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Abstract

The jump distribution for the default intensities in a reduced form framework is
modeled and calibrated to provide reasonable fits to CDX.NA.IG and iTraxx Europe
CDOs, to 5, 7 and 10 year maturities simultaneously. Calibration is carried out using
an efficient Monte Carlo simulation algorithm suitable for both homogeneous and het-
erogeneous collections of credit names. The underlying jump process is found to relate
closely to a maximally skewed stable Lévy process with index of stability α ∼ 1.5.

The market standard for pricing credit derivatives sensitive to default dependency is
based on the Gaussian copula. As is well-known, this method is inadequate to price non-
standard products. The model as such is not able to explain the correlation smile. Better
models addressing these issues have been developed by various authors. Some recent work
in this direction in the reduced form framework involves modeling the default intensities as
in Joshi and Stacey [2005], Di Graziano and Rogers [2005], Chapovsky, Rennie and Tavares
[2006], Errais, Giesecke and Goldberg [2006], Balakrishna [2007]; modeling dependency with
simultaneous defaults as in Putyatin, Prieul and Maslova [2005], Balakrishna [2006], Brigo,
Pallavicini and Torresetti [2006a], Hull and White [2007]; and modeling loss distributions as
in Bennani [2005], Sidenius, Piterbarg and Andersen [2005], Schönbucher [2005].

The model presented here is based on pure-jump processes for the default intensities
driven by a common underlying Lévy process. It involves a framework for handling such
dependent processes and the associated jump distributions and an efficient Monte Carlo
algorithm to generate default scenarios to price default correlation products. The jump
in the default intensity of a credit name is taken to be proportional to its hazard rate
from the credit curve leading to an increasing dependence of default correlation on the
hazard rate in agreement with our expectations. This important feature of the model enables
it to offer a reasonable explanation of the correlation smile and account for a correlation
term structure. The model provides a reasonable fit to CDX.NA.IG and iTraxx Europe
CDOs, simultaneously to all three maturities: 5, 7 and 10 year. The behavior y−1−α of the
Lévy density describing the jump distribution of jump size y, that is characteristic of stable
Lévy processes with index of stability α, appears to be largely responsible for generating
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a correlation smile. The underlying Lévy process is found to relate closely to a maximally
skewed stable Lévy process with α ∼ 1.5.

Section 1 presents the model. Section 2 discusses some analytical properties. Section
3 presents an efficient Monte Carlo algorithm applicable to both homogeneous and hetero-
geneous collections. Section 4 presents the simulation results obtained by calibrating the
model to CDX.NA.IG and iTraxx Europe CDOs of 5, 7 and 10 year maturities. Section 5
concludes with a summary. Some explicit solutions and a series expansion are presented in
Appendices A and B.

1 The Model

The model is based on the following pure jump process for the default intensity λi(t) for
each of the credit names i = 1, ..., n:

dλi(t) = [φi(t)− µiλi(t)] dt +
∫

x
hi(x, t)dN(dx, t). (1)

N(dx, t)’s are independent Poisson processes with intensities ζ(x, t)dx, labeled by a variable
x and associated with the intervals (x, x+dx), modeling the arrival of common events causing
jumps in the default intensities. If the Poisson process N(dx, t) jumps up by one at time t
due to the arrival of a common event, dN(dx, t) causes each λi(t) to jump up respectively
by hi(x, t) at time t. The jump in λi(t) decays at rate µi until the arrival of another event at
a later time. Poisson intensity density ζ(x, t), assumed to be integrable over x, is factored
as ζ(t)νX(x) introducing an overall intensity ζ(t) and a probability density function νX(x)
(assumed to be t-independent) describing the distribution of a random variable X. Hence,
the above process can also be viewed as being driven by a compound Poisson process.

The drift term φi(t) can be handled by introducing λi(t) via φi(t) = dλi(t)/dt+µiλi(t) so
that the process for λi(t)− λi(t) is driftless in between Poisson events. λi(t) may be viewed
as a firm-specific component of the default intensity. Model consistency suggests that we
require λi(t) ≥ 0. From the perspective of λi(t), µi is a decay rate. It is also a mean reversion
rate since, as can be noted from (1), λi(t) mean reverts at rate µi to mean default intensity
(say λ̂i(t), given by φi(t) = dλ̂i(t)/dt + µiλ̂i(t)−

∫
x dxζ(x, t)hi(x, t)).

Intensity models with jumps have been discussed before, usually with exponentially dis-
tributed jump sizes (see for instance Duffie, Pan and Singleton [1998]). It is known that pure
jump models with such distributions are not capable of explaining the correlation smile. Pro-
cess (1) is kept quite general with no such distributional assumptions. It can be viewed as
the continuum version of a model involving a discrete set of common factors discussed in
Balakrishna[2007]. It is hence expected to exhibit default contagion with a cluster life of the
order of µ−1. It admits some explicit solutions that are presented in Appendix A.

