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Abstract - In this paper we present our work on visual pruning in an audio-visual speech recognition sce-
nario. Using visual information in speech recognition has been of interest because it can signi�cantly improve
performance in circumstances where audio-only recognition su�ers (e.g. noisy environments). Tracking and
extraction of region-of-interest (ROI) (e.g., speaker's mouth region) from video is an essential component
of audio-visual (AV) speech recognition systems. It is important for the visual front-end in an AV speech
recognition system to handle tracking errors that result in noisy visual data and hamper performance. In
this paper, we present our robust visual front-end, investigate methods to prune visual noise and its e�ect
on the performance of the AV speech recognition systems through phonetic and visemic classi�cation exper-
iments. We estimate the \goodness of ROI" using Gaussian mixture models and our experiments indicate
that signi�cant performance gains are achieved with pruned visual data.

INTRODUCTION

Many emerging multimedia and pervasive computing applications strive to model audio-visual
events for the purposes of understanding, indexing and managing content. There is signi�cant value
in generating automatic transcripts and summarization of such audio-visual content. An example of
such would be generating a textual transcription/keywords automatically from the speech portions
of the audio-visual content. This holds the potential of enabling automatic text-based indexing and
retrieval.

Automatic recognition of speech by using the video sequence of the speaker's lips, namely au-
tomatic lipreading, or speechreading, has recently attracted signi�cant interest [1]-[12]. Much of
this interest focuses on ways of combining the video channel information with its audio counterpart,
in the quest for an AV automatic speech recognition (ASR) system that outperforms audio-only
ASR. Such a performance improvement depends on both the audio-visual fusion architecture, as
well as on the visual front end, namely, on the extraction of appropriate visual features that contain
relevant information about the spoken word sequence. In this paper, we concentrate on the latter.
We extract a visual region-of-interest (ROI) using a facial feature tracker. When tracking fails, the
resulting visual features hamper the performance of ASR systems. In our approach, we post-process
the resulting visual features for \goodness" and we discard sequences where poor tracking is de-
tected. Experiments indicate that visual noise pruning results in signi�cant improvements in the
performance of automatic speechreading.

Various visual features have been proposed in the literature for speechreading that, in general,
can be grouped into lip contour based and pixel based ones [3]. In the �rst approach, the speaker's
lip contours are extracted from the image sequence. A parametric or statistical lip contour model
is then obtained, and the model parameters are used as visual features. In the second approach,
the entire image containing the speaker's mouth is considered as informative for lipreading, and
appropriate transformations of its pixel values are used as visual features. In this paper, we follow
the second approach. Briey, our complete visual front-end consists of a facial feature tracker that
extracts the speaker's mouth region. Once this ROI is extracted, it is veri�ed for goodness with a
classi�er and appropriate visual features are extracted. For details on our novel visual front-end,
please see [13]. In [14], we analyzed the e�ects of audio noise on the performance of AV speech
recognition systems. In this paper, we focus on the e�ects of visual noise.

The paper is organized as follows. In Section , we detail our audio and video procesing. In Section
, we present our mixture model for visual noise pruning followed by experiments in Section .



SYSTEM DESCRIPTION

We have a exible architecture that permits extraction of di�erent audio and video features.
Similarly, our architecture permits di�erent integration strategies for these two modalities. We will
not focus on the integration aspects in this paper. For details on the various integration approaches
used, see [14]. In the experiments presented in this paper, we report on visual phonetic and visemic
classi�cation performance as our focus is to isolate the e�ects of visual noise in the overall system
performance. We now briey describe the audio and video front-ends used in our system.

Audio Processing

We extract 24-dimensional mel-cepstral coeÆcient feature vectors from the audio signal using
the standard techniques in speech recognition. To reduce dimensionality and capture dynamics, we
use LDA (linear discriminant analysis). Speci�cally, in addition to the current frame, we take four
previous and four succeeding audio frames and project them on to a 60 dimensional vector using
LDA. A more elaborate description of our audio processing front-end is detailed in [11].

