^[207].
- **2.11** Comparison of chemical composition of synthetic stoichiometric hydroxyapatite versus the biological hydroxyapatite in the human body (weight percentages [4]).

- **2.12** Physical and mechanical properties of hydroxyapatite [213-216].
- **2.13** Compressive and bending strength of β -TCP as a function of porosity [217].
- **2.14** Normalised solubility rates in vitro in aqueous solution at 37° C and pH=7.3 for various calcium phosphates and applications^[218].
- **2.15** Different reactions of hydroxyapatite and tri-calciumphosphate as bone replacement material in the human body ^[219].

CHAPTER 4

- **4.1** Graft materials compression tested using the die-plunger experimental protocol. All bone grafts were morsellised with the Norwich® unless stated otherwise.
- **4.2** Secant compression moduli, relaxation and recoil values for different bone grafts.
- **4.3** Secant compression moduli, relaxation and recoil values for different bone grafts.
- **4.4** Secant compression moduli, relaxation and recoil values for different ceramic grafts.
- **4.5** Secant compression moduli, relaxation and recoil values for various bone/ceramic mixes.
- **4.6** Summary of results from compression testing of bone, ceramic and graft mixes.
- **4.7** Summary of discussion points after die-plunger compression testing.
- **4.8** Summary of conclusion drawn from die-plunger compression testing.

CHAPTER 5

5.1 *Summary of main findings derived from shear testing.*

CHAPTER 6

- **6.1** Stem subsidence in the ovine tube-stem model for different graft compositions.
- **6.2** Statistical significance levels for comparisons of stem subsidence between different graft materials using the unpaired one-tailed student t-tests.
- **6.3** Stem subsidence rates for different graft materials after during different load blocks.
- **6.4** *Summary of results from endurance testing with the ovine model.*
- **6.5** Summary of conclusion drawn from endurance testing with the ovine model.

CHAPTER 7

7.1 Correlation between cone impaction rate λ and stability measured as average subsidence after the 0.6kN load block or as the average number of cycles to failure.