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ABSTRACT The first stage is a typical image transform, such asdikerete
0sine(DCT) [2]-[4], the discrete wavele(DWT) [4], [12], [13],
_ﬁd theKarhunen-LeVve transform (KLT) (or, principal compo-

a cz_iscade_ of three transforr_ns applied to a three-dimensional vic_i erinant analysigLDA) data projection [2], [11], that seeks opti-
region of |nte_rest_that contains the_ speaker's mouth area. The f'. | classification performance and further data dimensionality re-
stage is a typical Image compression transform that achu_aves a hIguction. The third stage ismaximum likelihood linear transforma-
Tehnergy ' rrfjdutced-(ijlmel?rflor:aélity ;ierr?irssr?tntii\u?n ?f Lhe VIc(iij tdatﬁbn (MLLT) aimed at optimizing the observed data likelihood under
['he second stage Is a finear disc ant analysis based data pos assumption of their class conditional Gaussian distribution with
jection, which is applied to a concatenation of a small number ot.

consecutive image transformed video data. The third stage is a d agonal covariance [14]. The proposed algorithm is novel in two
: g ) oo - 9 ects: First, MLLT has never before been used for speechreading,
rotation by means of a maximum likelihood linear transform. Suc

transform optimizes the likelihood of the observed data under th;nd‘ second, both DCT and DWT have up to date been considered

assumption of their class conditional Gaussian distribution with B i aT(I)qr;e-s;egrvifl;ilrluféto;tezngs[i])ﬁg\]& £12-|]-h e three algorithm stages
agonal_covariance. we e}pply_the algc_Jr_ithr_n to visual-only 52.'C|aS§re diSClE)SSped in Sections 2, 3, and 4,. respectively. gSpecifics ng] all
phonetic and 27-class visemic _classn‘|cat|on on a_leg-subject, mponents of our speechreading system are discussed in Section
hour long, large vocabulary, continuous speech audio-visual datasg -and experimental results are presented in Section 6

We demonstrate significant classification accuracy gains by each '

added stage of the proposed algorithm, which, when combined, can

reach up to 27% improvement. Overall, we achieve a 49% (38%) 2. IMAGE TRANSFORMS FOR DATA COMPRESSION

visual-only frame level phonetic classification accuracy with (with- . . . .
out) use of test set phone boundaries. In addition, we report ifkEt US consider, for every video frante a three dimensional re-

proved audio-visual phonetic classification over the use of a singlgion Of interest (ROI), centered around the speaker’s mouth center,
stage image transform visual front end. m¢, nt ), obtained as described in Section 5.1 (see also Fig. 1). The

(monochrome) ROI pixel values are placed into vector

1. INTRODUCTION zf” « {V(mnk): me—[MR| <m<m+[M2], 1)

Automatic speech recognitigASR) by using the video sequence of = N2} sn<m+ V2], ¢~ (BRI <k <t +E2T )
the speaker’s lips, nameButomatic lipreadingor speechreading of lengthd® = MNK. We seek aD™ x d"-dimensionallin-
has attracted significant interest as a means of improving traditiongdr transformmatrix P® = [P ..., ED(I)]T, such that the trans-
audio-only ASR [1]-[12]. Such an improvement depends on botformed data vectory{” = P™z{" contains most speechreading
the audio and visual information fusion technique, as well as offormation in itsD™® < d™ elements. To obtain matriR®, I,
thevisual front end namely, on extracting appropriate visual fea-training examples are given, denoteday’, I = 1,....L .

tures which contain relevant speech information. Various such fea- -

tures have been proposed in the literature that, in general, can #d- Discrete Wavelet and Cosine Transforms

grouped intdip contourbased angixelbased ones [1]. Inthe first o hymper of linear,separable image transforms can be used in
approach, the speaker’s lip contours are extracted from the imagg,ce of P®. In this work, we consider both the discrete cosine
sequence, a parametric or statistical lip <_:ontour model is obtainggls \cform (DCT) [2]-[4], and the discrete wavelet transform (DWT)
and the model parameters are used as visual features. In the Secf?ﬁ‘ﬂlemented by means of the Daubechies class wavelet filter of ap-

approach, the entire image containing the speaker’'s mouth is Coﬁ'oximating order 2 [4], [13], [15]. Matri®® has as rows the
sidered as informative for lipreadinge@ion of interest ROI), and image transform matris” rows that maximize thenergy
appropriate transformations of its pixel values are used.