Just as in the discrete version, one may note here a certain limit of the model as hi(x, t)
and µi tend to infinity such that hi(x, t)/µi → h′i(x, t). Jumps in λi(t) then become infinitely
large but decay instantaneously and contribute to the time-integral Λi(t) =

∫ t
0 dsλi(s) (this

is better appreciated within the context of the Monte Carlo algorithm discussed later). The
limiting model of simultaneous defaults is described by

dΛi(t) = λi(t)dt +
∫

x
h′i(x, t)dN(dx, t). (2)
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This model of simultaneous defaults has appeared in the literature under various guises.
It belongs to a class of shock models related to Marshall-Olkin copula (for a discussion of
shock models as applied to credit risk, see for instance Elouerkhaoui [2003], Lindskog and
McNeil [2003], Brigo, Pallavicini and Torresetti [2006a]). It’s version involving a discrete set
of common factors is studied parametrically in Balakrishna [2006]. The model of Putyatin,
Prieul and Maslova [2005] can be identified with its homogeneous version with one discrete
factor. The constant jump version of Hull and White [2007] can also be identified with it for
one discrete factor having a dynamical formulation of the above kind.

Coming back to process (1), note that the jumps in the default intensity are independent
of the level of the default intensity. If these jumps are taken to be uniform across all the
credit names in a heterogeneous collection, they will contribute a uniform amount to the
hazard rates implied by the model and hence will be limited by the smallest hazard rate in
the collection. To avoid this unrealistic feature, let us assume that hi(x, t) is proportional to
some name-specific intensity hi(t),

hi(x, t) = µiyi(x, t)hi(t). (3)

Heterogeneous collection can now be handled naturally with a uniform µi and yi(x, t) if
desired. A factor of µi is included to make it convenient taking the µi →∞ limit.

Different choices can be tried for hi(t). A straightforward one is to take hi(t) to be λi(t).
A more appealing choice is to take it to be the mean default intensity. The choice considered
in this the article, convenient from the point of view of calibration to individual credit curves
though with a less appealing dynamical nature, is to take hi(t) to be the hazard rate from
the credit curve. A more realistic model would perhaps involve jumps proportional to default
intensity λi(t) itself. Such a model has no available solutions but can be investigated using
the Monte Carlo algorithm and appears to be capable of providing similar quality fits.

For a time-independent yi(x, t), with the i dependence suppressed, process (1) can be
viewed as being driven by an underlying Lévy process L(t) given by

dL(t) =
∫

x
y(x)dN(dx, t). (4)

This corresponds to what is called a subordinator because of our restriction to non-negative
jumps for the default intensity. The associated Lévy density is ζνY (y) = ζνX(x(y)) |dx(y)/dy|
where x(y) is inverse of the relation y(x) = y. As already mentioned, we are here concerned
with integrable Lévy densities that give rise to probability density functions νY (y).

Given this framework, one could attempt to imply the jump distribution from the market
data given certain plausible assumptions about its form and some distributional assumptions
for the underlying x variable. One approach is to assume y(x) ∝ x and to model the Lévy
density by modeling the distribution of X itself. This approach is based on the implicit
assumption that Lévy densities, and hence the jump distributions, associated with different
processes for different credit names are essentially identical to each other. It is hence both
appealing and convenient to assume instead that X follows some simple distribution so that
all the model complexities are embodied into the Lévy density ζνY (y). Let us hence assume
that x ∈ [0, 1] is uniformly distributed with νX(x) = 1 and that the probability density
function of y(x) is of the form

νY (y) = aαg(a/y)y−1−α. (5)
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Any i and t dependencies of the parameters a and α, or of the function g() itself, are
suppressed for convenience. Function g(z) is assumed to be regular at z = 0 in some positive
power of z. Parameter a determines the scale of y that is suitably chosen based on one’s
choice for the function g(z).

The behavior y−1−α of the Lévy density is characteristic of stable Lévy processes with
index of stability α. Calibration results indicate that α lies in between 1 and 2 for which this
behavior leads to a divergence as y → 0 in the first moment of the jump distribution. In our
case, function g(z), beside ensuring an integrable Lévy density, is expected to ‘regularize’
such divergences by going to zero sufficiently fast as z →∞. It will thus be referred to here
as the regularizing function, though it may be more than so in reality. Because νY (y) is a
normalized density, g(z) should satisfy∫ ∞

0
dz g(z)zα−1 = 1. (6)

Function y(x, t) is now determined by matching the cumulative densities of y and x. For a
uniformly distributed X and νY (y) of the form (5) this becomes∫ ∞

a/y(x)
dz g(z)zα−1 = x. (7)

This determines y(x, t) given the individual Lévy densities for each of the credit names.
Different choices for g(z) appear to be capable of providing a reasonable fit to market

prices. An easily integrable choice is

g(z) = α, z ≤ 1, zero otherwise, y(x) = a(1− x)−1/α. (8)

This yields a Pareto distributed Lévy density ζαaαy−1−α, y ≥ a, zero otherwise. Another
easily integrable choice is

g(z) = αexp(−zα), y(x) = a(−Lnx)−1/α. (9)

A more generic choice g(z) = ω[Γ(α/ω)]−1exp(−zω) given some ω > 0, of which the above two
are special cases, solves for y(x) in terms of the incomplete gamma function for which efficient
numerical algorithms are available. Alternately, if integrability becomes an issue, y(x) can
be modeled directly to be used in the Monte Carlo algorithm. The Pareto distribution being
the simplest is chosen for the article.

