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ABSTRACT

We propose a three-stage pixel based visual front end for automatic
speechreading (lipreading) that results in improved recognition per-
formance of spoken words or phonemes. The proposed algorithm is
a cascade of three transforms applied to a three-dimensional video
region of interest that contains the speaker’s mouth area. The first
stage is a typical image compression transform that achieves a high
“energy”, reduced-dimensionality representation of the video data.
The second stage is a linear discriminant analysis based data pro-
jection, which is applied to a concatenation of a small number of
consecutive image transformed video data. The third stage is a data
rotation by means of a maximum likelihood linear transform. Such
transform optimizes the likelihood of the observed data under the
assumption of their class conditional Gaussian distribution with di-
agonal covariance. We apply the algorithm to visual-only 52-class
phonetic and 27-class visemic classification on a 162-subject, 7-
hour long, large vocabulary, continuous speech audio-visual dataset.
We demonstrate significant classification accuracy gains by each
added stage of the proposed algorithm, which, when combined, can
reach up to 27% improvement. Overall, we achieve a 49% (38%)
visual-only frame level phonetic classification accuracy with (with-
out) use of test set phone boundaries. In addition, we report im-
proved audio-visual phonetic classification over the use of a single-
stage image transform visual front end.

1. INTRODUCTION

Automatic speech recognition(ASR) by using the video sequence of
the speaker’s lips, namelyautomatic lipreading, or speechreading,
has attracted significant interest as a means of improving traditional
audio-only ASR [1]-[12]. Such an improvement depends on both
the audio and visual information fusion technique, as well as on
the visual front end, namely, on extracting appropriate visual fea-
tures which contain relevant speech information. Various such fea-
tures have been proposed in the literature that, in general, can be
grouped intolip contourbased andpixel based ones [1]. In the first
approach, the speaker’s lip contours are extracted from the image
sequence, a parametric or statistical lip contour model is obtained,
and the model parameters are used as visual features. In the second
approach, the entire image containing the speaker’s mouth is con-
sidered as informative for lipreading (region of interest- ROI), and
appropriate transformations of its pixel values are used.

In this paper, we concentrate on the visual front end for auto-
matic speechreading, and we investigate the pixel based approach
to it. Specifically, we propose a three-stage algorithm that consists
of a cascade of three transforms applied to the ROI data vector.
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The first stage is a typical image transform, such as thediscrete
cosine(DCT) [2]-[4], the discrete wavelet(DWT) [4], [12], [13],
and theKarhunen-Loève transform (KLT) (or, principal compo-
nent analysis-PCA) [2]-[9], that seeks data dimensionality reduc-
tion, through data compression. The second stage is alinear dis-
criminant analysis(LDA) data projection [2], [11], that seeks opti-
mal classification performance and further data dimensionality re-
duction. The third stage is amaximum likelihood linear transforma-
tion (MLLT) aimed at optimizing the observed data likelihood under
the assumption of their class conditional Gaussian distribution with
diagonal covariance [14]. The proposed algorithm is novel in two
aspects: First, MLLT has never before been used for speechreading,
and, second, both DCT and DWT have up to date been considered
as a one-step visual front end [2]-[4], [12].

The paper is structured as follows: The three algorithm stages
are discussed in Sections 2, 3, and 4, respectively. Specifics of all
components of our speechreading system are discussed in Section
5, and experimental results are presented in Section 6.

2. IMAGE TRANSFORMS FOR DATA COMPRESSION

Let us consider, for every video framet, a three dimensional re-
gion of interest (ROI), centered around the speaker’s mouth center,
(mt; nt), obtained as described in Section 5.1 (see also Fig. 1). The
(monochrome) ROI pixel values are placed into vector

xt
(I)  fV(m;n;k) : mt�bM=2c�m<mt+dM=2e ; (1)

nt�bN=2c�n<nt+dN=2e; t�bK=2c�k<t+dK=2e g ;

of length d(I) = MNK. We seek aD(I)� d(I)-dimensionallin-
ear transformmatrixP(I) = [P 1;:::; PD(I) ]>, such that the trans-
formed data vectoryt(I) = P

(I)xt
(I) contains most speechreading

information in itsD(I) � d(I) elements. To obtain matrixP(I), L
training examples are given, denoted byxl

(I), l = 1;:::;L .