Video Processing

We use Fisher discriminant and eigenspace based face detection approach to extract the face and
locate facial features from video [15]. In this approach, an image pyramid over the permissible scales
is used to search the image space for the possible face candidates. Every face candidate is given a
score based on several features like skin tone and similarity to a training set of face images using
Fisher discriminant analysis. Once the face has been found, an ensemble of facial feature detectors
are used to extract and verify the locations of the important facial features, including the lip corners
and centers. Subsequently, a size-normalized mouth image of size 45 � 30 pixels is extracted from
the face image centered around the lips.

Once a suitable ROI image is extracted and veri�ed (see Section for veri�cation details), we use
the novel pixel based visual front end for automatic speechreading, proposed in [13], that results in
improved recognition performance of spoken words or phonemes. The algorithm is a cascade of three
transforms applied to a 3-dimensional video region of interest that contains the speaker's mouth area.
The �rst is a typical image compression transform aiming at a high \energy", reduced-dimensionality
representation of the video data. In this work, principal component analysis (PCA) is used. The
second is a linear discriminant analysis (LDA) based data projection applied to a concatenation of
a small number of consecutive image transformed video data. The �nal data rotation is a maximum
likelihood linear transform (MLLT) that optimizes the likelihood of the observed data given the
traditional assumption of their class conditional Gaussian distribution with diagonal covariance [16].

All three steps, requires obtaining feature vector statistics from the ROI [13]. In the case of LDA
and MLLT, knowledge of data class membership is required [13, 16].

PRUNING TRACKING NOISE AND ROBUST ROI DETECTION

We have observed that the face tracking system occasionally fails to track the face in the video
sequence. This can be either due to mismatch between training and test conditions, or the candidate
face is unlike any of the training examples, implying inability of the face model to generalize. In
addition, the face tracking can also be poor, where the located face does not align accurately with
the actual face in the video stream. In poor tracking, the visual processing results in geometry errors
(e.g, nose tip marked as a lip) which gives rise to noise in the visual data. We note here that this
noise is di�erent from the signal noise (i.e, noise in video stream, per se). Figure 1, part (a) shows
some successfully tracked regions-of-interest and part (b) shows some typical face tracker errors.
Our experiments indicate that noisy visual data results in poor system performance. Therefore,
veri�cation techniques are needed to identify and prune potentially noisy tracking output.

Our approach to handling noisy visual data is to verify the output of the tracker and accept
only those sequences that pass the veri�cation stage. For veri�cation, we use a classi�er trained to
di�erentiate between lips and non-lips. This classi�er is a Gaussian mixture model (GMM) trained
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Figure 1: Successfully tracked ROI images in (a) and failures in (b)

on a small subset of PCA projections (typically 20-25 dimensions). As part of the pruning process,
we classify the extracted ROI projections in a sequence and consider only those sequences that have
a high percentage of \good" lips. In addition, we are currently integrating this classi�er with the
face tracker to identify and rectify geometry errors at the tracking stage.

Lip classi�cation

Each mixture model is a semi-parametric density model (shown in Equation (1) below) of a
particular observation class. Our lip classi�er is composed of two density models, one for lips and
one for non-lips. The likelihood of an observation vector y under the class � is speci�ed as

P (yj�) =

NcX

i=1

�ig(y;�i; �i) (1)

where y is the observation vector (in our case, M-dimensional PCA projection), g(y;�i; �i) is an
M-dimensional Gaussian density with a mean vector �i and diagonal covariance �i, and the �i are
the mixture parameters of the components satisfying

P
i
�i = 1. The GMM is completely speci�ed

by the class parameter vector � = f�i; �i; �ig; i = 1; : : : ; Nc. For each observation class (lips and
non-lips), we estimate a parameter vector � from the training examples using the Expectation-
Maximization (EM) algorithm. Classi�cation of a new observation vector y is taken as the class
with the higher likelihood.

In order to train the classi�er, we accumulated a small set of lip and non-lip images (50 lip images
and 36 non-lip images) for initial training. To simplify identi�cation of good ground truth images, we
adopted the following approach: We start with the bootstrapping set above and train a few di�erent
mixture models. Speci�cally, we trained with 20 and 25 PCA dimensions, and with one and two
mixtures per class resulting in 4 di�erent GMM classi�ers. We iteratively ran these classi�ers on
a test set and identi�ed classi�cation errors (i.e., lip classi�ed as non-lips and vice versa). These
ROIs which were incorrectly classi�ed were added to the appropriate training set and the classi�ers
were trained again. This procedure is akin to boosting in statistical learning literature. These
iterations were stopped when the test set errors started rising again (indicating over-training). Our
�nal classi�er was trained on 220 lip images and 200 non-lip images. Table 1 shows the classi�er
performance on the training set for the various mixture models that were used. For �nal integration
with the system, we selected the mixture model with 25 PCA dimensions and 2 mixtures per class.

