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This paper started from the fact that Möbius transformations are sharply
3-transitive, and a vague recollection that there are sporadic simple groups
which are multiply transitive (the Mathieu groups). Most - if not all - of the
contents is not new, I think this is 19th century math. It was a nice exercise
though, and got me playing with permutations, which is a lot of fun.

1 Definitions

Let Sn be the permutation group, acting on X = {1, 2, . . . , n}. Let G ⊂ Sn

be a subgroup.

Definition 1.1 G is called k-transitive if for every k non repeating elements
x1, x2, . . . , xk ∈ X and every k non repeating elements y1, y2, . . . , yk ∈ X,
there is a permutation g ∈ G such that g(xi) = yi for all i = 1, . . . , k.

Proposition 1.2 G is k-transitive if and only if for every k non repeating
elements y1, y2, . . . , yk ∈ X there is a permutation g ∈ G such that g(i) = yi

for all i = 1, . . . , k.

Proof: Assume G is k-transitive. Let y1, y2, . . . , yk ∈ X be k non repeating
elements. Choose xi = i for i = 1, . . . , k. Using definition 1.1 there exists a
permutation g ∈ G such that g(i) = g(xi) = yi for all i = 1, . . . , k.

Assume the existence condition in the proposition. Let x1, x2, . . . , xk ∈
X and y1, y2, . . . , yk ∈ X be two sets of non repeating elements. By our
assumption there exist two permutations g1, g2 ∈ G such that g1(i) = xi

and g2(i) = yi for all i = 1, . . . , k. The permutation g = g2g
−1
1 ∈ G satisfies

g(xi) = g2g
−1
1 (xi) = g2(i) = yi.
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Definition 1.3 G is called sharply k-transitive if G is k-transitive, and
for every k non repeating elements x1, x2, . . . , xk ∈ X if g1, g2 ∈ G satisfy
g1(xi) = g2(xi) for all i = 1, . . . , k, then g1 = g2.

Proposition 1.4 G is sharply k-transitive if and only if for every k non
repeating elements y1, y2, . . . , yk ∈ X there exists a unique permutation g ∈
G such that g(i) = yi for all i = 1, . . . , k.

Proof: Assume G is sharply k-transitive. Let y1, y2, . . . , yk ∈ X be k non
repeating elements. Using proposition 1.2 there exists a permutation g ∈ G
such that g(i) = yi for all i = 1, . . . , k. If g′ ∈ G also satisfies this condition,
then using definition 1.3 we have g = g′, so g is unique.

Assume the existence condition in the proposition. By proposition 1.2
G is k-transitive. Let x1, x2, . . . , xk ∈ X be a set of non repeating elements.
Suppose g1, g2 ∈ G satisfy g1(xi) = g2(xi) for all i = 1, . . . , k. Applying g−1
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to both sides we get g−1
2 g1(xi) = xi for all i = 1, . . . , k. By k-transitivity

there exist a permutation g ∈ G such that g(i) = xi for all i = 1, . . . , k. The
permutation h = g−1g−1

2 g1g ∈ G satisfies

h(i) = g−1g−1
2 g1g(i) = g−1g−1

2 g1(xi) = g−1(xi) = i.

The identity permutation e ∈ G also satisfies e(i) = i for all i. By our
uniquness assumption e = h = g−1g−1

2 g1g, so g1 = g2.

2 Basic properties

Proposition 2.1 If G ⊂ Sn is sharply k-transitive then |G| = n!
(n−k)!

Proof: By proposition 1.4 every choice of k non repeating elements
y1, y2, . . . , yk ∈ X defines a unique permutation g ∈ G such that g(i) = yi.
The size of G is just the number of these choices, which is n!

(n−k)! .

Proposition 2.2 Sn is sharply n-transitive and sharply (n− 1)-transitive.

Proof: Every choice of n non repeating elements y1, y2, . . . , yn ∈ X defines
a unique permutation g ∈ Sn such that g(i) = yi for all i = 1, . . . , n. This
shows that Sn is sharply n-transitive, using proposition 1.4.

For every choice of n− 1 non repeating elements y1, y2, . . . , yn−1 ∈ X we
can define g(i) = yi for all i = 1, . . . , n−1. There exists a unique value y ∈ X
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not in {y1, . . . , yn−1}, and g(n) = y is the unique extension to a permutation
g ∈ Sn. Again using proposition 1.4 Sn is sharply n− 1-transitive.

Proposition 2.3 An ⊂ Sn is sharply (n− 2)-transitive.

