PART 1

__

Requirements
Before we begin to go into the depths of the ocean called .NET, lets just list out the requirements for working with this technology.
What operating systems does the .NET Framework run on?

· The runtime supports Windows Server 2003, Windows XP, Windows 2000, NT4 SP6a and Windows ME/98.

· Windows 95 is not supported. Some parts of the framework do not work on all platforms - for example, ASP.NET is only supported on XP and Windows 2000/2003. Windows 98/ME cannot be used for development.

· IIS is not supported on Windows XP Home Edition, and so cannot be used to host ASP.NET. However, the ASP.NET Web Matrix web server does run on XP Home.

· The .NET Compact Framework is a version of the .NET Framework for mobile devices, running Windows CE or Windows Mobile.

· The Mono project has a version of the .NET Framework that runs on Linux.

What tools can U use to develop .NET applications?

There are a number of tools, described here in ascending order of cost:

· The .NET Framework SDK is free and includes command-line compilers for C++, C#, and VB.NET and various other utilities to aid development.

· ASP.NET Web Matrix is a free ASP.NET development environment from Microsoft. As well as a GUI development environment, the download includes a simple web server that can be used instead of IIS to host ASP.NET apps. This opens up ASP.NET development to users of Windows XP Home Edition, which cannot run IIS.

· Microsoft Visual C# .NET Standard 2003 is a cheap version of Visual Studio limited to one language and also with limited wizard support. For example, there's no wizard support for class libraries or custom UI controls. Useful for beginners to learn with, or for savvy developers who can work around the deficiencies in the supplied wizards. As well as C#, there are VB.NET and C++ versions.

· Microsoft Visual Studio.NET Professional 2003. If you have a license for Visual Studio 6.0, you can get the upgrade. You can also upgrade from VS.NET 2002 . Visual Studio.NET includes support for all the MS languages (C#, C++, VB.NET) and has extensive wizard support.

At the top end of the price spectrum are the Visual Studio.NET 2003 Enterprise and Enterprise Architect editions. These offer extra features such as Visual Sourcesafe (version control), and performance and analysis tools.

PART 2

__

Now that we have covered the basic requirements to start off with this technology, lets examine .NET !

With this first post of the tutorial I aim at answering the following questions.

1. What led to the development of .NET?

2. When did it all happen?

3. What is .NET?

4. How can you benefit from this technology?

1. Development of .NET

It is very important to understand “ why? “ a particular technology came into existence so as to be able to define its usefulness.
.NET was developed to achieve the following:

1. To reduce the hard work involved in building large, reliable applications.

2. To allow programmers to unify two kinds of architecture – applications that run locally on a machine and applications that are accessed over the Web.

3. To reduce overheads associated with programming frameworks – you don’t need to write complex code with complicated languages to get impressive performance out of .NET programs.

4. To allow programmers in different languages to work together on an application

5. It has been designed with the view to accommodate various end-user tools , including desktops, PDAs, and cell phones

2. When was .NET announced?

Bill Gates delivered a keynote at Forum 2000, held June 22, 2000, outlining the .NET 'vision'. The July 2000 PDC had a number of sessions on .NET technology, and delegates were given CDs containing a pre-release version of the .NET framework/SDK and Visual Studio.NET.

The final version of the 1.0 SDK and runtime was made publicly available around 6pm PST on 15-Jan-2002. At the same time, the final version of Visual Studio.NET was made available to MSDN subscribers.

.NET 1.1 was released in April 2003 - it's mostly bug fixes for 1.0.
.NET 2.0 is expected in 2005.

Now comes the most important question.

3. What is .NET??

There are many definitions that all of you might have encountered in different books, on various sites on the Internet and also heard from many people working with this technology.

Before I do tell you what .NET is, how about first understanding what .NET is not.
.NET is not an operating system

.NET is not a programming language.

Then………..???
1. It is a platform neutral framework.

2. Is a layer between the operating system and the programming language.

3. It supports many programming languages, including VB.NET, C# etc.

4. .NET provides a common set of class libraries, which can be accessed from any .NET based programming language. There will not be separate set of classes and libraries for each language. If you know any one .NET language, you can write code in any .NET language!!

Another definition???
.NET is a general-purpose software development platform. At its core is a virtual machine that turns intermediate language (IL) into machine code. High-level language compilers for C#, VB.NET and C++ are provided to turn source code into IL. C# is a new programming language, very similar to Java. An extensive class library is included, featuring all the functionality one might expect from a contempory development platform - windows GUI development (Windows Forms), database access (ADO.NET), web development (ASP.NET), web services, XML etc.
Official definition by Microsoft says:
 .NET is a new computing platform that simplifies application development in highly distributed environment of the internet.