Lip classi�er evaluation

The performance of the lip classi�er is presented in Table 2 below. The classi�er is implemented
as a 3 way classi�er (i.e., if the likelihood of neither of the two classes is higher than a threshold,
the classi�cation is marked as unknown). In Table 2, column 2 shows the human evaluated (ground-
truth) percentage of lips in the sequence and the next two columns show the percentage classi�cations
of the various classes. We tested the performance on 3 video sequences (labeled Seq1-3), each
approximately 8-11 seconds long (roughly translates to 800-1100 lip projections after interpolation



Seq PCA Gauss. True class Classif.
Lip Non Lip Non

Lips 20 1 100 0 68.0 18.0
Non Lips 20 1 0 100 11.4 75.5
Lips 20 2 100 0 89.5 1
Non Lips 20 2 0 100 .5 92.9
Lips 25 1 100 0 70 17
Non Lips 25 1 0 100 11.4 82.6
Lips 25 2 100 0 92.5 1.5
Non Lips 25 2 0 100 1.1 95.6

Table 1: Lip classi�er results for Training datasets

of video data from 30 Hz to 100 Hz to match the audio feature rate). For testing, we present
the results only for the best classi�er which in this case corresponds to 25 PCA dimensions and 2
gaussian mixtures per class.

Seq True Classi�cation (%)
Lip% Lip Non Lip

Seq1 100.0 96.0 3.7
Seq2 68.9 66.4 33.4
Seq3 36.5 35.8 63.9

Table 2: Lip classi�er results for Test datasets

We note here that in the context of this experiment, we are interested in an estimate of the
visual noise. For this purpose, it is adequate to get a lip classi�cation percentage that is close to
the true percentage of lips in the data. It is not necessary to consider the false alarm and false
reject numbers. We note here that in pruning the audio-visual data, we accept only those sequences
that have a percentage of lips greater than a set threshold. In this context, classifying non-lips as
unknown is acceptable and need not be considered as an error.

EXPERIMENTS

We have collected two multi-subject, continuous, large vocabulary, audio-visual databases, using
ViaVoiceTM training sentences. The �rst contains frontal video of the mouth region of 79 subjects
and consists of about 10 hours of speech, whereas the second contains full frontal face of 162 subjects
and consists of about 25 hours of speech. The video is captured at a resolution of 704 � 480 pixels
(interleaved), a frame rate of 30 Hz, and is MPEG2 encoded in the YUV422 format.

In this version of the paper, we report visual-only phonetic and visemic classi�cation experiments
on a subset of the 162-subject dataset, containing 82 subjects and 6045 utterances, split into a
training and test set of 5000 and 1045 sequences respectively. After applying the lip classi�er on the
\tracked" mouth region on both sets, we obtained 5 subsets of the data where the mouth region is
tracked with decreasing accuracy, as listed in Table 3.

To have equal amount of data in all experiments, we consider 2165 training and 429 test sequences
in all conditions, picked from their corresponding training and test supersets of Table 3 by random
sampling.

Given the input video, we consider a 45 � 30 sub-sampled, monochrome ROI image centered at
the subject's mouth and normalized for size. Visual features are extracted at 30 Hz using the three
stage cascade algorithm described earlier [13], namely a 24-dimensional PCA projection, followed
by LDA and MLLT. The PCA features are �rst interpolated to 100 Hz, so that they are aligned to
the audio front end features, obtained from the database audio stream. In addition, cepstral mean
subtraction (CMS) is applied element-wise to all features [5]. LDA is subsequently applied on the



Threshold Total = Train + Test

90% 2594 2165 429
80% 3167 2651 516
70% 3618 3026 592
60% 4013 3353 660
50% 4307 3587 720

