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Abstract - We consider the problem of combining visual cues with
audio signals for the purpose of improved automatic machine recogni-
tion of speech. Although signi�cant progress has been made in machine
transcription of large vocabulary continuous speech (LVCSR) over the
last few years, the technology to date is most e�ective only under con-
trolled conditions such as low noise, speaker dependent recognition and
read speech (as opposed to conversational speech) etc. On the other-
hand, while augmenting the recognition of speech utterances with visual
cues has attracted the attention of researchers over the last couple of
years, most e�orts in this domain can be considered to be only prelimi-
nary in the sense that unlike LVCSR e�orts, tasks have been limited to
small vocabulary (e.g., command, digits) and often to speaker dependent
training or isolated word speech where word boundaries are arti�cially
well de�ned.

INTRODUCTION

The potential for joint audio-visual-based speech recognition is well estab-
lished on the basis of psychophysical experiments [3, 2]. E�orts have begun
recently on experiments with small vocabulary letter or digit recognition tasks
(see e.g., [7, 6, 9]). Canonical mouth shapes that accompany speech utter-
ances have been categorized, and are known as visual phonemes or \visemes"
[2]. Visemes provide information that complements the phonetic stream from
the point of view of confusability. For example, \mi" and \ni" which are
confusable acoustically, especially in noise situations, are easy to distinguish
visually: in \mi" lips close at onset, whereas in \ni" they do not. The unvoiced
fricatives \f" and \s" which are di�cult to recognize acoustically belong to
two di�erent viseme groups [2].

METHOD

First a face is located in the �rst frame of a video sequence and the location
is tracked across frames in the video clip. For locating a face, an image
pyramid over the permissible scales is generated and for every location in



the pyramid, we score the surrounding area as a face location. Rectangles
of pixels from the image pyramid are scored based on a number of criteria,
including similarity to skin-tone, and similarity to a diverse training set of
face images using the Fisher discriminant analysis and `distance from face
space' [15]. The locations scoring highly on all criteria are determined to
be faces. For each high-scoring face locations we consider small translation,
scale and rotation changes, rescoring the face region under each of these
changes to optimize the estimates of these parameters. Having found the
face, an ensemble of facial feature detectors can be used to determine and
verify the locations of the important facial features, including the lip corners
and centers. Subsequently, lip parameters are extracted. The technique is an
adaptation of a computer vision based face identi�cation method [12] to the
present context.

Visual feature extraction:

Although previous work has been conducted to de�ne the viseme units de-
rived from human lip-reading experiments [2] and other psychophysical data,
more research is necessary to identify the mouth features that are relevant
for large vocabulary, speaker independent visual speech recognition.

Candidate features are gray-scale parameters of the mouth region; geomet-
ric/model based parameters such as area, height, width of mouth region; lip
contours arrived at by curve �tting, spline parameters of inner/outer contour;
and motion parameters obtained by 3-D tracking. Gray scale parameters suf-
fer from being sensitive to lighting conditions. Lip contour information, al-
though invariant to lighting conditions, may not provide enough information
of the inner articulators such as teeth and tongue. Still another feature set
suggested recently to take into account the above factors is the Active Shape
model [8].

In this report, we consider grey scale parameters associated with the mouth
region of the image. Given the location of the lip corners a rectangular region
of normalized scale and rotation , centrex on the mouth center is subsampled
from the original video frame. Principal Component Analysis (PCA) was
used to extract a vector of smaller dimension from this vector of grey-scale
values.

Audio feature extraction:

Digitized speech sampled at a rate of 16 kHz was considered. A frame

consists of a segment of speech of duration 25 ms, and produces an 24 dimen-
sional acoustic cepstral vector via the following process, which is standard
in speech recognition literature. Frames are advanced every 10 ms to obtain
succeeding acoustic vectors.