2.1. Discrete Wavelet and Cosine Transforms

A number of linear,separable image transforms can be used in
place ofP(I). In this work, we consider both the discrete cosine
transform (DCT) [2]-[4], and the discrete wavelet transform (DWT)
implemented by means of the Daubechies class wavelet filter of ap-
proximating order 2 [4], [13], [15]. MatrixP(I) has as rows the
image transform matrixT rows that maximize theenergy

D(I)X

d=1

LX

l=1

< xl
(I); T >

jd
>2; where jd 2 f1;:::;d

(I)g ;

are disjoint,<� ; �> denotes vectorinner product, and �> denotes
vector or matrixtranspose.
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2.2. Principal Component Analysis

Principal component analysis (PCA) [2]-[9] achieves optimal data
compression, in the sense of minimum mean square error between
xt
(I) and its reconstruction based onyt(I). In our PCA implementa-

tion, we scale the data according to their inverse variance. Namely,
we compute the datameanandvarianceas

�d =
1

L

LX

l=1

xl;d
(I) ; and �2d =

1

L

LX

l=1

(xl;d
(I)��d)

2 ; d = 1;:::;d(I);

respectively, and thecorrelationd(I)�d(I) matrixR with elements

rd;d0 =
1

L

LX

l=1

(xl;d
(I) � �d)

�d

(xl;d0

(I) � �d0)

�d0

; for d ; d0= 1;:::;d(I):

We thendiagonalizethe correlation matrix asR=A�A> [15],
[16], whereA= [A1;:::; Ad(I) ] has as columns theeigenvectorsof
R , and� is a diagonal matrix containing theeigenvaluesof R .
Let theD(I) largest such eigenvalues be located at thej1;:::; jD(I)

diagonal positions. Given data vectorxt(I), we normalize it element-
wise asxt;d(I)  (xt;d

(I) � �d)=�d , and subsequently we extract its
feature vectoryt(I) = P(I)xt

(I), whereP(I)= [Aj1
;:::; Aj

D
(I)

]>.

3. LINEAR DISCRIMINANT DATA PROJECTION

In the proposed cascade algorithm, and in order to capture impor-
tant dynamicvisual speech information, linear discriminant analy-
sis (LDA) is applied to the concatenation ofJ consecutive image
transformed feature vectors

xt
(II) = [ y(I)>

t�bJ=2c
;:::; yt

(I)>;:::; y(I)>
t+dJ=2e�1

]>;

of lengthd(II) = D(I)J .
In general, LDA [2], [11], [14] assumes that a set ofclassesC

is a-priori given, as well as that the training set data vectorsxl
(II),

l = 1 ;:::; L , arelabeledasc(l) 2 C . LDA seeks a projectionP(II),
such that the projected training samplefP(II)xl

(II); l = 1 ;:::; L g
is “well separated” intoC . LetSW, SB be thewithin-class scatter
andbetween-class scattermatrices of the training sample, given by

SW =
X

c2jCj

Pr(c)�(c); SB =
X

c2jCj

Pr(c) (�(c)�� )(�(c)�� )>;

respectively. Above,Pr(c)=Lc=L , c 2 C , is the class empirical
probability mass function, whereLc = �L

l=1�
c

c (l) , and� ji = 1 , if
i=j ; 0 , otherwise. In addition, each class sample mean is

