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Abstract

Information fusion in the context of combining multiple streams of data e.g., audio
streams and video streams corresponding to the same perceptual process is considered in
a somewhat generalized setting. Speci�cally, we consider the problem of combining vi-
sual cues with audio signals for the purpose of improved automatic machine recognition of
descriptors e.g., speech recognition/transcription, speaker change detection, speaker iden-
ti�cation and speaker event detection. These happen to be important descriptors for multi-
media content (video) for e�cient search and retrieval. A general framework for considering
all of these fusion problems in a uni�ed setting is considered.

1 Introduction

Humans use a variety of modes of information (audio, visual, touch and smell) to recognize
people and understand their activity (speech, emotion, etc). In this paper, we discuss the
general problem of fusing these multimodal streams of information to arrive at a coherent
decision of human identity and activity. Use of visual information to improve audio-based
technologies such as speech recognition, speaker recognition, speech event detection and speaker
change detection is a speci�c example of this endeavor.

In general, mode-fusion or the integration of di�erent modes of information can be achieved
by any of the following methods of data fusion [5].

� feature fusion | features are extracted from the raw data and subsequently combined,
e.g. for speaker recognition, cepstral features and facial Gabor jet features could be
combined.

� decision fusion | this is the fusion at the most advanced stage of processing and involves
combining the decisions of two di�erent classi�ers making independent decisions about
the identity of the speaker-based on audio and visual features

An optimal fusion policy of using some of these fusion strategies remains the holy grail of
research [5, 6, 10]. In this paper, we restrict our considerations to audio-visual information
fusion [8, 12, 11, 9, 7].

2 Speechreading

The potential for joint processing of audio and visual information for speech recognition is well
established on the basis of psychophysical experiments.

Here, in a simpler version of the general fusion problem the set of objects to be recognized
can be taken to be the speech utterances. These have di�erent realizations in the acoustic
domain and in the visual domain. In the acoustic domain the basic (atomic) symbolic units
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Figure 1: Audio-visual information fusion

associated with the utterances are the phonemes that are delineated in linguistics theory,
whereas in the visual domain the elemental units are the so called visemes borrowed from the
psychoacoustic literature. Visemes provide information that complements the phonetic stream
from the point of view of confusability. For example, \mi" and \ni" which are confusable
acoustically, especially in noise situations, are easy to distinguish visually: in \mi" lips close
at onset, whereas in \ni" they do not. The unvoiced fricatives \f" and \s" which are di�cult
to distinguish acoustically belong to two di�erent viseme groups.

Our focus and interest is in demonstrating meaningful improvements for realistic tasks
such as broadcast news transcription for audio/video indexing, large vocabulary dictation and
speech reading for the hearing/speech impaired.

To make precise mathematical de�nitions, we denote by xa 2 R
m the audio feature vectors

and by xv 2 R
n the video feature vectors.

2.1 Early fusion or feature fusion

Here, the strategy is to combine the two streams of information at an early stage and possibly
exploit a single classi�er. To be speci�c, we consider vectors x = xa�xv 2 R

m+n in the larger
space

Rm+n = Rm �Rn

where components of x come from the components of xa and xv respectively.
We then de�ne a class of maps

fi : R
n+m ! R

such that fi(x) becomes a score on the basis of which the symbolic units are detected. See
Figure 1 for details (dotted line).

2.2 Late fusion or decision fusion

Here, since the symbolic units are di�erent in the two domains, di�erent classi�ers fa and fv
need to be exploited. Decision fusion then involves combining the results of these classi�ers in
an intelligent fashion with due regard to the con�dence that can be attributed the results of
the two classi�ers. See Figure 1 for details.



