
Programmable Logic DesignLine > Design Center

How to implement a digital oscilloscope in Structured ASIC fabric

By Mircea Moldovan, Dan Nicula, and Traian Tulbure, eASIC Corporation

Page 1 of 3

Programmable Logic DesignLine
(07/12/2006 7:07 PM EDT)

As the development costs for Standard-Cell design in deep-submicron
technology approach the multi-million dollar level, it is inevitable that some
designers will shift to an alternative solution that can reduce development
costs, even if there is some penalty in overall cost or performance.

Structured-ASICs have emerged as this alternative to standard-cell design.
Bridging the gap in performance and cost between Standard Cell ASICs and
high-density FPGAs, Structured ASICs maintain the best aspects of both
technologies. Designers can achieve quicker time-to-market and lower
development costs than standard ASICs while also achieving higher
performance and lower unit costs than FPGAs.

A subset of the Structured ASIC category is the Programmable ASIC, which is
a Via-customizable, rather than metal-layer customized. In Programmable
ASIC arrays, all metal layers are standard/pre-fabricated, out of which four
layers are used for efficient segmented routing, and only a single via-layer is
customized to implement a design.

The following case study describes the implementation of a digital Oscilloscope
on the eASIC Programmable ASIC fabric. This design is dubbed eScope. It
includes a two-channel digital sampling oscilloscope and an arbitrary waveform
generator in a single USB-powered module.

eScope was implemented on a 130nm Programmable ASIC device. The chip
includes the digital logic (sample buffer memory interpolating digital trigger
logic, waveform output buffer memory, data sequencers, and USB IO interface
logic) and interfaces to external analog circuitry and USB transceiver logic. A
single on-board 80MHz oscillator drives the on-chip PLL clock generators to
create separate clock domains for each digital input and output channel as well
as for the USB IO channel.

The eScope is connected to a PC through USB. A graphical user interface (GUI)
on the PC is used to view and process the acquired data. The following
discussions detail the eScope implementation.

Overview

The eScope is a PC-based digital sampling oscilloscope. PC-based oscilloscopes
offer real cost savings over desktop oscilloscopes. One can use the existing
large color display, fast processor, and large disk storage of the PC instead of
having to buy a stand-alone oscilloscope.

http://www.pldesignline.com/;jsessionid=V50UFMXZWMQZIQSNDLRSKHSCJUNN2JVN
http://www.pldesignline.com/;jsessionid=V50UFMXZWMQZIQSNDLRSKHSCJUNN2JVN
http://www.pldesignline.com/howto/;jsessionid=V50UFMXZWMQZIQSNDLRSKHSCJUNN2JVN

Digital sampling oscilloscopes use the equivalent-time sampling method to
capture and display signal samples. Sampling oscilloscopes can measure
signals up to an order of magnitude faster than real-time oscilloscopes. As
such, these oscilloscopes are ideal tools for capturing and characterizing
computer, datacom and telecom signals. As shown in Fig 1, the eScope system
requires only the eScope board and a host computer.

1. The eScope system.

The eScope architecture

The eScope design is implemented using nine sub-modules; it employs the
Open Core Protocol (OCP) to interconnect a common shared memory to
various data access ports. The sub-modules are as follows:

• clkGen: clock/reset generator for eScope.
• adcInput: synchronizers for the data samples from ADC.
• dacOutput: FIFO synchronizers for the waveform data to DAC.
• trigGen: trigger generator includes an OCP initiator port.
• waveGen: waveform generator logic includes an OCP initiator port.
• hostIf: USB module host interface includes an OCP initiator port.
• sampleMem: block memory shared for storing data samples and wave

generator data.
• ocpMerge: 3:1 combinatorial OCP merge.
• ocp2mem: OCP to memory interface converter, includes an OCP target

port.

The sub-modules interconnections are as shown in Fig 2.

2. The eScope"s internal architecture.

The acquisition path

The acquisition path is implemented by three modules: clkGen, adcInput,
and trigGen. The clock generator (clkGen) creates the clock and reset signals
for each clock domain on the chip. eScope performs acquisition on the scClk4x
signal and waveform generation on wgClk, both running at 210 MHz. Other on-
chip clocks include ezClk (24 MHz) and hfClk (48 MHz).

The adcInput module receives 12-bit data samples from the ADCs are packs
them into 96-bit width words. These words are sent to the trigGen module.
Also, the time base is implemented in this module.

12-bit data from the ADCs (ch1Data_i and ch2Data_i) are generally
transferred to memory as parallel data streams. When eScope is configured for
double sampling mode, the sample clocks between channels are offset by 180
degrees and the data from both channels is interleaved and sent to memory.
Samples are propagated forward based on triggering and the 16-bit
hfFreqDiv_i parameter. This parameter specifies how many data samples are
preserved from the ADC data streams. The time base is implemented based on
the following formula:

No_sample * T_sampled * (hfFreqDiv_i + 1) = No_divisions *
Time/division

3. Packing data into 96-bits words: (a) single channel mode,
(b) double channel mode, and (c) double sampling mode.

The trigGen module implements all trigger logic controlled on acquisition
parameters. 96-bit width words are written in memory using the OCP
interconnect channels.

The trigger logic operates according to sequencing as presented in Fig 4. A 1-
bit signal hfStartAcq_i created by hfif for one clock period, initializes the
trigger logic. A 1-bit signal hfEndWindow_o returned to hfif indicates the end
of an acquisition. During an acquisition period, the aqPend signal is active. The
trigPend signal becomes active during the acquisition, before the post trigger
period, and after hfTriggerPos_i * 16 memory addresses * 8 samples are
written to memory. Trigger events are positioned in the memory area
dedicated to the specific channel, depending on the 8-bit parameter
hfTriggerPos_i from hfif. The search for trigger events takes place only when
the trigPend signal is active. This happens when a trigger event occurs as
indicated by the doTrigger signal becoming active.

4. Trigger control logic.

The address of the first data to be read by the CPU (hfOffsetAddr_o) and the
offset of trigger event into the 8 sample from a 96-bits width word
(hfOffsetTrigger_o) are computed and stored in the hfif module. After each
trigger event occurs, a post-trigger period follows, indicated by the postTrigger
signal being asserted. This signal becomes active when doTrigger occurs and
inactive when hfEndWindow_o occurs. All of these signals are used as control
signals for different operations that take place inside the trigger logic module.