�(c) = [ �
(c)
1 ;:::; �

(c)

d(II)
]>; where �

(c)
d =

1

Lc

LX

l=1

� c

c (l) x
(II)

l;d ;

and each class sample covariance is�
(c), with elements given by

�
(c)

d;d0
=

1

Lc

LX

l=1

� c

c (l)(x
(II)

l;d � �
(c)
d ) (x(II)

l;d0
� �

(c)

d0
) ;

for d; d0 = 1;:::; d(II). Finally, � = �c2CPr(c)�
(c) is the total

sample mean. We subsequently compute thegeneralizedeigenval-
ues andright eigenvectors of the matrix pair (SB,SW) that satisfy
SBF = SWFD [11], [16]. Matrix F = [F 1;:::; F d(II) ] has as
columns the generalized eigenvectors. Let theD(II) largest eigen-
values be located at thej1;:::; jD(II) diagonal positions ofD. Then,
given data vectorxt(II), we extract its feature vector of lengthD(II)

as yt(II) = P(II)xt
(II) , whereP(II) = [F j1

;:::; F j
D
(II)

]>.

Figure 1: ROI extraction examples.Upper rows: Example video frames
from 8 database subjects, with detected facial features superimposed.Lower
row: Corresponding extracted mouth regions of interest.

4. MAXIMUM LIKELIHOOD DATA ROTATION

In difficult classification problems, such as large vocabulary contin-
uous speech recognition, many high dimensional Gaussian densities
are used to model the observation class conditional probability dis-
tribution. Due to lack of sufficient data, diagonal covariances are
typically assumed, although the data class observation vector co-
variance matrices�(c), c 2 C , are not diagonal. To alleviate this,
we employ the maximum likelihood linear transform (MLLT) algo-
rithm. MLLT provides anon-singularmatrixP(III) that “rotates”
feature vectorxt(III) = yt

(II), of dimensiond(III) = D(II), obtained
by the two first stages of the proposed cascade algorithm as dis-
cussed in Sections 2 and 3. The final feature vector is of length
D(III) = d(III), and it is derived asyt(III) = P(III)xt

(III).
MLLT considers the observation data likelihood at the original

feature space. The desired matrixP(III) is obtained as [14]

P
(III)= argmax

P
fdet(P)L

Y

c2C

(det(diag(P�(c)
P
>)))�Lc=2 g ;

wheredet(�) anddiag(�) denote matrixdeterminantanddiagonal,
respectively. Equivalently,

X

c2C

Lc(diag(P
(III)
�
(c)
P

(III)>))�1P(III)
�
(c) = L(P(III)>)�1 :

The latter can be solved numerically [14].

5. THE AUTOMATIC SPEECHREADING SYSTEM

5.1. Region of interest extraction

We use the statistical face tracking algorithm reported in [17] to first
estimate the face location, size, and orientation at each video frame,
and to subsequently locate a number of facial features. Five located
lip contour points are used to estimate the mouth center and its size
at every video frame. The mouth center estimate is smoothed over
neighboring frames using median filtering to obtain the ROI center
(mt; nt), whereas the mouth size estimate is averaged over each
utterance. A size normalized ROI is then extracted as in (1), with
M= N= 64 , andK=1 , in order to allow for fast DCT and DWT
implementation [15] (see also Fig. 1).
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P
(I) ! DCT DWT PCA

STAGE# GMM HMM GMM HMM GMM HMM

I (P(I) ) 27.31 37.94 28.01 37.37 26.88 37.28
II (LDA) 32.94 38.81 31.33 38.15 31.72 39.26
III (MLLT) 34.64 41.48 33.67 41.80 32.65 41.28

Table 1: Test set visual-only phonetic classification accuracy (%) using
each stage of the proposed algorithm and DCT, DWT, or PCA features at
the first stage. Both GMM and segmental based HMM classification are
reported (5 mixtures per GMM class or HMM state are used).

5.2. Cascade algorithm implementation

Stage I(image transform) is applied to each ROI vectorxt
(I) at a

rate of 60 Hz. To simplify subsequent LDA and MLLT training, as
well as bimodal (audio-visual) fusion, we interpolate the resulting
featuresyt(I) to the audio feature rate, 100 Hz. Furthermore, in order
to account for lighting and other variations, we applyfeature mean
normalization(FMN) by simply subtracting the feature mean com-
puted over the utterance lengthT , i.e.,yt(I)  yt

(I)��T
t0=1yt0

(I)=T .
When using Stage I as the sole visual front end, and in order to
capture visual speech dynamics, we augmentyt

(I) by its first and
second-order derivatives, each computed over a9-frame window
[4], [18]. In such case, we considerD(I)= 54 = 3� 18 .

