
Programmable Logic DesignLine > Design Center

How to implement a digital oscilloscope in Structured ASIC fabric

By Mircea Moldovan, Dan Nicula, and Traian Tulbure, eASIC Corporation

Page 2 of 3

Programmable Logic DesignLine
(07/12/2006 7:07 PM EDT)

The eScope's acquisition part can work with four different trigger types as
specified through 2-bit hfTriggerType_i input from the hfif module. These four
types are as follows (and as illustrated in Fig 5:

• Trigger on positive edge.
• Trigger on negative edge.
• Trigger on positive pulse.
• Trigger on negative pulse.

5. Trigger methods: (a) positive edge, (b) negative edge,
(c) positive pulse, and (d) negative pulse.

Valid samples are packed into 96-bits words and are written into memory
using the OCP protocol. Each channel has a separate address counter. When a
write request occurs, the proper counter is selected based on the acquisition
mode. The entire memory is managed as illustrated in Fig 6.

http://www.pldesignline.com/;jsessionid=V50UFMXZWMQZIQSNDLRSKHSCJUNN2JVN
http://www.pldesignline.com/;jsessionid=V50UFMXZWMQZIQSNDLRSKHSCJUNN2JVN
http://www.pldesignline.com/howto/;jsessionid=V50UFMXZWMQZIQSNDLRSKHSCJUNN2JVN

6. Memory management: (a) single and interleaved sampling mode,
and (b) double channel acquisition mode.

The wave generator path

The main on-chip memory is shared between acquisition and wave generator
functions. User defined samples can be uploaded into the wave generator
memory. Once this is done, the wave generator outputs this signal at a
frequency selected by the user.

The wave Generator output path is formed by two modules: waveGen and
dacOutput. The role of the waveGen module is to generate OCP read
commands to memory and transfer the received 96-bits data words to the
dacOutput module. The transfers are done using OCP protocol synchronized
to the scClk4x_i clock.

The dacOutput module receives data from the waveGen module and sends it
to the DAC outputs. The dacOutput module synchronizes the data from the
scClk4x_i clock to the wgClk_i using asynchronous FIFO memories. These
FIFOs are 96-bit wide by 32-locations deep. The FIFO memory is created using
the dual-port RAM memory that is available throughout the eASIC
programmable ASIC logic fabric.

Each 96-bit data word is sent out to the DAC on a 12-bit interface over (8 x
hfSampleWidth_i) consecutive wgClk_i clock periods. Each sample is held on
DAC input a for hfSampleWidth_i periods of . This mechanism implements a
simple frequency divider for the waveform generator output. The frequency
divider parameter (hfSampleWidth_i) is written in the eScope control registers.

Memory requests from the waveGen module are made by an embedded FSM
sequencer that issues memory requests when space is available in the FIFO
memories.

The functional scenario

All accesses to eScope are made using a GUI in conjunction with the EZ-USB
driver procedures, which are summarized as follows:

• The write procedure configures hfif registers by specifying register
address on address bus and also by specifying control signals.

• The read procedure gets data from hfif registers by specifying register
address on address bus and also by specifying control signals.

• The burst write procedure stores samples in wave generator memory
area by specifying samples on data bus and also by specifying control
signals. hfif module manages the address.

• The burst read procedure gets samples from eScope acquisition
memory area by specifying control signals. hfif module manages the
address.

Using these four procedures, the application environment is programmed to
support acquisitions and wave generator operations. The acquisition path
functional scenario is as shown in Fig 7.

7. The acquisition path functional scenario.

By comparison, the wave generator path functional scenario is as follows:

• Setup register configuration using write procedure.
• Burst write wave generator samples into memory.
• Start wave generator using write procedure.
• Run.

The simulation environment

The simulation environment is as illustrated in Fig 8. The simulation bench
contains an eScope instance, which includes logic (instantiated in
eScopeLogic), a clock signals generator (in eScopeClk), pad instances (in
eScopePads); ADC and DAC instances, an EZ-USB interface called
ez_usb_dummy and two additional modules that generate reference clock
(clk_gen) and reference reset (reset_gen) signals. An ezusb.h file is included
which describes the functionality of EZ-USB interface. This file programs the
design with different functional scenarios.

8. The eScope simulation environment.
(Click this image to view a larger, more detailed version)

The ADC modules used for simulation contains a memory for each channel
from which samples are read. These memories are loaded from initialization
files. Each sample is multiplied by a gain parameter to amplify the signal sent
to the eScope inputs. The DAC module receives data from wave generator into
a file for analysis.

The ez_usb_dummy module implements four tasks ("procedures") for
accessing eScope: write, read, burst write and burst read as previously
described.

Because eScope operation is highly configurable, it isn"t possible to simulate
all operating conditions. Operating conditions were created by initializing each
register with one of four possible values: low limit value, high limit value, and
two intermediate values. A 15-bit number is created using a seeded random
function generator. Groups of bits from this number are associated with
registers their initialization value for a particular simulation

Sine, cosine, and complex waveforms were used as test signals during
simulation, and the simulations were partitioned into 3 types:

1. Tests which determine if a trigger event is correct using Verilog simulator
assertions.

2. Tests which check if the acquired data matches the original "generated"
data from the ADCs. The sampled signal is transferred over the USB
interface to a virtual host and checked against the original data signal
using a MATLAB script.

3. Tests which check that the wave generator outputs match the original
data uploaded in wave generator memory, also using a MATLAB script.