Table 3: Dataset at various levels of visual pruning. Threshold corresponds to greater than speci�ed
percentage of ROI classi�ed as lips

Threshold LDA MLLT
TR / TS TR / TS

90% 22.71/21.64 23.63/22.78
80% 21.55/20.73 22.31/21.48
70% 21.20/21.23 21.86/21.73
60% 20.41/19.93 20.87/20.77
50% 19.25/18.75 19.66/19.04

Table 4: Phonetic classi�cation results (% correct) for the 5-GMM system. TR corresponds to
Training set performance and TS corresponds to Test set performance

vector consisting of 11 (or 15) consecutive 24-dim PCA-feature frames (at 100 Hz), projecting it
onto a 41-dimensional space. Finally, a 41 � 41 size MLLT matrix is used to \rotate" the feature
vector.

A phonetic alignment of the database frames into 52 phonetic classes is produced at 100 Hz using
the audio stream and a suitable audio-only hidden Markov model (HMM). The training set sentence
alignments are then used to train visual-only GMMs, based on the visual front end described above.

We use 52 mixture models, with 5, or 32, Gaussians each and the EM algorithm for training.
Phonetic classi�cation performance is computed by comparing the test set alignment labels based
on the audio-only HMM to their classi�cation based on the visual features and the corresponding
visual-only GMMs.

Phonetic classi�cation performance on the various sets are depicted in Tables 4 and 5, using 5-
mixture, and 32-mixture per class GMMs and the LDA applied on 11 PCA-feature frames. Notice
that, in general, the test set performance degrades, as the amount of \visual noise" increases. In
addition, visual features obtained by means of MLLT outperform the ones obtained by using LDA
only. Furthermore, our experiments indicate that using PCA only features (and their �rst and
second temporal derivatives) without LDA or MLLT, results in lower performance, for example in
the > 90% case, PCA-only results in 19.32 % phonetic classi�cation accuracy (using 5 mixtures), as
compared to the 22.78 % using MLLT. Therefore, we do not report PCA-only performance results
in this paper. Notice also, that the 32-GMM system signi�cantly outperforms the 5-GMM one.

Threshold LDA MLLT
TR / TS TR / TS

90% 27.19/23.29 28.54/24.17
80% 26.11/22.54 27.24/23.16
70% 24.42/21.43 26.28/22.72
60% 23.57/20.46 25.14/21.97
50% 22.83/19.50 24.59/21.20

Table 5: Phonetic classi�cation results for the 32-GMM system

We compare phonetic classi�cation accuracies for the �ve sets, using a 5-GMM system, but with
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Figure 2: Phonetic classi�cation performance of test set for 5-mixture GMMs vs 32-mixture GMMs,
using 11 temporal frames in part (a) and Phonetic classi�cation performance of test set for 11
temporal frames vs 15 temporal frames for 32-mixture GMMs in part (b)

the LDA applied on 15 consecutive PCA-feature frames, as opposed to the 11 frames considered in
Tables 4 and 5. Figure 2 part (a) compares the relative phonetic classi�cation performance of systems
with increasing model complexity and Figure 2 part (b) compares the relative performance with
increasing temporal window. It is clear that increasing the temporal window or model complexity
does result in higher performance. However, the degradation of system performance with \visual
noise" is consistent across all models. This underscores the need for identifying and compensating
for visual noise in automatic speechreading systems. Similarly, the choice of visual front-end is
important, as indicated by the superior performance of MLLT over LDA (and over PCA).

CONCLUSION AND FUTURE WORK

Using visual information for speech recognition is becoming an important topic in multimedia
content analysis and coding. In this paper, we presented some sources of visual noise, its e�ect on
system performance and approaches to prune this noise. It is clear that a systematic treatment
of visual noise is an important requirement for robust system performance. Our experiments also
indicate that choice of visual features is an important component of overall system performance {
notice that MLLT performs the best and also tends to be more robust to visual noise compared to
LDA. Our experiments indicate that while performance of automatic speechreading systems can be
boosted by judicious choice of visual front-end, a systematic treatment of visual noise is an important
component of a robust speechreading system.

We are currently integrating this pruning process into the visual feature extraction stage by
making veri�cation a part of the feature tracker. This we believe will result in better overall system
performance.
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