The fit to the five tranches turns out to be better for a slightly lower spread of index
credit default swap. This appears to be due to the fact that the model as such is not
able to generate sufficient spread for the super senior tranche, at least with a manageable
number of Monte Carlo scenarios attempted here. One could model the relatively large
jumps affecting the super senior tranche, but a shortcut seems to suffice at this point. Let us
force h(x, t) to ∞ for h(x, t) > µb given some relatively large b leading to a small probability
of simultaneous defaults. This corresponds to setting y(x, t) = ∞ for y(x, t) > b/h(t) given
a suitably redefined g(z) for z < ah(t)/b. This shortcut is capable of generating significant
spread for the super senior tranche to effect a better fit to the remaining five tranches.
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2 Analytic Properties

The model offers some analytical results that can be useful in calibrating the model to
individual credit curves. They contain integrals involving a parameter, say u, representable
as Laplace transform of the density νY (y),∫

x
dx νX(x)e−uy(x) =

∫ ∞

0
dy νY (y)e−uy =

∫ ∞

0
dz g(z)zα−1e−au/z. (10)

For a generic regularization supplied by g(z), the integral is approximated for small au in
Appendix B up to second order as∫ ∞

0
dz g(z)zα−1e−au/z ' 1− g1au + gα(au)α − 1

2
g2(au)2. (11)

It is assumed that α lies between 1 and 2, and that g(z) − g(0) ∼ zω as z → 0 for some
ω > 2 − α. The remainder above is of O(au)3 for ω > 3 − α, but of O(au)α+ω otherwise.
Coefficients g1, gα and g2 are (prime denotes differentiation)

g1 = − 1

α− 1

∫ ∞

0
dz g′(z)zα−1, gα = g(0)Γ(−α), g2 = − 1

2− α

∫ ∞

0
dz g′(z)zα−2. (12)

For the Pareto distributed Lévy density, g1 = α/(α− 1), gα = αΓ(−α) and g2 = α/(2− α).
If yi(x, t) = ∞ for yi(x, t) > b/hi(t) given some relatively large b as discussed earlier, the
expansion needs to be corrected by adding

−
∫ au/b′

0
dz g(z)zα−1e−au/z ' −(au)αg(0)Γ(−α, b′), (13)

where b′ = bu/hi(t) and Γ(, ) is the incomplete gamma function1. Its effect is to correct
gα by a multiplicative factor 1 − Γ(−α, b′)/Γ(−α). However, since b′ could turn out to be
dependent on t or the number of names involved, gα is referred to in the following as given
by (12) without this multiplicative factor.

To start with, to get some insight into the model, consider the Laplace exponent η(u) of
the underlying Lévy process (4) given by

η(u) ≡ −1

t
log

{
E

[
e−uL(t)

]}
= ζ

∫
x
dx νX(x)

[
1− e−uy(x)

]
= ζ

∫ ∞

0
dz g(z)zα−1

[
1− e−au/z

]
' ζg1u− ζgα(au)α +

1

2
ζg2(au)2. (15)

Expectation E is taken over the underlying Poisson processes given the information at time
zero. In expressions of this kind encountered below, parameter u turns out to be small being

1Efficient algorithms are available to compute both the complete and incomplete gamma functions. If
they are available only for positive arguments, one can use

Γ(−α) =
1

α(α− 1)
Γ(2− α), Γ(−α, x) =

1
α(α− 1)

[
Γ(2− α, x) + (α− 1− x)x−αe−x

]
. (14)
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proportional to a combination of one or more hi(t). The O(au)-term just contributes to the
implied hazard rate. O(au)α-term is largely responsible for default dependency. This term
is characteristic of the behavior νY (y) ∼ y−1−α. It is in fact the two-sided Laplace exponent
of an α-stable Lévy process maximally skewed to the right with zero mean2. O(au)2-term
contributes relatively less to default dependency. Higher order terms are smaller, and negli-
gible for small hazard rates as far as individual credit curves are concerned or not too large
a number of credit names is under consideration.

Given the explicit results presented in Appendix A, one obtains for the survival proba-
bility of a credit name,

Qi(t) ≡ E
{
exp

[
−

∫ t

0
ds λi(s)

]}
= exp

[
−ciβi(t)−

∫ t

0
ds πi(s, t)

]
. (16)

Here ci ≡ λi(0)− λi(0) arises due to contributions from events earlier to time zero and

βi(t) =
1

µi

(
1− e−µit

)
,

πi(s, t) = λi(s) + ζ(s)
∫

x
dx νX(x)

[
1− e−hi(x,s)βi(t−s)

]
. (17)

The hazard rate is given by pi(t) = −dLnQi(t)/dt. In the following, the subscript i is dropped
for clarity. If au = ah(s)µβ(t− s) is expected to be small, the integral can be approximated
according to (11). Assuming constant parameters, this gives the following result for the
time-integral P (t) ≡

∫ t
0 ds p(s) = −LnQ(t) (with Λ(t) ≡

∫ t
0 ds λ(s)),

P (t) = Λ(t) + cβ(t) + ζ
∫ t

0
ds

∫ ∞

0
dz g(z)zα−1

[
1− e−ah(s)µβ(t−s)/z

]
' Λ(t) + cβ(t) + ζ

∫ t

0
ds {

g1ah(s)µβ(t− s)− gα(ah(s))α(µβ(t− s))α +
1

2
g2(ah(s))2(µβ(t− s))2

}
. (18)

The hazard rate p(t) = dP (t)/dt is given by

p(t) ' λ(t) + ce−µt + µζ
∫ t

0
ds e−µ(t−s) {

g1ah(s)− αgα(ah(s))α(µβ(t− s))α−1 + g2(ah(s))2µβ(t− s)
}

. (19)