Proof: For every choice of n−2 non repeating elements y1, y2, . . . , yn−2 ∈ X
we can define g(i) = yi for all i = 1, . . . , n − 2. There exist two values
a, b ∈ X not in {y1, . . . , yn−2}, and there are two possible extensions to a
permutation: g1(n − 1) = a and g1(n) = b or g2(n − 1) = b and g2(n) = a.
Since g1 = g2(n−1 n), exactly one of these is an even permutation. and this
is the unique extension to a permutation g ∈ An. Using proposition 1.4 An

is sharply n− 2-transitive.

Proposition 2.4 let G ⊂ Sn be sharply k-transitive, and let g ∈ G.

1. If g stabilizes k elements x1, . . . , xk ∈ X then g is the identity permu-
tation.

2. Suppose g ∈ G has nl cycles of length l with nll ≥ k. Then g is of
order l and all cycle lengths are divisors of l.

Proof:

1. The identity permutation stabilizes all elements in X. By definition
1.3 g is the unique permutation in G that stabilizes x1, . . . , xk, so g is
the identity.

2. The permutation gl stabilizes all elements in X that are in cycles of
length dividing l. Since there are at least nll ≥ k of these, gl must be
the identity by part 1, and all cycle lengths of g divide l. The order of
g is then exactly l since g contains cycles of length l.

Proposition 2.5 Let G ⊂ Sn be sharply k-transitive with k > 1, and let
H ⊂ G be the subgroup stabilizing n. Then, restricting to 1, . . . , n− 1, H is
a sharply (k − 1)-transitive subgroup of Sn−1.
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Proof: By definition 1.3, for every k−1 non repeating elements y1, . . . , yk−1 ∈
X different from n there exists a unique g ∈ G such that g(i) = yi for all
i = 1, . . . , k − 1, and g(n) = n. g is in H since g stabilizes n. Restricting to
1, . . . , n−1 proposition 1.4 shows that H ⊂ Sn−1 is sharply (k−1)-transitive.

3 Sharply 1-transitive groups

The simplest example of a sharply 1-transitive group in Sn is the cyclic group
of order n generated by an n-cycle, say (1 2 . . . n). The smallest example
of a sharply 1-transitive group which is not cyclic, is the four group in A4,
consisting of {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}. In fact, the construction
used in he proof of Cauchy’s theorem (that all finite groups are isomorphic to
permutation groups) provides more examples of sharply 1-transitive groups.

Let G be a finite group of order n with elements x1, x2, . . . , xn. For any
element xi define the left multiplication operator Lxi by Lxi(xj) = xixj . Lxi

is 1-1 since Lxi(xj) = Lxi(xk) implies xixj = xixk and then xj = xk. Lxi is
also onto since Lxi(x

−1
i xj) = xix

−1
i xj = xj (a finiteness argument can also

be applied). This shows that Lxi are permutations in Sn.
The map xi 7→ Lxi is a group homomorphism G → Sn since LxiLxj (a) =

xixja = Lxixj (a). This homomorphism is injective, since if Lxi = Lxj then
when applying on e we get xi = Lxi(e) = Lxj (e) = xj . This shows that G is
isomorphic to a subgroup of order n in Sn. Moreover, this image is sharply
1-transitive: using proposition 1.4, since Lxi(e) = xi the permutation is
determined once the image of e is known.

We can also show that all sharply 1-transitive groups are the result of the
above construction. Suppose G ⊂ Sn is sharply 1-transitive. Let xi be the
unique element in G such that xi(1) = i. Using left multiplication as above
we get Lxi(xj) = xixj , and the index is determined by xixj(1) = xi(j).
Thus xi = Lxi as elements of Sn under this construction.

4 Sharply 2- and 3-transitive groups

As mentioned in the beginning, it is well known that Möbius transformations
over finite fields are examples of sharply 3-transitive groups. We describe
this example and use it to find sharply 2-transitive groups.
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4.1 Möbius transformations

Let q be a prime power, F a field of size q. The group GL2(F ) of invertible
2 by 2 matrices over F acts on F ∪∞ by

g(x) =
(

a b
c d

)
(x) =

ax + b

cx + d

These are the Möbius transformations. If c = 0 then g(∞) = ∞, otherwise
g(∞) = a

c and g(−d
c ) = ∞. It is well known that this defines a group action.

Proposition 4.1 This group action is 3-transitive.