In this paper, we concentrate on the visual front end for auto- b L
matic speechreading, and we investigate the pixel based approach Z Z< ﬂ(l), 7_']2 >?, where Jjd € {1,...,d“)},
to it. Specifically, we propose a three-stage algorithm that consists d=1 1=1

of a cascade of three transforms applied to the ROI data vect%rr.e disjoint.< s , > denotes vectanner product and e denotes
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2.2. Principal Component Analysis

Principal component analysis (PCA) [2]-[9] achieves optimal dat
compression, in the sense of minimum mean square error betwe

z{" and its reconstruction based gff’. In our PCA implementa-
tion, we scale the data according to their inverse variance. Name
we compute the datmeanandvarianceas

L L
_IE:(I 2_12 a 2 _ o0
Ha = Z l l'[,(}, and Oq = Z l (zl,ti_)ud) ) d= 17"'7d }
=1 =1

respectively, and theorrelationd™x d™® matrix R with elements

L
1 x(Q — a:(ICZ/— ’
Tdad’:fz( td = pa) (@id — par)
=1

od
We thendiagonalizethe correlation matrix aR=AAA" [15],
[16], whereA =[A4,,..., A,1)] has as columns theigenvectorof
R, and A is a diagonal matrix containing theigenvalueof R .
Let the D™ largest such eigenvalues be located atgthe., j,m)
diagonal positions. Given data vectef”, we normalize it element-
wise aszdd « (zd4 — pa)/oq, and subsequently we extract its

feature vectoy(” = PMz{", whereP"'=[A4, ... A, 1"
L =t 1 Tp (1)

, for d,d' =1,...,d".

agqr

3. LINEAR DISCRIMINANT DATA PROJECTION

In the proposed cascade algorithm, and in order to capture imp
tantdynamicvisual speech information, linear discriminant analy
sis (LDA) is applied to the concatenation &fconsecutive image
transformed feature vectors

I nT nT nT
il?_t():[() (1) ()

Ye Lasepo¥t o Yara/2
of lengthd™ = D™ J.

In general, LDA [2], [11], [14] assumes that a setotdssesC
is a-priori given, as well as that the training set data vectgfs,
I=1,..,L,arelabeledasc(l) € C. LDA seeks a projectio™,
such that the projected training samgl® ™z, 1 =1,...,L}
is “well separated” int@ . Let Sw, Sg be thewithin-class scatter
andbetween-class scattenatrices of the training sample, given by

Sw=Y Pr(©)=®, Sg=> Pr(c) (s 9—p)(n“-p)
celC| celC]

respectively. AbovePr(c)=L./L,c € C, is the class empirical

probability mass function, wherb, = Eleécc(l) ,andd/ =1, if

i=j; 0, otherwise. In addition, each class sample mean is

T
a1l

T

I

(c)

© = ().

L
@ 1T ©_ 1 ¢ _an

. where = — E Oo() T
14 7/&(11)] ) Ky . 2 (OEIRE

and each class sample covariancE(, with elements given by

L
1
= L_c Z Jcc(l)(
=1

for d,d’ = 1,....,d™. Finally, g = ScecPr(c) p'® is the total
sample mean. We subsequently computegémeeralizeceigenval-
ues andight eigenvectors of the matrix paif,Sw) that satisfy
SgF = SwFD [11], [16] Matrix F = [El,...,Ed(n)] has as
columns the generalized eigenvectors. Let & largest eigen-
values be located at the,..., j,, 1) diagonal positions aD. Then,
given data vectoz{"", we extract its feature vector of lengh™"

asy{™ = PMg{™  whereP" = [Ejl s (H)]T
I - D

()

(c)
Oq.ar

—_— (11) (©)

()
Ty ar — Par
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)( )

timedia and Expo, New York, val. I1, pp. 1097-1100, 2000

L T
i

Figure 1: ROI extraction examplesUpper rows Example video frames
from 8 database subjects, with detected facial features superimpaseer
row: Corresponding extracted mouth regions of interest.