Correction to gα is time-dependent since here b′ = bµβ(t − s). For a piecewise constant
h(t)-curve with 0 = t0 < t1 < ... defining the piecewise intervals, h(t) = hk in an interval
(tk, tk+1) and h−1 = 0, one finds

p(t) ' λ(t) + ce−µt + ζ
∑
tk<t

{g1a(hk − hk−1)µβ(t− tk)

−gαaα(hα
k − hα

k−1)(µβ(t− tk))
α +

1

2
g2a

2(h2
k − h2

k−1)(µβ(t− tk))
2
}

. (20)

2One is not able to reach a stable process via a limiting procedure wherein a → 0 and ζ → ∞ keeping
ζaα fixed for a given α between 1 and 2 to suppress all higher order terms of the expansion. This is due
to ζg1a diverging in the limit and the model becoming inconsistent as it reaches a certain value. This is as
expected since our intensity process can not handle negative jumps arising from the resulting stable process.
However, it is interesting note that a model involving jumps proportional to default intensity λi can absorb
this divergence into the decay rate µi to result in a mean-reverting model driven by a stable process.
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Correction to gα here involves b′ = bµβ(t− tk).
The above results can be useful in calibrating the model to individual credit curves, to

determine λ(t) to be used in the Monte Carlo algorithm. Note that the integrals in (19) are
in the form of convolutions which can be efficiently handled with Fast Fourier Transform
techniques. For a given p(t)-curve, the method is straightforward if h(t) is independently
known, or is chosen to be p(t) itself. In this case, the above results directly determine the
λ(t)-curve. If h(t) is chosen to be λ(t), the above can be used to imply the λ(t)-curve.

The limiting model of simultaneous defaults is interesting in its own right as it allows
easier calibration to individual credit curves. Here, the result for the hazard rate takes a
simpler form as µ →∞ with u = h(s), giving

p(t) = λ(t) + ζ
∫ ∞

0
dz g(z)zα−1

[
1− e−ah(t)/z

]
' λ(t) + ζg1ah(t)− ζgα(ah(t))α +

1

2
ζg2(ah(t))2. (21)

Correction to gα is now t-independent since b′ = b. The result can be used to easily calibrate
the model to individual credit curves; for instance with constant parameters and a piecewise
constant p(t) and h(t) curves, it gives piecewise constant λ(t) curves to be used in the Monte
Carlo algorithm.

The model of simultaneous defaults admits a formulation of instantaneous default cor-
relation. Here, the probability that two names, say i and j, default during an infinitesimal
interval (t, t + dt) is given by pij(t)dt where

pij(t) =
∫

x
dx ζ(x, t){1− exp [−yi(x, t)hi(t)]}{1− exp [−yj(x, t)hj(t)]},

' ζgα [(aihi(t) + ajhj(t))
α − (aihi(t))

α − (ajhj(t))
α]− ζg2aiajhi(t)hj(t). (22)

The Lévy densities are assumed to be the same for the two names except perhaps for the
scale parameter a. Given the hazard rates pi(t) and pj(t), this yields an expression for the in-
stantaneous default correlation ρ(t) which, for the choice hi(t) = pi(t) and for a homogeneous
collection of credit names, is approximately

ρ(t) =
pij(t)√

pi(t)pj(t)
' (2α − 2)σα (p(t))α−1 − ζg2a

2p(t), where σ = a (ζgα)1/α . (23)

Thus, given constant parameters and small hazard rates, ρ(t) increases with p(t) in agreement
with our expectation, approximately as its (α − 1)th power, giving rise to an increasing
correlation term structure for an increasing hazard rate curve. Its growth rate relative to
that of the hazard rate is also reasonable. It evaluates to within an acceptable range; for
instance with α = 1.5, a = 4.0, ζ = 300bp and p(t) = 30bp, it gives σ ' 0.9 and ρ ' 3.4%.

Terms of order beyond O(ah)2 are negligible for small hazard rates as far as individual
credit curves are concerned or not too large a number of credit names is involved. To
the extent that they are negligible, the model of simultaneous defaults, as far as defaults
are concerned, can be considered to be largely independent of the regularizing function
g(z). To see this for the choice h(t) = p(t), assuming Lévy densities are the same for all

the names, introduce, in addition to σ = a (ζgα)1/α mentioned earlier, σ2 = a
√

ζg2 (for a
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positive g2) and λ̂(t) = λ(t) + ζg1ah(t). Different regularizations calibrate to nearly the
same σ, σ2 and λ̂(t) but to possibly different ζ, a and λ(t) (the g2 contribution being
relatively small, the model with a given regularization gets nearly calibrated for a range of
ζ values). The only characteristics needed then of g(z) are its normalization (fixed to define
ζ) and its z-scale (set appropriately to define a). However, some regularizations may lead
to too large a value of ζ that could make λ turn negative making the model inconsistent
(a preferred choice would be the one that sets λ to a realistic firm-specific contribution
if known). Similar regularization independence does not generally hold good for finite µ
(a likely exception is when h(t) is chosen to be the mean default intensity λ̂(t) given by
dλ̂(t)/dt + µλ̂(t)− µζg1ah(t) = dλ(t)/dt + µλ(t)).