First, magnitudes of discrete Fourier transform of samples of speech data
in a frame are considered in a logarithmically warped frequency scale. Next,
these amplitude values themselves are transformed to a logarithmic scale1,

1The later two steps are motivated by logarithmic sensitivity of human hearing to fre-

quency and amplitude.



and subsequently, a rotation in the form of discrete cosine transform is ap-
plied. One way to capture the dynamics is to use the delta (�rst-di�erence)
and the delta-delta (second-order di�erences) information. An alternative
way to capture dynamic information is to append a set of (say four) preceed-
ing and succeeding vectors to the vector under consideration and then project
the vector to a lower dimensional space, which is chosen to have the most dis-
crimination. The latter procedure being known as the Linear Discriminant
Analysis (LDA) in standard literature.

Mode Fusion

Once the feature vectors for the lip movements are available from the
video data, in principle techniques similar to those used in standard speech
recognition can be applied to the classi�cation and subsequent recognition
of video features. The more important issue is how to integrate the audio
and visual data for the purpose of recognition. This is a form of data fusion
problem, which we address via the following considerations.

Using visual information to augment the audio signal for speech recognition
involves the ability to fuse di�erent representations of the same underlying
production process. Such a mode-fusion or multi-modal integration involves
the following categories of sensory data fusion [10]. These constitute: (1)
feature fusion | features are extracted from the raw data and subsequently
combined. This involves, for example, fusing speech features with lip and
facial features; (2) decision fusion | this is the fusion at the most advanced
stage of processing, after independent classi�cation of each modality and can
happen at the sub-word level, word-level, utterance level or at the action
level. In the following section, we describe some preliminary experiments
using feature fusion. In feature fusion, we �rst extract audio features and
video features and then concatenate the two to generate a single audio-video
feature vector. We use LDA (as described earlier) on the combined vector to
generate a lower dimensional discriminant feature representation.

EXPERIMENTS

The audio-visual data we experiment with is provided by the LDC [11].
The audio part of the data is a subset of the standard speech recognition
evaluation conducted by the DARPA community (known as the HUB4 ef-
fort). The speech database consists of large vocabulary (approximately 60,000
words) continuous speech drawn from a variety of news broadcasts. The en-
tire database includes television (e.g. CNN, CSPAN) as well as radio shows.
We focus on segments of this data, the video part of which primarily consists
of the \talking head" type images (e.g. an anchor-person in a CNN news-
cast). The audio-video data available from LDC [11] in the analog SVHS
format is digitized in MPEG2 format (at a rate of 5Mb/sec). The audio and



video streams are then de-multiplexed and decompressed. The resulting de-
compressed audio is sampled at a rate of 16 kHz and the video at a standard
rate of 30 frames/second.

The audio sampling rate of 16 kHz is chosen so as to be able to compare
the joint audio-visual recognition results with the audio-only HUB4 evaluation
experiments. While this is an ongoing data collection e�ort, at the present
time we have about 700 video clips of approximately 10-15 seconds duration
each (the entire HUB4 database is approximately 200 hrs. of speech data,
not all of which is usable for our purpose).

In summary,we use a database of large vocabulary continuous visual speech
transmitted over a broadcast channel. The fact that it is real-life data (as
opposed to data collected in controlled environments) distinguishes this from
existing databases. While making the system applicable to real problem do-
mains, this does make visual feature extraction and subsequent processing a
more challenging task.

The need for controlled data is not to be underplayed and, in our view,
may indeed have an important role to play in this general area of research.
For purposes of validation of results we also collected \read" large vocabulary
continuous visual speech. This data was collected in acoustically quiet, con-
trolled conditions and the resolution of the lip region in the video image was
much larger than in the LDC data mentioned above | thus making video
based recognition a more tractable task. For the purpose of fair comparison
with the LDC data, the video digitization parameters and audio sampling fre-
quency were kept the same. We label this data the `ViaVoice Audio-Visual'
(VVAV) data.

We report speci�c results on the joint audio-video phonetic classi�cation
and its comparison with audio-only and video-only classi�cation. For video
we experiment with both the phonetic classi�cation and a `viseme' based
approach as described above. One approach to labeling the video feature
vectors is to label the speech data from a Viterbi alignment and to subse-
quently use a phoneme to viseme mapping. To produce phonetic alignments
of the audio data we use the acoustic models trained using the DARPA HUB4
speech recognition data. The video frame rates are typically lower than the
audio frame rate. This is circumvented by inter-frame interpolation. In all
experiments the HUB4-video database of continuous large vocabulary speech
mentioned in Section [11] is used.