Proof: Let {α, β, γ} be any three different element of F ∪ ∞. The matrix

g1 =
(

α 1
1 0

)
satisfies g1(∞) = α, so g−1

1 {α, β, γ} = {∞, β′, γ′}. If α = ∞

we use the identity for g1. The matrix g2 =
(

1 β′

0 1

)
satisfies g2(∞) =

∞ and g2(0) = β′, so g−1
2 g−1

1 {α, β, γ} = {∞, 0, γ′′}. Note that both β′

and γ′′ are not ∞, and both can be recovered explicitly from α, β, γ. The

matrix g3 =
(

γ′′ 0
0 1

)
satisfies g3(∞) = ∞, g3(0) = 0 and g3(1) = γ′′, so

g−1
3 g−1

2 g−1
1 {α, β, γ} = {∞, 0, 1}. The inverse element g1g2g3 shows that the

action is 3-transitive (proposition 1.2).

Proposition 4.2 The only Möbius transformation that stabilizes 0, 1 and
∞ is the identity.

Proof: Let g =
(

a b
c d

)
be such a transformation. From g(∞) = ∞ we

have c = 0, and from g(0) = 0 we have b = 0. The condition g(1) = 1 now
implies a = d and g is a scalar matrix. The transformation defined by g is
then g(z) = az

a = z so g is the identity.

The scalar matrices define the identity transformation, so the group of
Möbius transformations is actually PGL2(F ).

Proposition 4.3 The action of PGL2(F ) on F ∪∞ is sharply 3-transitive.

Proof: Suppose g1 and g2 are two Möbius transformations that satisfy
gi(∞) = y1, gi(0) = y2, gi(1) = y3. The transformation g−1

1 g2 then sta-
bilizes 0, 1 and ∞. Proposition 4.2 shows that g1 = g2. This uniqueness,
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together with 3-transitivity (proposition 4.1), completes the proof by propo-
sition 1.4.

This section shows that there is an infinite family of sharply 3-transitive
groups, acting on q +1 elements where q is a prime power. Except for a few
small cases all these groups are simple (NO THEY’RE NOT !!, see note in
the question section).

• For q = 2 this group is sharply 3-transitive in S3 so it is isomorphic to
S3.

• For q = 3 this group is sharply 3-transitive in S4 so it is isomorphic to
S4.

• For q = 4 this group is sharply 3-transitive in S5 so it is isomorphic to
A5. It is also simple.

4.2 Affine groups

Using the group of Möbius tranformations and proposition 2.5, the PGL2(F )
subgroup stabilizing∞ is sharply 2-transitive. Matrices stabilizing∞ satisfy
c = 0, these are the affine transformations g(x) = ax + b. This shows an
infinite family of sharply 2-transitive groups, acting on q elements where q
is a prime power. All these groups are not simple, since the subgroup of
translations g(x) = x + b is normal.

4.3 Questions

I raise the following questions as a reminder to myself, what more I should
try to understand. These are not open questions, I’m sure at least most of
the answers are known to the experts of the field.

• Are there other sharply 2-transitive groups?

• Are there other sharply 3-transitive groups?

• Can you prove PGL2(F ) is simple directly from transitivity? Does
this extend to all multiply transitive groups? (Answer: NO. In fact, I
was wrong here, since PSL2(F ) is simple and is normal of index 2 in
PGL2(F ) for odd characteristic)
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5 Sharply k-transitive groups, k ≥ 4

We saw in section 2 that Sn and An are infinite families of sharply transitive
groups of degree n, n− 1 and n− 2. In this section we will show that there
are almost no other sharply k-transitive groups with k ≥ 4.

Let G ⊂ Sn be a sharply 4-transitive group. We assume n ≥ 6, excluding
S4 and S5. We will now prove that n is either 6 or 11. The idea is to study
the elements of order 2 in G.

A permutation of order 2 has cycles of order 2 (at least one), cycles of
order 1 (stationary points), and no other cycles. We would like to determine
the exact cycle structure of an element of order 2 in G.

Proposition 5.1 There is a unique element g0 ∈ G containing the cycles
(1 2)(3)(4), g0 is an element of order 2. If n is even then g0 has exactly 2
stationary points and n−2

2 cycles of order 2. If n is odd then g0 has exactly 3
stationary points and n−3

2 cycles of order 2. Moreover, all elements of order
2 in G have the same cycle structure as g0.

Proof: The cycles (1 2)(3)(4) are equivalent to the condition that the ordered
4-tuple (1, 2, 3, 4) is mapped to the ordered 4-tuple (2, 1, 3, 4). By definitions
1.1 and 1.3 there is a unique g0 ∈ G satisfying this condition. The element
g2
0 contains the cycles (1)(2)(3)(4), mapping the ordered 4-tuple (1, 2, 3, 4)

to itself, same as the identity element. By definition 1.3 g2
0 is the identity,

so g0 is of order 2. The same argument shows that g0 can have at most 3
stationary points, since it is obviously not the identity. The definition of
g0 includes two stationary points, so the number is 2 or 3. The number of
stationary points is even iff n is even, since all other cycles are of order 2.
Therefore for even n there are 2 stationary points, and for odd n there are
3. The number of cycles of order 2 follows immediately.