If some control over g2 is desired, consider a g(z) that is a non-increasing function of z so
that g2 > 0. Given this, another regularization g̃(z) can be constructed whose density can
be viewed as a weighted sum of two densities: one with index α and the other with index
α + ω. This g̃(z) for some ω > 2− α is given by

g̃(z) = Cg(z)(1 + κzω), where C =
[
1 + κ

∫ ∞

0
dz g(z)zα+ω−1

]−1

,

g̃2 = C
{
− 1

2− α

∫ ∞

0
dz g′(z)zα−2 +

κ

α + ω − 2

∫ ∞

0
dz g′(z)zα+ω−2

}
. (24)

It is interesting to note that there is a positive κ for which g̃2 can be identically set to zero3.
As for ω, any value larger than 2 − α such that the correction term of O(au)α+ω occurs
sufficiently farther away from O(au)2 can be chosen.

3 Monte Carlo Algorithm

The model can be handled numerically using a Monte Carlo simulation algorithm suitable for
both homogeneous and heterogeneous collections. It is a modified version of the algorithm
presented in Balakrishna[2007] with in the context of a discrete version of the model. It is
based on the well-known observation that λi’s are independent variables given a realization
of the common Poisson processes and that ci(t) ≡ λi(t) − λi(t) is driftless decaying at rate
µi in between Poisson events. The algorithm reads as follows.

1. Draw n independent exponentially distributed random numbers ui, i = 1, ..., n with
unit mean. For each i referring to a credit name, set the time-integral of default intensity
Λi(0) to zero and set ci(0) to any contribution from events earlier to time zero. Set to = 0.

2. Draw an independent exponentially distributed random number v with unit mean.
Determine the next event arrival time t by solving

∫ t
to

dsζ(s) = v.

3This is helpful in a limiting procedure to a stable process wherein a → 0 and ζ →∞ keeping ζaα fixed
for a given α between 1 and 2. The limiting procedure is slow because of the g2(au)2 term in the expansion
of η(u). Besides, when α is closer to 2, the g2(au)2 term, absorbing the 1/(2−α) divergence of gα, results in
the characteristic exponent containing u2Lnu which is not expected of the α = 2 stable process, namely the
Brownian process. With g̃2 = 0 and no g̃α divergence, one obtains faster convergence to a stable process.
The regularizing function is simplest in the Pareto case for ω →∞ with g̃(z) = α(2−α)/2 for z ≤ 1 and zero
otherwise, and a Dirac-delta function of magnitude α/2 placed at z = 1. The Dirac-delta function represents
a Poisson process of intensity ζα/2.
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3. For each i referring to a surviving credit name, update Λi(to) to Λi(t) by adding

F (t) = ci(to)βi(t− to) +
∫ t

to
ds λi(s). (25)

Check if Λi(t) > ui to determine whether this credit name defaults before time t. If so,
determine its default time ti by solving Λi(to) + F (ti) = ui.

4. If t is beyond the time horizon of interest or there are no more surviving credit names,
go to step 6.

5. Draw an independent uniform random number x ∈ [0, 1]. For each i referring to a
surviving credit name, determine yi(x, t) by solving (7). If yi(x, t) > b/hi(t), set yi(x, t) = ∞.
Update ci(to) to

ci(t) = ci(to)e
−µi(t−to) + µiyi(x, t)hi(t). (26)

Set to = t and go to step 2.
6. Given the default times, price the instrument. For the next scenario, go to step 1.
7. Average all the prices thus obtained to get a price for the instrument.
In step 1, ci(0) arises due to contributions from events earlier to time zero. This would

be especially relevant when one is in the middle of a default contagion. However, more study
is needed to be able to use the algorithm in such situations. In our case, for a choice such as
hi(t) = pi(t), without loss of generality, it can be set to zero since its contribution ci(0)e

−µit

can be absorbed into a redefined λi(t). In step 3, if t is beyond the time horizon of interest,
time horizon can be used in place of t to avoid solving for any default times beyond.

The algorithm has a limit as hi and µi tend to infinity simulating the model of simulta-
neous defaults described by the process (2). Expressing ci as µic

′
i and letting µi → ∞, one

observes that c′i(0) = 0 in step 1, ci(to)βi(t− to) → c′i(to) in step 3 and c′i(t) = yi(x, t)hi(t) in
step 5. When solving for the default time in step 3, one could first check if Λi(to)+c′i(to) > ui

to determine whether default occurs exactly at the event arrival time to.
CDOs can be priced the usual way. Given a scenario of default times, one proceeds

processing the defaults one by one, starting from the first up to maturity, picking up payments
by the default leg, switching to the next tranche whenever a tranche gets wiped out, at the
same time computing the premium legs of all the surviving tranches. Whenever a default
leg pays out the loss amount, the notional of that tranche gets reduced by the same amount,
and the notional of the super senior tranche gets reduced by the recovery amount so that
the total notional of the CDO tranches keeps up with that of the index default swap (when
the super senior is the only survivor, it gets treated like a default swap). The legs can be
added across tranches to obtain those for the index default swap. They can also be reused
for higher maturities within a scenario. The premium legs are computed per unit spread
leaving out the computation of the prices or the par spreads to end of the simulation.

The efficiency of the algorithm is dependent on the number of events arriving before the
time horizon. For a homogeneous collection, some improvement in efficiency can be achieved
by using just one each of Λi and ci variables and working with a sorted list of uis to know the
order of defaults. Significant improvement in efficiency is achieved by using quasi random
sequences such as Sobol sequences to generate each of the independent random numbers as
is done in this study.
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4 Simulation Results

Calibration is carried out on a homogeneous collection of credit names assuming Pareto
distributed Lévy densities. All parameters, except λ(t) and h(t), are assumed to be time-
independent. λ(t) and h(t) are assumed to be piecewise constant, taken to be flat in between
maturities. The choice h(t) = p(t) is implemented by setting h(t) to be the piecewise constant
hazard rate curve obtained by matching the index default swap spreads outside of the Monte
Carlo algorithm (an approximation since the model implied hazard rate curve p(t) is not
expected to be piecewise constant). Best fits are obtained by minimizing the sum of squares
of percentage errors in the model spreads with more weight given to the index default swap
spreads to obtain a better fit to them. Recovery rate is assumed to be flat4 at 35%.