The function of the classi�ers is to assign numerical scores (e.g, class probabilities) via the
class of maps:

fai : R
m ! R

fvi : R
n ! R

and then to combine the outcomes of the classi�ers via the fusion maps:

FCa;Cv;i : R�R! R

where a fusion map F may depend on the con�dence parameters Ca and Cv associated with
the audio and video streams of information and is denoted by

FCa;Cv;i(fa(xa); fv(xv)) (1)

Example: An example of this in the case of speech recognition is:

FCa;Cv;i(fai(xa); fvi(xv)) = [fai(xa)]
Ca � [fvi(xv)]

Cv (2)

where Ca and Cv depends on the con�dence parameters Ca, Cv and it is conceivable that the
constraint

Ca + Cv = 1 (3)

is adopted for the purpose of normalization. This product separable FCa;Cv assumes that the
two streams of information are independent, especially when fa(xa) and fv(xv) are interpreted
as probabilities of occurrences of the symbolic units associated with the two streams. In
practice such an independence assumption could be debated, especially since the two streams
are realizations of the same perceptual process synchronously observed in time.

The importance of Ca and Cv in the fusion equation above can be highlighted by the
following experiments on the e�ect of visual noise on the phonetic classi�cation performance.

2.3 E�ect of Visual Noise

The face tracking system occasionally fails to track the face in the video sequence. This can
be either due to mismatch between training and test conditions of the candidate face is unlike
any of the training examples, implying inability of the face model to generalize. In addition,
the face tracking can also be poor, where the located face does not align accurately with the
actual face in the video stream. In situations when the tracking completely fails, the visual
data is represented by visual silence. However, in poor tracking, the visual processing results
in geometry errors (e.g, nose tip classi�ed as a lip) which gives rise to noise in the visual data.
We note here that this noise is di�erent from the signal noise(i.e, noise in video stream, per
se).

We designed a supervised classi�er to prune the visual noise due to poor tracking. This
classi�er is a Gaussian mixture model trained on a small subset of PCA projections (typically
20-25 dimensions). We classify the extracted PCA lip projections in a sequence and consider
only those sequences that have a high percentage of good lips.

The performance of the lip classi�er is presented in Table 1
We note here that in the context of this experiment, we are interested in an estimate of

the visual noise. For this purpose, it is adequate to get a lip classi�cation percentage that is
close to the true percentage of lips in the data. It is not necessary to consider the false alarm
and false reject numbers.

To understand the e�ect of visual noise we carried out phonetic classi�cation experiments
using 5000 sentences spoken by 45 speakers for training and 500 sentences for testing. The



Seq True Classi�cation (%)
Lip% Lip Non Lip

Spkr1 100 96.05 3.72
Spkr2 68.9 66.4 33.4
Spkr3 36.5 35.8 63.9

Table 1: Lip classi�er results for Test datasets

results suggest that visual noise can have a signi�cant impact on classi�cation performance.
For example, the visual phonetic classi�cation performance improves from 11.68% to 22.98%
by considering clips with more than 90% good lip images.

3 Speaker Recognition

Here we combine image or video based visual signatures with audio feature based speaker
identi�cation for improved person authentication.

3.1 Image based speaker identi�cation

A set of K facial features are located. These include large scale features and small scale sub-
features. Prior statistics are used to restrict the search area for each feature and sub-feature.
At each of the estimated sub-feature locations, a Gabor Jet representation is generated. A
Gabor jet is a set of 2-dimensional Gabor �lters | each a sine wave modulated by a Gaussian.
Each �lter has scale and orientation. We use �ve scales and eight orientations, giving 40
complex coe�cients (a(j); j = 1; : : : ; 40) at each feature location.

A simple distance metric is used to compute the distance between the feature vectors for
trained faces and the test candidates. The distance between the ith trained candidate and a
test candidate for feature k is de�ned as:

Sik =

P
j a(j)ai(j)qP

j a(j)
2
P

j ai(j)
2

(4)

An average of these similarities,

fvi = 1=K
KX
1

Sik

gives an overall measure for the similarity of the test face to the face template in the database.

