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As  the  development  costs  for  Standard-Cell  design  in  deep-submicron 
technology approach the multi-million dollar level, it is inevitable that some 
designers  will  shift  to  an alternative  solution that  can reduce development 
costs, even if there is some penalty in overall cost or performance. 

Structured-ASICs  have emerged as this  alternative to  standard-cell  design. 
Bridging the gap in performance and cost between Standard Cell ASICs and 
high-density  FPGAs,  Structured  ASICs  maintain  the  best  aspects  of  both 
technologies.  Designers  can  achieve  quicker  time-to-market  and  lower 
development  costs  than  standard  ASICs  while  also  achieving  higher 
performance and lower unit costs than FPGAs. 

A subset of the Structured ASIC category is the Programmable ASIC, which is 
a  Via-customizable,  rather  than  metal-layer  customized.  In  Programmable 
ASIC arrays, all metal layers are standard/pre-fabricated, out of which four 
layers are used for efficient segmented routing, and only a single via-layer is  
customized to implement a design. 

The following case study describes the implementation of a digital Oscilloscope 
on the eASIC Programmable ASIC fabric.  This design is  dubbed eScope.  It  
includes a two-channel digital sampling oscilloscope and an arbitrary waveform 
generator in a single USB-powered module. 

eScope was implemented on a 130nm Programmable ASIC device. The chip 
includes the digital logic (sample buffer memory interpolating digital trigger 
logic, waveform output buffer memory, data sequencers, and USB IO interface 
logic) and interfaces to external analog circuitry and USB transceiver logic. A  
single on-board 80MHz oscillator drives the on-chip PLL clock generators to  
create separate clock domains for each digital input and output channel as well  
as for the USB IO channel. 

The eScope is connected to a PC through USB. A graphical user interface (GUI) 
on  the  PC  is  used  to  view  and  process  the  acquired  data.  The  following 
discussions detail the eScope implementation. 

Overview

The eScope is a PC-based digital sampling oscilloscope. PC-based oscilloscopes 
offer real cost savings over desktop oscilloscopes. One can use the existing 
large color display, fast processor, and large disk storage of the PC instead of  
having to buy a stand-alone oscilloscope. 
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Digital  sampling  oscilloscopes  use  the  equivalent-time  sampling  method  to 
capture  and  display  signal  samples.  Sampling  oscilloscopes  can  measure 
signals up to an order of magnitude faster than real-time oscilloscopes. As 
such,  these  oscilloscopes  are  ideal  tools  for  capturing  and  characterizing 
computer, datacom and telecom signals. As shown in Fig 1, the eScope system 
requires only the eScope board and a host computer. 

1. The eScope system.

The eScope architecture

The eScope design is implemented using nine sub-modules; it employs the 
Open  Core  Protocol  (OCP)  to  interconnect  a  common  shared  memory  to 
various data access ports. The sub-modules are as follows: 

• clkGen: clock/reset generator for eScope. 
• adcInput: synchronizers for the data samples from ADC. 
• dacOutput: FIFO synchronizers for the waveform data to DAC. 
• trigGen: trigger generator includes an OCP initiator port. 
• waveGen: waveform generator logic includes an OCP initiator port. 
• hostIf: USB module host interface includes an OCP initiator port. 
• sampleMem: block memory shared for storing data samples and wave 

generator data. 
• ocpMerge: 3:1 combinatorial OCP merge. 
• ocp2mem: OCP to memory interface converter, includes an OCP target  

port. 

The sub-modules interconnections are as shown in Fig 2. 



2. The eScope"s internal architecture.

The acquisition path

The acquisition path is implemented by three modules:  clkGen,  adcInput, 
and trigGen. The clock generator (clkGen) creates the clock and reset signals 
for each clock domain on the chip. eScope performs acquisition on the scClk4x 
signal and waveform generation on wgClk, both running at 210 MHz. Other on-
chip clocks include ezClk (24 MHz) and hfClk (48 MHz). 

The adcInput module receives 12-bit data samples from the ADCs are packs 
them into 96-bit width words. These words are sent to the trigGen module. 
Also, the time base is implemented in this module. 

12-bit  data  from  the  ADCs  (ch1Data_i  and  ch2Data_i)  are  generally 
transferred to memory as parallel data streams. When eScope is configured for  
double sampling mode, the sample clocks between channels are offset by 180 
degrees and the data from both channels is interleaved and sent to memory. 
Samples  are  propagated  forward  based  on  triggering  and  the  16-bit  
hfFreqDiv_i parameter. This parameter specifies how many data samples are 
preserved from the ADC data streams. The time base is implemented based on 
the following formula: 

No_sample * T_sampled * (hfFreqDiv_i + 1) = No_divisions * 
Time/division



3. Packing data into 96-bits words: (a) single channel mode,
(b) double channel mode, and (c) double sampling mode.

The  trigGen module  implements  all  trigger  logic  controlled  on  acquisition 
parameters.  96-bit  width  words  are  written  in  memory  using  the  OCP 
interconnect channels. 

The trigger logic operates according to sequencing as presented in Fig 4. A 1-
bit  signal  hfStartAcq_i  created  by  hfif  for  one  clock  period,  initializes  the 
trigger logic. A 1-bit signal hfEndWindow_o returned to hfif indicates the end 
of an acquisition. During an acquisition period, the aqPend signal is active. The 
trigPend signal becomes active during the acquisition, before the post trigger  
period,  and  after  hfTriggerPos_i  *  16 memory  addresses  *  8  samples  are 
written  to  memory.  Trigger  events  are  positioned  in  the  memory  area 
dedicated  to  the  specific  channel,  depending  on  the  8-bit  parameter 
hfTriggerPos_i from hfif. The search for trigger events takes place only when 
the trigPend signal  is  active.  This happens when a trigger event occurs as 
indicated by the doTrigger signal becoming active. 



4. Trigger control logic.

The address of the first data to be read by the CPU (hfOffsetAddr_o) and the 
offset  of  trigger  event  into  the  8  sample  from  a  96-bits  width  word 
(hfOffsetTrigger_o) are computed and stored in the hfif  module. After each 
trigger event occurs, a post-trigger period follows, indicated by the postTrigger 
signal being asserted. This signal becomes active when doTrigger occurs and 
inactive when hfEndWindow_o occurs. All of these signals are used as control  
signals for different operations that take place inside the trigger logic module. 