Table 1 shows the results of calibrating the model to CDX.NA.IG and iTraxx Europe
CDOs for the market quotes on October 2, 2006 (source: Brigo, Pallavicini and Torresetti
[2006b]). It is a simultaneous fit to all three maturities, 5, 7 and 10 year. It is also calibrated
to the index default swap spread for 3-year along with the other three maturities. The
results look reasonable. They are obtained with 100,000 runs or scenarios of the Monte
Carlo algorithm. Reasonable results can also be obtained by calibrating with as few as
25,000 scenarios that takes just about a second for one simulation.

Calibration results suggest a finite value for µ. A simultaneous fit to maturities in the
µ → ∞ model of simultaneous defaults is found to be less satisfactory (though the 5-year
maturity alone can be fit equally well). It is possible to improve the fit by allowing for
time-dependent α or other model parameters.

In Balakrishna[2006,2007] and some of the literature in the field, it is found that the
modeled loss distribution displays one or more bumps along its tail. Even if such a dis-
tribution is able to reproduce the market prices for CDOs providing an explanation of the
correlation smile, it is not immediately obvious whether the bumps are a realistic feature
of the distribution or an artifact of the model. Their presence can give rise to significant
differences in the predicted prices for bespoke CDOs. Models capable of reproducing the
market prices without any such bumps can potentially give rise to better behaved prices
and sensitivities for nonstandard products. As can be seen from figures 1 and 2, the present
model exhibits no discernible bumps along the tail of the default probability distribution.

5 Conclusion

The article discusses a modeling framework to handle default dependency among a collection
of credit names based on pure jump processes for the default intensities involving a Lévy
density describing the distribution of jump sizes. A Monte Carlo algorithm to generate
default scenarios and price default correlation products makes this framework viable. An
important feature of the model is that the jump in the default intensity of a credit name is

4If desired, one may use a recovery rate R(λ) modeled to be inversely related to the default intensity λ
in line with some of the empirical findings. Altman, Brady, Resti and Sironi [2005] present the data and the
best fits with goodness of fit measure R2 = 0.65 supporting this relationship. Given their data, one can look
for a best fit that is well-behaved for both small and large default rates such as R(λ) = 0.27 + 0.38e−39λ or
R(λ) = 0.26/(1 − 0.64e−22λ) with R2 = 0.64. Some modifications are expected for these to be consistent
with the recovery rate conventions or to be applicable for the λ’s appearing in our jump processes.
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taken to be proportional to its hazard rate from the credit curve. This leads to an increasing
dependence of default correlation on the hazard rate in agreement with our expectations,
also accounting for a correlation term structure over the three maturities: 5, 7 and 10 year. It
is found that the model can be calibrated reasonably well to market prices for CDX.NA.IG
and iTraxx Europe CDOs, to all three maturities simultaneously. The behavior y−1−α of
the jump distribution of y, a characteristic feature of stable Lévy processes, appears to be
largely responsible for the fits. The underlying jump process appears to be closely related
to a maximally skewed stable Lévy process with index of stability α ∼ 1.5.

A Explicit Solutions

As is known under various contexts, processes of the kind (1) admit some explicit solutions.
The following is an adaptation of the results presented in Balakrishna[2007]. This involves
looking for an explicit solution to the following expectation taken over the common Poisson
processes with ordered times t = t0 ≤ t1 ≤ t2 ≤ ... ≤ tn,

f(t, λ1(t), ...) = Et

{
n∏

i=1

exp
[
−

∫ ti

t
ds λi(s)

]}
. (27)

Its differential can be written down using Ito’s calculus leading to

∂f

∂t
+

n∑
i=1

[
(φi − µiλi)

∂f

∂λi

− λif

]
+

∫
x
dx ζ(x, t) [f(λ1 + h1, ...)− f(λ1, ...)] = 0. (28)

This can be solved with the ansatz of the form

f (t, λ1, ...) = exp

[
−α(t)−

n∑
i=1

βi(t)λi

]
. (29)

Equating coefficients of f independent of λi’s and those linear in λi’s separately gives

dβi(t)

dt
− µi(t)βi(t) + 1 = 0,

dα(t)

dt
+

n∑
i=1

φi(t)βi(t) +
∫

x
dx ζ(x, t)

{
1− exp

[
−

n∑
i=1

hi(x, t)βi(t)

]}
= 0. (30)

These can be solved requiring βi(t) = 0 for t ≥ ti that ensures continuity as t is allowed to
vary crossing various ti’s. The solutions are

βi(t) =
∫ ti

t
dτ exp

(
−

∫ τ

t
ds µi(s)

)
,

α(t) =
n∑

i=1

∫ ti

ti−1

ds

{
n∑

k=i

φk(s)βk(s) +
∫

x
dx ζ(x, s)

[
1− exp

[
−

n∑
k=i

hk(x, s)βk(s)

]]}
.(31)

Expressing φk(s) in terms of λk(s), φk(s)βk(s) can be written as

φk(s)βk(s) =
d

ds

[
λk(s)βk(s)

]
+ λk(s). (32)
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In the following, βk(s) is denoted as βk(s, tk) making its tk dependence explicit. In the article,
µ’s are assumed to be time-independent and the resulting βk(s, tk) is denoted as βk(tk − s).