At Stage II(LDA) and Stage III(MLLT), and in order to train
matricesP(II), P(III), we consider approximately 3,400 context de-
pendent sub-phonetic classes. We label vectorsxt

(II), xt(III), by means
of Viterbi forced segmentation[18], based on the audio channel and
an available audio-onlyhidden Markov Model(HMM). In the cur-
rent front end implementation, we useD(I)= 24, D(II)= D(III)=
41, andJ=15.

5.3. Phonetic classification

We consider 52 phoneme classes, and, for visual-only classification,
also 27visemeclasses, both listed in [9]. The training set utterance
alignments are used to bootstrap visual-onlyGaussian mixture mod-
els (GMMs), using theexpectation-maximization(EM) algorithm
[18]. The GMM class conditional probability is

Pr(ytjc) =

McX

m=1

wcmND( yt ; �cm ; �cm ) ; for all c 2 C ; (2)

wheremixture weightswcm are positive adding up to one,Mc de-
notes the number of class mixtures, andND(y;�; �) is theD–variate
normal distribution with mean� and diagonal covariance�.

Framelevel classification accuracy is calculated by comparing,
at each instance oft , the audio forced alignment class label to its
maximum-a-posteriori(MAP) class estimate, obtained as

ct = argmax
c2CfPr(ytjc)Pr(c)g : (3)

In (3), the smoothed class priorPr(c) = (Lc+1)=(L+jCj) , c 2 C,
is used.

Significantly superior frame classification accuracy is obtained,
if the class boundaries of the test utterances are assumed known
(segmentalapproach). In this case, we consider 52 phoneme (or, 27
viseme) class HMMs, each consisting of threestatesper class and
state conditional probabilities as in (2). Such HMMs are trained
using the EM algorithm [18]. MAP estimation becomes Viterbi de-
coding over each utterance phone segment [18].

VI-27 (G,H) VI-52 (G,H) AU (G,H) AV (G,H)

I 44.47 , 57.64 31.77 , 46.07 64.73 , 83.51
II 47.66 , 58.56 35.74 , 46.52 62.78 , 80.52 66.03 , 83.57
III 49.29 , 59.77 37.71 , 48.85 66.20 , 84.04

Table 2: Test set visual-only visemic (VI-27) and phonetic (VI-52) clas-
sification accuracy (%) using each stage of the visual front end and DCT
features. Audio-only (AU) and audio-visual (AV) phonetic classification ac-
curacy are also depicted (
A = 0:675, 
V = 0:325 are used in (4)). Both
GMM (G) and segmental based HMM (H) classification are reported (64
mixtures per GMM class or HMM state are used).

It is finally of interest to consider audio-visual phonetic classi-
fication. A number of classifier fusion techniques can be used [19].
In this work, we employ a simple algorithm that considers [12]

Score(yt
(AV)jc) = Pr(yt

(A)jc)
APr(yt
(V)jc)
V ; (4)

where
A; 
V � 0 , andyt= [ yt
(A)>; yt

(V)>]> denotes the concate-
nation of time synchronous audio and visual features. The audio
front end reported in [9] is used.

6. DATABASE AND EXPERIMENTS

We have been collecting a multi-subject, continuous, large vocab-
ulary, audio-visual database, using ViaVoiceTM training utterance
scripts. Currently, it consists of 162 subjects and close to 30 hours
of speech (15,350 utterances). The database contains full frontal
face color video of the subjects with minor face-camera distance
and lighting variations (see also Fig. 1). The video is captured at a
resolution of 704� 480 pixels (interleaved), a frame rate of 60 Hz,
and is MPEG2 encoded to about 0.5 MByte/sec. The audio is cap-
tured at 16 KHz, and it is time-synchronous to the video stream. For
the sake of faster experimentation, we randomly select 20 database
utterances per subject and randomly split them into 16 training and
4 test utterances per subject, thus creating amulti-subject2,592 ut-
terancetraining set (5.5 hours) and a 648 utterancetest set(1.4
hour).