Now the next most obvious question……..
 “ .NET is a framework”????
Are you confused by this definition? Well, that is OK. It is really confusing!

We cannot define .NET as a 'single thing'. It is a new, easy, and extensive programming platform. It is not a programming language, but it supports several programming languages.
By default .NET comes with few programming languages including C# (C Sharp), VB.NET, J# and managed C++. .NET is a common platform for all the supported languages. It gives a common class library, which can be called from any of the supported languages. So, developers need not learn many libraries when they switch to a different language. Only the syntax is different for each language.

When you write code in any language and compile, it will be converted to an 'Intermediate Language' (Microsoft Intermediate Language - MSIL). So, your compiled executable contains the IL and not really executable machine language. When the .NET application runs, the .NET framework in the target computer take care of the execution. (To run a .NET application, the target computer should have .NET framework installed.) The .NET framework converts the calls to .NET class libraries to the corresponding APIs of the Operating system.

Whether you write code in C# or VB.NET, you are calling methods in the same .NET class libraries. The same .NET framework executes the C# and VB.NET applications. So, there won't be any performance difference based on the language you write code.

Let us depict what actually happens by means of a diagram.
.NET Framework Process

Let us examine this process step-by-step.

1.You write your application in C# or any other .NET aware language using any one of the tools that I just mentioned above in the requirements section.

2. csc.exe is the C# complier which is used to compile your C# code. (.NET compilers are available for all other .NET aware languages
3. On compilation an .exe(executable) or an .dll(dynamic link library) file is generated. This file contains MSIL(Microsoft Intermediate Language) instructions which is also called IL(Intermediate Language) or CIL (Common Intermediate Language). All .NET source code (of any language) is compiled to IL during development. The IL is then converted to machine code at the point where the software is installed, or (more commonly) at run-time by a Just-In-Time (JIT) compiler
4. The CLR(Common Language Runtime) then executes the application.
Here are some of the advantages of the .NET

1. Language Independence - At present there are more than 35 languages .NET compatible languages with .NET. All the languages compile to a Common Intermediate language(MSIL).This means that languages are interoperable in a way that has not been seen before.

2. Object Oriented Programming -Both the .NET Framework and C# are entirely based on object-oriented principles right from the start.

3. Good Design - a base class library, which is designed from the ground up in a highly intuitive way.

4. Better support for Dynamic Web Pages - while ASP offered a lot of flexibility, it was also inefficient because of its use of interpreted scripting languages, and the lack of object-oriented design often resulted in messy ASP code..NET offers an interpreted support for web pages, using a new technology- ASP.NET. With ASP.NET, code in your pages is compiled, and may be written in a.NET-aware high level language such as VB.NET, C#.NET, J#.

5. Efficient Data Access - a set of .NET components, collectively known as ADO.NET, provides efficient access to relational databases and a variety of data sources. Components are also available to allow access to the file system and to directories. In particular, XML support is built into.NET, allowing you to manipulate data, which may be imported from or exported to non-Windows platform.
6. Code Sharing - .NET completely revamped the way that code is shared between applications, introducing the concept of the assembly, which replaces the traditional DLL. Assemblies have formal facilities for versioning and different versions of assemblies can exist side by side.

7. Improved security- each assembly can also contain built in security information that can indicate precisely who or what category of user or process is allowed to call which methods on which classes. This gives you a very fine degree of control over how the assemblies that you deploy can be used.
8. Zero Impact Installation - there are two types of assembly: shared and private. Shared assemblies are common libraries available to all software, while private assemblies are intended only for use with particular software.
A private assembly is entirely self-contained, so the process of installing it is simple. There are no registry entries; the appropriate files are simply placed in the appropriate folder in the file system.

9. Support for web services- .NET has fully integrated support for developing web services as easily as you'd develop any other type of application.
10. Visual Studio.NET - .NET comes with a developer environment, VS.NET, which can cope equally well with C++, C#, J# and VB.NET as well as with ASP.NET code.VS.NET integrates all the best features of the respective language-specific environments of Visual Studio 6.

 .NET is designed to help solve several fundamental problems faced by the programmers.
So get inspired……. There is a lot this technology can offer!

The first post has been kept very simple. Just an introduction. Please be free to share your views on this post.
Waiting for your responses!!
Garima

Student Champ BMSIT

Manager – Student Champs

.
C# Source Code	

Perl to Perl.NET Source code

COBOL to COBOL.NET Source Code

C++ to MC++ Source Code

C# Compiler

Perl to Perl .NET complier

COBOL to COBOL .NET Compiler

C++ to MC++ compiler

MSIL and METADATA

(DLL or EXE)