After these steps, one obtains an expression for f(t, λ1, ...). For the joint survival proba-
bility Q(t1, ..., tn) ≡ f(0, λ1(0), ..) this gives, in terms of λk(s),

Q(t1, ..., tn) = exp

[
−

n∑
i=1

(
λi(0)− λi(0)

)
βi(0, ti)−

n∑
i=1

∫ ti

ti−1

ds πi...n(s, ti, ...)

]
, where

πi...n(s, ti, ...) =
n∑

k=i

λk(s) +
∫

x
dx ζ(x, s)

{
1− exp

[
−

n∑
k=i

hk(x, s)βk(s, tk)

]}
.

(33)

Also interesting is the joint survival probability up to time t for credit names in the list
Ω = {i, j, ...} given by

QΩ(t) ≡ E0

 ∏
k∈Ω

exp
[
−

∫ t

0
ds λk(s)

] . (34)

This can be obtained from Q(t1, ..., tn) with appropriate time ordering by setting tk’s to t
for all k in the list Ω = {i, j, ...} and to zero for the rest,

QΩ(t) = exp

− ∑
k∈Ω

(
λk(0)− λk(0)

)
βk(0, t)−

∫ t

0
ds πΩ(s, t)

 ,

πΩ(s, t) =
∑
k∈Ω

λk(s) +
∫

x
dx ζ(x, s)

1− exp

− ∑
k∈Ω

hk(x, s)βk(s, t)

. (35)

The above results can also be obtained directly by substituting the following solution of
the process into the concerned expectations,∫ t

0
ds λi(s) =

(
λi(0)− λi(0)

)
βi(0, t) +

∫ t

0
ds λi(s) +

∫ t

0

∫
x
hi(x, s)βi(s, t)dN(dx, s). (36)

Increments dN(dx, s) are all independent of each other and

E {exp [−udN(dx, s)]} ' exp
[
−dxdsζ(x, s)

(
1− e−u

)]
. (37)

For the concerned expectations, u is a sum of one or more terms of the kind hk(x, s)βk(s, t).
The limiting model of simultaneous defaults is obtained by taking µi and hi to ∞ such

that hi/µi → h′i. Terms involving λk(0) − λk(0) then get suppressed and hk(x, s)βk(s, tk)
(or hk(x, s)βk(s, t)) gets replaced by h′k(x, s) so that πi...n (or πΩ) becomes independent of
ti, ..., tn (or t). The π’s, say πΩdt, can then be given a nice interpretation as the conditional
probability that at least one of the names listed in Ω default during an infinitesimal interval
(t, t+dt) (the rest are not looked at). As detailed in Balakrishna [2006], the probability that
all the names listed in Ω default during an infinitesimal interval (t, t + dt) (the rest are not
looked at) is then given by

pΩ(t) =
∫

x
dx ζ(x, t)

∏
k∈Ω

{1− exp [−h′k(x, t)]}. (38)

An additional term λk(t) is to be included when Ω has just one element, say name k.
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B The u-Expansion

Explicit solutions of the model contain an integral involving a parameter, say u, representable
as Laplace transform of the density νY (y) = aαg(a/y)y−1−α. Here, let us derive the leading
terms in the u-expansion of this integral,

I(u) =
∫ ∞

0
dy νY (y)e−uy =

∫ ∞

0
dz g(z)zα−1e−au/z. (39)

The a factor multiplying u is dropped below for simplicity of presentation. Index α is as
usual assumed to lie in between 1 and 2. Function g(z) is assumed to go to zero as z →∞
faster than any power of z. For α > 1, the integral to O(u) is

I(u) = 1− u
∫ ∞

0
dz g(z)zα−2 + I1(u), (40)

where
I1(u) =

∫ ∞

0
dz g(z)zα−1

[
e−u/z + u/z − 1

]
. (41)

To expand I1(u), it is convenient to consider its second derivative,

d2I1(u)

du2
= g(0)

∫ ∞

0
dz zα−3e−u/z +

∫ ∞

0
dz [g(z)− g(0)] zα−3e−u/z

= g(0)Γ(2− α)uα−2 +
∫ ∞

0
dz [g(z)− g(0)] zα−3 + I2(u), (42)

where
I2(u) =

∫ ∞

0
dz [g(z)− g(0)] zα−3

[
e−u/z − 1

]
. (43)

If g(z) − g(0) ∼ zω as z → 0 for some ω > 2 − α, which is the case for instance for ω = 1,
the integral term in (42) is finite and can be rewritten after a partial integration as∫ ∞

0
dz [g(z)− g(0)] zα−3 =

1

2− α

∫ ∞

0
dz g′(z)zα−2, (44)

where a prime denotes differentiation. This integral makes an O(u)2 contribution to I(u)
(if ω < 2 − α, a case ignored here, a contribution of O(u)α+ω will occur first). To see the
behavior of I2(u) as u → 0, consider

dI2(u)

du
= −

∫ ∞

0
dz [g(z)− g(0)] zα−4e−u/z. (45)

This is finite as u → 0 if ω > 3− α. I2(u) then contributes a O(u3) term to I(u). If instead
ω < 3−α, I2(u) contributes an O(uα+ω) term to I(u) obtainable from the above by replacing
g(z) − g(0) ∼ zω. The remainder, say I3(u), can be examined further to obtain the next
order term. We thus find

I(u) = 1+
u

α− 1

∫ ∞

0
dz g′(z)zα−1 +g(0)Γ(−α)uα +

u2

2(2− α)

∫ ∞

0
dz g′(z)zα−2 +O(uθ), (46)
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where θ is α + ω or 3 whichever is smaller and the first integral has been rewritten after
a partial integration. The procedure can be continued to determine the other higher order
terms in this expansion if necessary.