Suppose that g ∈ G is any element of order 2. Again g has at most 3
stationary points, and at least 2 cycles of order 2, since n ≥ 6. We choose
two such cycles (a b)(c d). The element g maps the ordered 4-tuple (a, b, c, d)
to the ordered 4-tuple (b, a, d, c), and by definitions 1.1 and 1.3 only g has
this pair of cycles of order 2. g0 also has at least two cycles of order 2,
choose (i j) other than (1 2). By definition 1.1 there exists h ∈ G mapping
the ordered 4-tuple (a, b, c, d) to the ordered 4-tuple (1, 2, i, j). The elements
g and h−1g0h are identical on (a, b, c, d), so they are the same. This shows
that g and g0 are conjugate in G, and their cycle structure is identical.
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Proposition 5.2 For any a, b, c, d there is exactly one element in G with
the cycles (a b)(c)(d), and exactly one element with the cycles (a b)(c d).

Proof: The ordered 4-tuple (a, b, c, d) is mapped to (b, a, c, d) in the first
case, and to (b, a, d, c) in the second case. By definitions 1.1 and 1.3 there
are unique elements in G satisfying these conditions.

We now count the number of elements of order 2 in G using the two
cycle strutures of proposition 5.2.

We start with the structure (a b)(c)(d). There are n(n−1)
2 × (n−2)(n−3)

2
ways to choose one 2-cycle and two 1-cycles, each choice defines a unique
element of order 2 in G. There are many choices that lead to the same
element in G, we count these using proposition 5.1. For even n the two
1-cycles are fixed but there are n−2

2 choices of 2-cycles that define the same
element in G. For odd n there are 3 choices of two 1-cycles out of a given
three, and n−3

2 choices of a 2-cycle. Therefore there are n(n−1)(n−3)
2 elements

of order 2 in G for even n and n(n−1)(n−2)
6 for odd n.

Now we use the structure (a b)(c d). There are 1
2 ×

n(n−1)
2 × (n−2)(n−3)

2
ways to choose two 2-cycles, each choice defines a unique element of order 2
in G. We count multiplicities as before. For even n there are 1

2
n−2

2 (n−2
2 −1)

choices of two 2-cycles that define the same element in G. For odd n there
are 1

2
n−3

2 (n−3
2 −1) choices of a two 2-cycles. Therefore there are n(n−1)(n−3)

n−4

elements of order 2 in G for even n and n(n−1)(n−2)
n−5 for odd n.

Comparing the two ways of counting, we come to the conclusion that
either n = 6 or n = 11. The unique solution for n = 6 is A6. We will discuss
the solution for n = 11 in the next section.

Using proposition 2.5 we find that for k ≥ 4 sharply k-transitive groups
can be found in Sk+2 (these are exactly Ak+2) and in Sk+7.

Proposition 5.3 There are no sharply k-transitive groups for k ≥ 6 except
Ak+2.

Proof: We will prove that there are no 6-transitive groups in S13, and using
proposition 2.5 this completes the proof.

Assume G is a sharply 6-transitive group in S13. Following the logic of
proposition 5.1 every element of order 2 in G a has four 2-cycles and five
1-cycles. As above we count the number of order 2 elements in G using
the same argument as proposition 5.2. We start with the cycle structure
(a b)(c)(d)(e)(f). There are 13·12

2 × 11·10·9·8
24 possible choices, and each element

is chosen 4 · 5 times (one of four 2-cycles and four of five 1-cycles). The
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number of elements of order 2 is then 13·12·11·10·9·8
48·20 . Now we use the structure

(a b)(c d)(e f). There are 1
6

13·12
2 × 11·10

2 × 9·8
2 possible choices, and each

element is chosen 4 times (three of four 2-cycles). The number of elements
of order 2 is then 13·12·11·10·9·8

48·4 . The numbers are different, proving that there
is no such G.

The conclusion is that for k ≥ 4 the only sharply k-transitive groups are
Ak+2, with the possible exception of a sharply 4-transitive group in S11 and
a sharply 5-transitive group in S12. These extra groups do exist, namely the
Mathieu groups M11 and M12.

6 The Mathieu M11 group

In this section we construct a sharply 4-transitive group in S11, namely the
Mathieu M11 group. The focus is on elements of order 2 as before. We will
use the following proposition:

Proposition 6.1 Let g and h be two commuting permutations of order 2.
If (a b) is a 2-cycle of g then exactly one of the following is true:

• h contains the cycles (a)(b), or

• h contains the cycle (a b) or

• h contains the cycles (a c)(b d), where g contains (c d).