3.2 Audio-based speaker identi�cation

The frame-based approach for audio based speaker identi�cation can be described as follows.
Let Mi, the model corresponding to the ith enrolled speaker, be represented by a mixture

Gaussian model de�ned by the parameter set Pi(�i;�i; pi), consisting of the mean vectors �i,
covariance matrices �i and mixture weight vectors pi. The goal of speaker identi�cation is to
�nd the model, Mi, that best explains the test data represented by a sequence of N frames
ffngn=1;::;N . The total distance, fai as in (5) of model Mi from the test data is then taken to



be the sum of the \distances" di;n = � logPi(fnj�i;�i; pi) of all the test frames measured as
per likelihood criterion.

fai =
NX
n=1

di;n (5)

3.3 Fusion

Given the audio-based speaker recognition and face recognition scores, audio-visual speaker
identi�cation is carried out as follows: the top N scores are generated-based on both audio
and video-based identi�cation schemes. The two lists are combined by a weighted sum. Subse-
quently the best-scoring candidate is chosen. Recalling (2), we can de�ne the combined score
F i � F i

Ca;Cv
as a function of the single parameter �:

F i = Cafvi + Cvfai with Ca = cos�; Cv = sin� (6)

The angle � has to be selected according to the relative reliability of audio and face identi�-
cation (note that in (6) a scaling di�erent from (3) is adopted). For this, one may optimize �
to gain maximum accuracy on some training data. To elaborate on this, denote by fai(n) and
fvi(n) the respective scores for the ith enrolled speaker computed on the nth training clip. Let
us de�ne the variable Ti(n) as zero when the nth clip belongs to the ith speaker and equal to
unity otherwise. As per Vapnik theory of empirical errors one can minimize the cost function
C(�) given by

C(�) =
1

N

NX
n=1

T�̂(n); where �̂ = argmax
i

Fi(n) (7)

and F i(n) is as in (6) with fai = fai(n) and fvi = fvi(n). For a 77 speaker video broadcast
database, with audio-only accuracy of 78% and with video-only accuracy of 64%, a fused
accuracy of 84.4% was obtained [1].

4 Speaker change detection

Speaker change detection is a valuable piece of information for speaker identi�cation and as
metadata for search and retrieval of multimedia content. We are currently exploring the use of
visual speaker and scene change information to remove the limitiations of audio-based speaker
change detection. Our hypothesis is that the performance of audio only or video only techniques
can be further improved by exploiting the joint statistics between the audio stream and its
associated video. There is signi�cant correlation between audio and video speaker changes in
a newscast scenario, for example. Frequently, the video scene change follows shortly after an
audio change. In such a scenario, gathering the joint audio-visual statistics and leveraging this
to generate more accurate audio-segmentations (which in turn is desirable for accurate speech
transcription and retrieval) seems to be of interest.

A likelihood criterion penalized by the model complexity, namely the BIC criterion has been
used. Let X = fxai : i = 1; � � � ; Ng be the audio feature vectors for which we are seeking a
statistical model. LetM be the class of candidate models, L(X ;M) be the likelihood function
for the model M 2 M, and #(M) be the number of parameters in the model M . For an
empirically chosen weight �, the BIC procedure maximizes

BIC(M) = logL(X ;M)� 0:5��#(M)� logN (8)

with respect to M .



4.1 Audio-based speaker change

The problem of detecting a transition point at time i is to choose between two models of the
data: one where the data set is modeled by a single Gaussian process i.e., xa1 � � �xaN � N(�;�),
or by two distinct Gaussian processes xa1 � � �xai � N(�1;�1) and xa(i+1) � � �xaN � N(�2;�2).
Here, the obvious notation � for the mean vector and � for the covariance matrix has been
used.

The BIC based model selection procedure considers the di�erence between the BIC values
associated with the two models as a \classi�er":

f 0a(i) = R(i)� �P (9)

where R(i) is the maximum likelihood ratio statistics:

R(i) = Nlogj�j �N1logj�1j �N2logj�2j; (10)

P = 0:5(d+0:5d(d+1)) logN is the penalty, d is the dimension of the vectors xai's, and � = 1.
We consider i to be a transition point if f 0a(i) > 0.