4. MAXIMUM LIKELIHOOD DATA ROTATION

In difficult classification problems, such as large vocabulary contin-
uous speech recognition, many high dimensional Gaussian densities
are used to model the observation class conditional probability dis-
tribution. Due to lack of sufficient data, diagonal covariances are
t}(_pically assumed, although the data class observation vector co-

Yariance matricex(©, ¢ € ¢, are not diagonal. To alleviate this,

we employ the maximum likelihood linear transform (MLLT) algo-
rithm. MLLT provides anon-singularmatrix P that “rotates”
feature vectow (™" = y{™, of dimensiond™ = D", obtained
by the two first stages of the proposed cascade algorithm as dis-
cussed in Sections 2 and 3. The final feature vector is of length
DD = gD and itis derived ag/{"™" = PM ",

MLLT considers the observation data likelihood at the original
feature space. The desired maft&"" is obtained as [14]

P = arg max p {det(P)" [ ] (det(diag(P=OPT)))"*/?},

ceC

wheredet(e) anddiag(e) denote matrixdeterminananddiagonal
respectively. Equivalently,

Z Lc(diag(P(III)E(C)P(HI) T))—l P(HI)E(C) — L(P(III)T)—I )
ceC

The latter can be solved numerically [14].

5. THE AUTOMATIC SPEECHREADING SYSTEM

5.1. Region of interest extraction

We use the statistical face tracking algorithm reported in [17] to first
estimate the face location, size, and orientation at each video frame,
and to subsequently locate a number of facial features. Five located
lip contour points are used to estimate the mouth center and its size
at every video frame. The mouth center estimate is smoothed over
neighboring frames using median filtering to obtain the ROI center
(m¢, nt), whereas the mouth size estimate is averaged over each
utterance. A size normalized ROI is then extracted as in (1), with
M= N=64,andK=1, in order to allow for fast DCT and DWT
implementation [15] (see also Fig. 1).
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PO - DCT DWT PCA | [ VI27T(GH) [ VI5B2(GH) [ AUGH) | AV(GH) ]
STAGE] || oMM [ HvM [ GMM [ HMM [[ GMM | HMM I | 44.47 ,57.64] 31.77, 46.07 64.73, 83.51
TP 2731 37.041] 28.01] 37.37 | 26.88] 37.28 Il | 47.66,58.56| 35.74,46.52| 62.78,80.52[ 66.03, 83.57
Il (LDA) 32.94| 38.81| 31.33| 38.15| 31.72| 39.26 I | 49.29,59.77]| 37.71,48.85 66.20, 84.04
I (MLLT) || 34.64 | 41.48|| 33.67 | 41.80 || 32.65 | 41.28

Table 2: Test set visual-only visemic (VI-27) and phonetic (VI-52) clas-
Table 1: Test set visual-only phonetic classification accuracy (%) usin ification accuracy (%) using eaCh stage of the V|sua|_ front e_”_d apd DCT
each stage of the proposed algorithm and DCT, DWT, or PCA features tures. Audio-only (AU) and audio-visual (AV) phonetic classification ac-

the first stage. Both GMM and segmental based HMM classification afgracy are also depicted{ = 0.675, yv = 0.325 are used in (4)). Both
reported (5 mixtures per GMM class or HMM state are used). GMM (G) and segmental based HMM (H) classification are reported (64
mixtures per GMM class or HMM state are used).