We first compare the phonetic classification performance of the
various algorithm stages discussed in Sections 2-4. As shown in
Table 1, and regardless of the visual feature extraction method em-
ployed at Stage I (DCT, DWT, or PCA), using LDA (Stage II) re-
sults in significant accuracy improvement (20% in the DCT GMM
based classification case, for example). Using the additional MLLT
data rotation (Stage III) further improves performance (7% in the
DWT case). Both stages combined can account for up to 27% ac-
curacy improvement over the image transform only (Stage I) visual
front end (DCT GMM based classification case, for example).

Overall, the performance of each algorithm stage does not vary
significantly when using any of the three image transforms (DCT,
DWT, or PCA) considered in this paper. The DCT slightly outper-
forms the DWT and somewhat more PCA (34.64%, 33.67%, and
32.65% Stage III accuracy, respectively). Both DCT and DWT al-
low fast implementations, whereas PCA is computationally expen-
sive, given the large dimensionality of the mouth ROI typically re-
quired. Clearly therefore, DCT and DWT are preferable to the use
of PCA.

In Table 2, we report improved visual-only classification accu-
racy using a classifier with 64 mixtures per GMM class or HMM
state. Such a system achieves a 48.85% segmental based (HMM)
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Figure 2:Visual-only phonetic classification accuracy using a DCT based
visual front end, as a function of: (a) number of mixtures per GMM or
HMM phone class; (b) temporal window sizeJ at Stage II (GMM only,
with or without prior in (3)).

visual-only phonetic classification accuracy. This corresponds to
59.77% visemic classification accuracy. For completeness, audio-
only and audio-visual phonetic classification accuracies are also re-
ported. Notice that both Stages II and III improve audio-visual pho-
netic classification over Stage I. Indeed, the reported 80.52% clean
audio-only accuracy improves to 83.51%, 83.57%, and 84.04%,
when Stages I, II, and III of the visual modality front end are re-
spectively used to augment the audio modality by means of (4).

Classification using various size GMM/HMM systems is ad-
dressed in Fig. 2(a). Clearly, larger systems perform better, but the
relative performance of the three algorithm stages remains mostly
unchanged. Fig. 2(b) depicts the dependence of phonetic classifica-
tion accuracy on the sizeJ of the temporal window used to capture
the visual speech dynamics at Stage II.1 Wider temporal windows
improve performance, however at an increased computational cost.

Finally, it is worth reporting that feature mean normalization
(FMN) improves classification performance. Indeed, DCT feature
based Stage I classification accuracy without FMN is only 25.99%,
compared to 27.31% when FMN is applied (see also Table 1). Fur-
thermore, bypassing Stage II of the algorithm degrades performance:
A DCT based Stage I, followed by MLLT, results to a 31.86% ac-
curacy, as compared to 34.64%, obtained when all three stages are
used. Clearly therefore, the proposed three-stage cascade approach
is superior.

7. SUMMARY

We propose a new pixel based visual front end for automatic recog-
nition of visual speech. It consists of a discrete cosine, or wavelet,
transform of the video region of interest, followed by a linear dis-
criminant data projection, and a maximum likelihood based data
rotation. We have demonstrated that all three stages contribute to
accuracy gains in phone classification that can reach up to 27% im-
provement, as compared to an image transform only based visual
front end. Overall, we achieve a 49% (38%) visual-only frame level
phonetic classification accuracy with (without) use of test set phone
boundaries. In addition, the proposed algorithm results in improved
audio-visual phonetic classification.

1For the sake of clarity, we also depict GMM classification using a uni-
form prior in (3).
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