Proof: If h(a) = a then gh(a) = g(a) = b, and since gh = hg we get
b = hg(a) = h(b). This is the first case.

If h(a) = b then gh(a) = g(b) = a, and similarly a = hg(a) = h(b), this
is the second case.

The remaining possibility is h(a) = c, where c is not a nor b. If we write
g(c) = x and h(b) = y then gh(a) = g(c) = x and hg(a) = h(b) = y. Thus
x = y = d, which can not be a, b or c. Since both g and h are of order 2 we
get the cycles of the third case.

By proposition 5.1 every element of order 2 in M11 has four 2-cycles
and three 1-cycles. Up to isomorphism we may assume that M11 contains
g1 = (1 2)(3 4)(5 6)(7 8). By 4-transitivity there is a unique element g2 ∈
M11 containing the cycles (1 2)(3)(4). Both g1g2 and g2g1 are identical on
(1, 2, 3, 4) so g1 and g2 commute. They share a 2-cycle (1 2), and since
they are not identical elements they can not share another 2-cycle (sharp
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4-transitivity). Proposition 6.1 with the cycle (5 6), together with the fact
that g2 already has two 1-cycles, shows that up to isomorphism we can
choose g2 = (1 2)(5 7)(6 8)(9 10). Then g1g2 = (3 4)(5 8)(6 7)(9 10).

Let g3 be the unique element in M11 containing the cycles (1 3)(2 4).
As before g1 and g3 commute. We use the same argument, looking at the
cycle (5 6) and using Proposition 6.1. Here, since all combinations of a pair
of 2-cycles covering {5, 6, 7, 8} are already present, g3 can have either the
cycle (5 6) or (7 8). Both are equivalent under isomorphism and we choose
the first. g2g3 contains the cycle (1 3 2 4), so it is an element of order 4 by
proposition 2.4. If the last 2-cycle of g3 is not (9 10) then g2g3 also contains
a 3-cycle, which is impossible. As a result, g3 is (1 3)(2 4)(5 6)(9 10). The
group < g1, g2, g3 > is of order 8, including g1g3 = (1 4)(2 3)(7 8)(9 10) and
two more elements of order 4.

Let g4 be the unique element in M11 containing the cycles (1 3)(2)(4).
Now g3 and g4 commute, similar to the relation between g1 and g2. g4 then
must have two 2-cycles covering {5, 6, 9, 10} and one 2-cycle from {7, 8, 11}.
However, if 11 is in a 2-cycle then g1g4 has a 4-cycle covering {1, 2, 3, 4} and a
3-cycle covering {7, 8, 11}, which is impossible. Since 9 and 10 are equivalent
under isomorphism we can choose g4 = (1 3)(5 9)(6 10)(7 8). The group
< g1, g2, g3, g4 > is isomorphic to S4, identical on 1-4 and embedded in 5-
10. The remaining elements of order 2 in this group are (2 4)(5 10)(6 9)(7 8),
(1 4)(5 6)(7 9)(8 10) and (2 3)(5 6)(7 10)(8 9).

Let g5 be the unique element of M11 containing the cycles (7 8)(9 11).
This element commutes with g1, by proposition 6.1 the 1-cycles are 10
and one of the 2-cycles of g1. Since all combinations of 2-cycles cover-
ing {1, 2, 3, 4} are already present, there are four possible combinations:
(1 5)(2 6), (1 6)(2 5), (3 5)(4 6) and (3 6)(4 5). The product of g4 and
(1 5)(2 6)(7 8)(9 11) is (1 3 5 11 9)(2 6 10), which is illegal. The same happens
with the choice (3 5)(4 6). Note that conjugating < g1, g2, g3, g4 > with
(1 3)(2 4)(7 8) results in < g1, g1g2, g3, g4 > which is the same. Therefore up
to isomorphism we choose g5 = (1 6)(2 5)(7 8)(9 11).

We have constructed a group M11 =< g1, g2, g3, g4, g5 >, and shown that
it does not violate the conditions of sharp 4-transitivity, and that it is unique
up to isomorphism. Using the GAP package we can show that the order of
this group is 7920 = 11×10×9×8, and that it is in fact sharply 4-transitive.
The 1, 2 and 3 point stabilizers can be computed. A small surprise is that
the 1 point stabilizer of M11 is a non-simple sharp 3-transitive group. It
contains a normal subgroup of index 2 which is isomorphic to A6.
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