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Abstract- An iterative algorithm was developed to fit 

Fisher Law for Heavy Ion Collisions with distinct 

charge balance, obtaining different critical 

temperatures in agreement with recent theoretical 

and experimental results.  This way is confirmed the 

influence of charge balance on the caloric curve of 

nuclear matter. 
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I.   INTRODUCTION 

   Weiszäcker nuclear energy contains a term related to 

charge balance, namely the difference between the 

number of neutrons and protons, which should lead to a 

change in the limit temperature of the nuclear caloric 

curve[1]. Weiszäcker’s expresion for nuclear energy is 

given by [2]: 
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where the first term represents bulk symmetric nuclear 

matter energy excluding coulombian interactions.  The 

rest of the terms compensate nuclear energy 

disagreement with the asymmetric nuclear matter bulk 

limit.  These terms are related to surface energy, to the 

asymmetry between neutrons N and protons Z and to 

coulombian repulsion, respectively. 

   Nuclear matter critical temperature is related to other 

variables such as system finite size and entropy [3], 

therefore the results hereby reported may help to reach 

a better understanding about the factors influencing the 

characteristics of the nuclear caloric curve.  Other 

authors [4] have reported nuclear limit temperatures 

taking on account the balance between charge Z and the 

number of neutrons N, via the correlation between the 

factor N/Z for the fragment projectile and the isobaric 

ratio Y(3H)/Y(3He),  obtaining a limit temperature in 

the range of  6 to 7 MeV.  Souza et al. [5] have applied 

an improved statistical multifragmentation model 

(ISMM) to proton and neutron rich sources, obtaining a 

temperature plateau close to 6 MeV, with a minimum 

difference between the limit temperatures of the 

neutron and proton rich sources. 

   Fisher Law for nuclear matter can be written as [6]: 
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using Fisher Liquid Droplet Model where 0q is a 

normalization constant that depends only on the value 

of τ , τ is the critical topological exponent related to 
system dimensionality that can be computed through a 

tridimensional random walk in a closed surface,  
σεAc0 is the free surface energy of a droplet of size A, 
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0c  is surface energy coefficient, σ  is the critical 

exponent related to the ratio of the surface 

dimensionality and volume dimensionality; and 
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1ε is the control parameter measuring the 

distance to the critical point whose temperature is given 

by CT  [7].  For a system with only a hundred of 

particles: 
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where A is the fragment size. 

   An iterative algorithm was developed to fit Fisher 

Law using Heavy Ions Collisions with different charge 

balance (N-Z), obtaining critical temperature estimates 

whose difference is in the range of 1.2 MeV.  This way 

is confirmed the minimal influence of the term (N-Z) 

on nuclear matter critical temperature. 

II.   METHODOLOGY 

   Forty thousand Heavy Ion collisions were simulated 

using Latino Model [8], where system evolves 

following a Newtonian dynamics via a Verlet 

algorithm. Internucleonic forces are computed with a 

Pandharipande potential.  Fisher Law parameters were 

approximated by a fourth order polynomial in the 

excitation.  The iterative algorithm floats the Fisher 

Law critical exponents, performing a Least Squares Fit 

for the polynomial coefficients as explained in the 

following.  Fisher Law is written as: 
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the difference of chemical potentials µ∆  as well as the 

surface energy adimensional coefficient 0C  are 

approximated by polynomials on the excitation
*e : 
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leading to a least squares problem whose solution is 

given by: 

AY TT ΜΜ=Μ                                                       (8) 

where A  is a vector containing the polynomial 

coefficients of mlP . ,Μ is a matrix and Y is a vector 

obtained from the system of equations: 
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where i is an index related to each collision replica. 

   Random variables xη are generated to float Fisher 

Law critical exponents as well as the critical excitation: 
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   During the iteration the values of these critical 

exponents that optimize the statistical
2χ are kept [9] 

until the best fit is attained.  In this fashion were 

simulated twenty thousand replicas of Zn
76
+Ca

40
 and 

Zn
76
+Ar

40
 Heavy Ion Collisions.  This way an estimator 

for the critical excitation for these collisions was 

obtained. 

   Once the best estimator was obtained, it was used to 

estimate the critical temperature via the following 

relation   : 
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   This relation assumes a Fermi degenerate gas 

behavior and is in better agreement with experiment 

results than the empirical thermometers based on 

isotope ratios, as shown by Moretto et al.  in a study 

about the evaporation in compound nucleus decay [10].  

Nevertheless, other studies have criticized the 

hypothesis of a Fermi degenerate gas behavior close to 

the critical point, as long as the relation E/A=aT
2 
holds 

for fragments produced at moderate low temperatures 

and  in the case of intermediate energy collisions there 

are fast particles emitted in the final state from the 

region where the projectile and fragment overlap. 