For g(z) regular in z at z = 0, the procedure can be continued by examining the u-
derivative of the remainders to obtain

I(u) = 1 +
∞∑

k=0

gk(0)Γ(−α− k)uα+k +
∞∑

k=1

(−u)k

(1− α)...(k − α)k!

∫ ∞

0
dz gk(z)zα−1, (47)

where gk(z) is kth-derivative of g(z).
For g(z) that is flat near z = 0, perhaps because it is forced to be g(z0) for z ≤ z0, the

expansion takes a simpler form that can obtained either from (47) or by expanding e−u/z

inside the integral in I2(u) in powers of −u/z so that

I(u) = 1 + g(0)Γ(−α)uα +
∞∑

k=1

(−u)k

(k − α)k!

∫ ∞

0
dz g′(z)zα−k. (48)

For a piecewise constant g(z), g′(z) makes Dirac-delta contributions. For the Pareto density
arising from g(z) = α, z ≤ 1 and zero otherwise, this gives an expansion for the incomplete
gamma function as expected,

I(u) = αΓ(−α, u)uα = αΓ(−α)uα − α
∞∑

k=0

(−u)k

(k − α)k!
. (49)

Analogous expansions can be derived for α < 1. They can also be obtained directly from
the above results by replacing α with α + 1 in the expansion for −dI(u)/du. Expansion
(46) then holds for α < 1 up to O(u) and the remainder is of O(uθ) where θ is α + ω or 2
whichever is smaller. Expansions (47) and (48) hold as such.

If the y-integral in (39) has a finite upper limit b′/u that is still kept large with u in the
denominator, the expansion needs to be corrected by adding

−
∫ u/b′

0
dz g(z)zα−1e−u/z = −uα

∫ 1/b′

0
dz g(uz)zα−1e−1/z

= −uαg(0)Γ(−α, b′) +O(uα+ω). (50)

If g(z) can expanded in appropriate powers of z, the integral can be expressed as a sum of
incomplete gamma functions.
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Table 1: Simultaneous fit to the five tranches and the three maturities of CDX.NA.IG and
iTraxx Europe CDOs for the market quotes on October 2, 2006 (source: Brigo, Pallavicini
and Torresetti [2006b]). Recovery rate is assumed to be 35%, and interest rate at a constant
5% for CDX.NA.IG and 3.5% for iTraxx Europe CDOs. Three year Index default swap
spreads of 24bp and 18bp respectively are also calibrated to exactly. A flat λ(t) is assumed
in between maturities. Equity tranche is quoted as an upfront fee in percent (plus 500bp per
year running) and the other tranches are quoted as spreads per year in bp.

CDX.NA.IG
Tranches : 0-3% 3-7% 7-10% 10-15% 15-30% 30-100% 0-100%

Quotes 5y : 30.50 102.0 22.50 10.25 5.00 40.00
7y : 45.63 240.0 53.00 23.00 7.20 49.00

10y : 55.00 535.0 123.00 59.00 15.50 61.00
Results 5y : 31.16 95.36 22.81 10.16 4.95 2.31 40.00

7y : 46.98 229.45 55.09 22.73 7.34 2.81 49.02
10y : 56.75 502.23 131.08 55.89 15.42 4.26 61.04

µ = 0.45, α = 1.58, a = 6.42, b=0.54, ζ = 257bp, λ(t) = (29.72, 78.01, 84.02, 103.2)bp

iTraxx Europe
Tranches : 0-3% 3-6% 6-9% 9-12% 12-22% 22-100% 0-100%

Quotes 5y : 19.75 75.0 22.25 10.50 4.00 1.50 30.00
7y : 37.12 189.0 54.25 26.75 9.00 2.85 40.00

10y : 49.75 474.0 125.50 56.50 19.50 3.95 51.00
Results 5y : 19.95 75.1 22.38 10.28 4.10 1.29 29.99

7y : 38.44 186.9 54.47 24.64 9.18 2.00 39.95
10y : 53.64 445.8 129.74 58.17 19.69 3.29 51.03

µ = 1.23, α = 1.53, a = 4.42, b=0.52, ζ = 305bp, λ(t) = (20.40, 56.67, 74.71, 87.62)bp
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Figure 1: Logarithmic plot of the 5-year joint default probability distributions computed
with 100,000 and one million Monte Carlo scenarios using model parameters from Table 1
calibrated to iTraxx Europe CDOs. Also shown is the tail at the far end of the distribution
retained by setting b = ∞.

Figure 2: Logarithmic plot of the joint default probability distributions over 5, 7 and 10
years computed with one million Monte Carlo scenarios using model parameters from Table 1
calibrated to iTraxx Europe CDOs. Also shown are the tails at the far end of the distributions
retained by setting b = ∞.
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