5.2. Cascade algorithm implementation o ] ) o . )
It is finally of interest to consider audio-visual phonetic classi-

Stage I(image transform) is applied to each ROI vecigt’ at a fication. A number of classifier fusion techniques can be used [19].
rate of 60 Hz. To simplify subsequent LDA and MLLT training, as|n this work, we employ a simple algorithm that considers [12]

well as bimodal (audio-visual) fusion, we interpolate the resulting

featureg/i" to the audio feature rate, 100 Hz. Furthermore, in order Score(yi™|c) = Pr(yi™|c)™ Pr(y:¥’|c)", (4)

to account for lighting and other variations, we apfggture mean - o o

normalization(FMN) by simply subtracting the feature mean com-wherey,, vy > 0, andy; = [y Ty T]T denotes the concate-
puted over the utterance lendfhi.e.,yi” < yi”—S{_,y/"/T.  nation of time synchronous audio and visual features. The audio
When using Stage | as the sole visual front end, and in order tfont end reported in [9] is used.

capture visual speech dynamics, we augmght by its first and
second-order derivatives, each computed ovérfeame window
[4], [18]. In such case, we consid&r® = 54 = 3 x 18.

At Stage 1I(LDA) and Stage [1/(MLLT), and in order to train We have been collecting a multi-subject, continuous, large vocab-
matricesP ", P"™, we consider approximately 3,400 context de- == 9 ~Subject, ¢ uous, farg
ulary, audio-visual database, using ViaVdite training utterance

i, i (111)
pendent sub-phonetic classes. We label veatfif§ o4, by means scripts. Currently, it consists of 162 subjects and close to 30 hours

of Viterbi forced segmentatigi8], based on the audio channel andof speech (15,350 utterances). The database contains full frontal

an available audio-onljidden Markov Mode{HMM). In the cur- ) ) : . .
rent front end implementation, we uf® — 24, D™ — D — face color video of the subjects with minor face-camera distance

41 andJ =15 and lighting variations (see also Fig. 1). The video is captured at a
' ' resolution of 704x 480 pixels (interleaved), a frame rate of 60 Hz,

] o and is MPEG2 encoded to about 0.5 MByte/sec. The audio is cap-

5.3. Phonetic classification tured at 16 KHz, and it is time-synchronous to the video stream. For

We consider 52 phoneme classes, and, for visual-only classificatidR€ Sake of faster experimentation, we randomly select 20 database
also 27visemeclasses, both listed in [9]. The training set utterancé/tiérances per subject and randomly split them into 16 training and
alignments are used to bootstrap visual-dBBussian mixture mod- 4 test utterances per subject, thus creatinguéti-subject?,592 ut-

els (GMMs), using theexpectation-maximizatio(EM) algorithm ~ terancetraining set(5.5 hours) and a 648 utterantest set(1.4

[18]. The GMM class conditional probability is hour). _ o
We first compare the phonetic classification performance of the

Me various algorithm stages discussed in Sections 2-4. As shown in
Pr(ytc) = Z Wem ND (Yt ; pem , 0em ), forallc € C, (2)  Table 1, and regardless of the visual feature extraction method em-
m=1 ployed at Stage | (DCT, DWT, or PCA), using LDA (Stage II) re-
sults in significant accuracy improvement (20% in the DCT GMM
based classification case, for example). Using the additional MLLT
normal distribution with meap and diagonal covariange data rotation (Stage Ill) further_improves performance (7% in the
Framelevel classification accuracy is calculated b}7 comparingEWT cz_ase). Both siages fr? mblned tcan a]}ccount lfor;tp to |27% acl-
at each instance df, the audio forced alignment class label to its uracy improvement over the image transform only (Stage I) visua

maximum-a-posteriofMAP) class estimate, obtained as front end (DCT GMM based classification case, for example).
P ' Overall, the performance of each algorithm stage does not vary