4.2 Videor-based speaker change

While for video based scene change detection a statistical model based criterion such as the BIC
criterion could also be used, we describe an alternate procedure. Consider the n dimensional
color histogram generated by the video feature vectors xvi 2 R

n (n = 64 in our experiments),
and consider a Kullbach-Liebler type divergence criterion:

gv(i) = �
nX

k=1

xkvi log
xkv(i�1)

xkvi

between the adjoining vectors xkvi and xk
v(i�1), where the superscript k denotes the kth com-

ponent of vectors.
We then compute the average �gv(i) of gv(i) over a �xed number N of samples in the past

of i and consider i to be a transition point if for a threshold �

f 0v(i) = j�gv(i)� gv(i)j �� > 0: (11)

4.3 Fusion

The fusion problem now is to intelligently combine two probabilities. One of these is the
probability fv = Pr(f 0v(i) > 0jfxvigNi=1) that f

0

v(i) in (11) given N video feature vectors from
the past is positive. The other is the probability fa = Pr(f 0a(i) > 0jfxaig

N
i=1) that f

0

a(i) in
(9) computed based on audio data fxaigNi=1 is positive. The fusion strategy then is to devise
an adequate fusion map FCa;Cv as in (1). In the particular case under consideration, a fusion
strategy is to solve the optimization problem

FCa;Cv(i) = argmax
i;�

fCafa(i) + Cvfv(i+ �)g

where � is a parameter that accounts for the well known fact that the speaker change in audio
signal precedes the speaker change in the video signal.

In 31 minutes of a television panel discussion that we analyzed, 67% of the audio speaker
changes were immediately followed (within 3 seconds) by a corresponding video change. Our
initial results on CSPAN video content show that at a recall rate of about 67% (percentage of
actual speaker changes detected), the precision improves from 95% to 97%.



5 Speech Event detection

Speech recognition systems have opened the way towards an intuitive and natural human-
computer interaction (HCI). However, current HCI systems using speech recognition require
a human to explicitly indicate one's intent to speak by turning on a microphone using the
keyboard or mouse. One of the key aspects of naturalness of speech communication involves
the ability of humans to detect an intent to speak. For recent experiments on this we refer to
[2]. Humans detect an intent to speak by a combination of visual and auditory cues. Visual
cues include physical proximity, frontality of pose, lip movement, etc. Automatic detection of
speech onset can be carried out using silence/speech detection or based on audio energy alone.
An intelligent method of combining the two methods may be to compute the following two
probability densities

fa = Pr(speechjxa); and fv = Pr(speechjxv)

as, say, mixtures of Gaussian pdfs. A simple fusion strategy (cf. (1)) is to use the linear
combination:

FCa;Cv = Cafa + Cvfv :

We are, at present, building a practical system that aims to detect the user's intent to speak
to a computer. Our method relies on the premise that when a user is using natural spoken
language for information interaction (with information displayed on a desktop display), he
faces the computer before he speaks. In such a scenario, the �rst step is to detect a frontal face
as seen through a simple desktop video camera mounted on the monitor. We use a method
based on more general techniques for face and facial feature detection on one image to detect
frontality of facial pose and infer speech intent. We are currently exploring the second step:
which uses a measure of visual speech energy based on mouth activity to combine with a
measure of audio energy (based on the cepstral C0 coe�cient) to determine speech events
more robustly, especially in the presence of background acoustic noise. The whole system is
designed to intuitively turn on the microphone for speech recognition without needing to click
on a mouse, thus improving the human-like communication between the user and his computer.

6 Conclusions

Fusion of multiple sources of information is a mechanism to robustly recognize human activity
and intent in the context of human computer interaction. In this paper, we have attempted
to outline a uni�ed framework for fusion of audio and visual information by focusing on the
problems of speech recognition, speaker recognition, speaker change detection and speech event
detection.
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