In the following experiments 672 audio-video clips of VVAV data was used
as the training set. The test set consisted of 36 di�erent clips taken from
the same database. All the experiments use LDA features. In the pho-
netic/visemic classi�cation each phone/viseme is modeled as a mixture of 5
gaussians.

A comparison of Tables 1 and 2 shows that audio-visual recognition in
acoustically degraded conditions is better than either of the two streams
processed independently. An approximate improvement of 14% is obtained



compared to audio-only classi�cation scheme.
We used the following grouping of phonemes into viseme classes. For a

detailed explanation of the symbols used for phoneme classes we refer to [13].

(AA, AH, AX), (AE), (AO), (AW), (AXR, ER), (AY), (CH),(EH), (EY),(HH),
(IH,IX), (IY), (JH), (L), (OW), (OY), (R), (UH, UW), (W), (X, D$),
(B,BD,M,P,PD),(D,DD,DX,,G,GD,K,KD,N,NG,T,TD,Y), (TS), (F,V), (S,Z),
(SH,ZH), (TH,DH).

When visemes are used as classes, the video classi�cation improves by
about 37.5%, relative. However, improvement in noisy conditions is about
the same for visemic classes.

In our very preliminary experiments with HUB4 broadcast news data,
we get the following results. Audio-only phonetic classi�cation accuracy is
33.98%. Video-only phonetic classi�cation accuracy using 35 dimensional
LDA features is 9.48%.

These results are relatively poor compared to VVAV data. First, the reso-
lution of the mouth region for the HUB4 data is much less compared to VVAV
data, with the possibility of providing very little discriminative information
between phones. Secondly, the tracking of the lip region is a harder problem
and hence may result in loss of crucial information for discrimination. We
are investigating techniques to better track and represent the lower resolution
images in the HUB4 data.

DISCUSSION AND CONCLUSIONS

In this preliminary report we have undertaken phonetic/visemic classi�-
cation experiments for large vocabulary continuous speech. Our goal is to
proceed to HMM-based recognition techniques and compare the results of
joint audio-video recognition with audio only recognition in the context of
this speci�c environment.

In addition to speech recognition, the same problems of channel and envi-
ronment dependence arise in speaker identi�cation. Again, the problem can
be alleviated by combining visual signatures of the speaker both in terms of
characteristics of visual speech and other facial features to perform speaker
identi�cation. Combined use of audio and visual information is beginning to
show improvements in such problems as well. One such example is [13] in
which computer vision-based face recognition techniques have been shown to
bene�t signi�cantly when augmented with speech-based authentication meth-
ods. See [14] for some application contexts for combined use of speech and
vision.
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Data Type Dimension Splice Param. Reco. Rate
Audio Only (Training Data) 24 60 dim 53.66%
Video Only (Training Data) 100 35 dim 22.21%
Audio Only (Test Data) 24 60 dim 48.08%
Video Only (Test Data) 100 35 dim 20.15%

Audio-Video (Training Data) 24+50 35 dim 53.58%
Audio-Video (Test Data) 24+50 35 dim 48.71%

Table 1: Clean Data Experiments on VVAV data

Data Type Dim Splice dim phonetic visemic
Audio Only (Test) 24 60 dim 28.05% 40.40%
Video Only (Test) 100 35 dim 20.15% 27.76%
Audio-Video (Test) 24+50 35 dim 32.02% 44.81%

Table 2: Noise Data Experiments on VVAV data: Speech Noise at an average
of 15 dB, ranging from 10-20 dB SNR. Phonetic accuracy is shown in the
fourth column and visemic accuracy in the �fth column

Data Type Dim Splice Param. Reco. Rate
Audio Only (Training Data) 24 (60 dim) 62.17%
Audio Only (Test Data) 24 (60 dim) 60.52%

Video Only (Training Data) 100 (35 dim) 28.14%
Video Only (Test Data) 100 (35 dim) 27.76%

Table 3: Viseme based video classi�cation results