¢t = argmax o {Pr(y:|c) Pr(c)}. (3) significantly when u_sing any of_the three image tran_sforms (DCT,
- DWT, or PCA) considered in this paper. The DCT slightly outper-
In (3), the smoothed class priér(c) = (L.+1)/(L+|C|),c € C, forms the DWT and somewhat more PCA (34.64%, 33.67%, and
is used. 32.65% Stage lll accuracy, respectively). Both DCT and DWT al-
Significantly superior frame classification accuracy is obtainedpw fast implementations, whereas PCA is computationally expen-
if the class boundaries of the test utterances are assumed knosie, given the large dimensionality of the mouth ROI typically re-
(segmentaapproach). In this case, we consider 52 phoneme (or, 2juired. Clearly therefore, DCT and DWT are preferable to the use
viseme) class HMMs, each consisting of thetatesper class and of PCA.
state conditional probabilities as in (2). Such HMMs are trained In Table 2, we report improved visual-only classification accu-
using the EM algorithm [18]. MAP estimation becomes Viterbi de+acy using a classifier with 64 mixtures per GMM class or HMM
coding over each utterance phone segment [18]. state. Such a system achieves a 48.85% segmental based (HMM)

6. DATABASE AND EXPERIMENTS

wheremixture weightsw.,, are positive adding up to on@/. de-
notes the number of class mixtures, aviely; ., o) is the D—variate
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111 - PRIOR (3)
1 - HMM
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-

11 - PRIOR (3)

111 - NO PRIOR

[1]

11 - NO PRIOR

PHONETIC ACCURACY (%)
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TEMPORAL WINDOW SIZE, J

(2]

MIXTURES PER CLASS

Figure 2:Visual-only phonetic classification accuracy using a DCT based [3]
visual front end, as a function of: (a) number of mixtures per GMM or
HMM phone class; (b) temporal window size at Stage Il (GMM only,

with or without prior in (3)).

[4]
visual-only phonetic classification accuracy. This corresponds to
59.77% visemic classification accuracy. For completeness, audio-
only and audio-visual phonetic classification accuracies are also rel]
ported. Notice that both Stages Il and Il improve audio-visual pho-
netic classification over Stage I. Indeed, the reported 80.52% clean
audio-only accuracy improves to 83.51%, 83.57%, and 84.04%,[6]
when Stages |, II, and 1lI of the visual modality front end are re-
spectively used to augment the audio modality by means of (4).

Classification using various size GMM/HMM systems is ad-
dressed in Fig. 2(a). Clearly, larger systems perform better, but thg7]
relative performance of the three algorithm stages remains mostly
unchanged. Fig. 2(b) depicts the dependence of phonetic classificds]
tion accuracy on the sizé of the temporal window used to capture
the visual speech dynamics at Stagé Wider temporal windows  [9]
improve performance, however at an increased computational cost.

Finally, it is worth reporting that feature mean normalization
(FMN) improves classification performance. Indeed, DCT featur
based Stage | classification accuracy without FMN is only 25.99% ,10]
compared to 27.31% when FMN is applied (see also Table 1). Fur-
thermore, bypassing Stage Il of the algorithm degrades performan%ﬁ]
A DCT based Stage |, followed by MLLT, results to a 31.86% ac-
curacy, as compared to 34.64%, obtained when all three stages are
used. Clearly therefore, the proposed three-stage cascade appropeh
is superior.

(13]

7. SUMMARY [14]

We propose a new pixel based visual front end for automatic recog-
nition of visual speech. It consists of a discrete cosine, or Waveleflg,
transform of the video region of interest, followed by a linear dis-
criminant data projection, and a maximum likelihood based data
rotation. We have demonstrated that all three stages contribute [ts]
accuracy gains in phone classification that can reach up to 27% im-
provement, as compared to an image transform only based visuaf)
front end. Overall, we achieve a 49% (38%) visual-only frame level
phonetic classification accuracy with (without) use of test set phone
boundaries. In addition, the proposed algorithm results in improved-8]

audio-visual phonetic classification.
[19]

LFor the sake of clarity, we also depict GMM classification using a uni-
form prior in (3).
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