   Heavy Ion collisions were simulated using LATINO 

semiclassical model where binary interaction is 

reproduced with a Pandharipande potential given by: 
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and: 









−−








−=

−−−−

a

rr

a

C

rr

rnp
r

e

r

e
V

r

e

r

e
VV

aaaCrr µµµµ
                (15)                                                        

made up from linear combinations of Yukawa 

potentials whose coefficients are designed to reproduce 

nuclear matter properties and to fulfill Pauli Exclusion 

Principle [11]. 

   Clusters are detected using an Early Cluster 

Recognition Algorithm that optimizes the 

configurations in energy space.  Most Bound Partition 

is obtained minimizing the sum of cluster energies for 

each partition: 
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where the cluster energy is given by: 
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in this expression the first sum is on the partition 

clusters, 
CM

jK is the kinetic energy of particle j 

measured in the cluster mass center, and ijV is the 

internucleonic potential. The algorithm uses the 
technique of “simmulated annealing” to find the most 

bound partition in energy space. 

   Ground states of neutron or proton rich sources, were 

built up starting from a random configuration with a 

given kinetic energy and confined in a parabolic 

potential.  Nucleon speed was gradually reduced until 
the system was bound, afterwards the parabolic 

potential was supressed and a frictional method was 

applied until the system reached its theoretical binding 

energy (Fig. 1). 

   Projectile is boosted on target with a given kinetic 

energy for distinct impact parameters.  System 
evolution was simulated using a Verlet algorithm [12], 

where two Taylor expansions are substracted, one of 

them forwards and the other backwards on time: 
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Fig 1.- Shows the ground state of the Heavy Ion Zn76 obtained starting 
from a random configuration, subsequently confined in a parabolic 

potential and finally cooled by a frictional method until it attains its 
theoretical binding energy. 

 

   Excitation is computed by the temperature attained by 

the projectile-target compound, when the maximal 
compression is reached.  This temperature is estimated 

using Kinetic Theory for the n nucleons in the 

compound: 

CM
KnT =

2

3                                                              (21) 

   Projectile energy is varied in the range going from 

600 up to 2000 MeV and system evolves until its 

microscopic composition remains frozen (Fig. 2), 
although some monomers might be ejected.  This time 

can be determined using the Microscopic Persistence 

Coefficient, defined as the probability of having two 

particles linked in a cluster of partition X still bound in 

a cluster of partition Y: 
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where ib is equal to the number of particles that belong 

to cluster 
iC  of partition { }iCX ≡  and ia is equal to 

the number of particle pairs belonging to cluster
iC of 

partition  
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Fig 2.- Shows the evolution of central collision Zn76+Ar40 for a 

projectile energy equal to 1600MeV, simulated with model LATINO. 

 

{ }iCX ≡  that also belong to a given cluster iC ′of 
partition { }iCY ′≡ . in is the number of particles in 

cluster iC .  Fig. 3 shows that persistence attains an 

asymptotic limit value once the biggest fragment size 

(FM), as well as the logarithmic derivative of the 

kinetic energy transported by light fragments and the 
logarithmic derivative of the number of intermediate 

fragments are altogether stable. 

   The ratio of isotope yields: 

( ) ( ) ( )ZNZNYZNY βα +∝ exp,/, 12
                  (23) 

has been commonly used as a signature of 

thermodynamic equilibrium. Nevertheless Latino 

Model has been used elsewhere to prove that this 

signature holds at early stages of the Heavy Ion 

Collision, when the biggest fragment temperature is out 

of equilibrium [13].  Fig. 4 shows a 
2χ  fit of the ratio 

of isotope yields for one hundred thousand replicas 

of ArZn 4076 +  and CaZn 4076 +  Heavy Ion Collisions 

using Latino Model, obtaining Isoscaling Parameters,   

 

Fig 3.- Persistence attains an asymptotic limit value once the biggest 

fragment size (FM), as well as the logarithmic derivative of the 
kinetic energy transported by light fragments and the logarithmic 

derivative of the number of intermediate fragments are altogether 
stable. Central Collision Zn76+Ar40 with a projectile energy equal to 

1600MeV. 

35.0=α  and  40.0−=β , in agreement with those 

experimentally reported by Liu et al. in [14]. 

III.  RESULTS 

   Applying an iterative algorithm that floats Fisher Law 

critical exponents, an estimator is obtained for the 

critical excitation that optimizes Fisher Law fitting 

using data from Heavy Ion Collisions simulations for 

distinct charge balances (N-Z).  

 

Fig. 4.- Best
2χ  fit of the ratio of isotope yields for one hundred 

thousand replicas of ArZn 4076 +  and CaZn 4076 +  Heavy Ion 

Collisions using Latino Model 
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Fig 4.- Best
2χ  fit of Fisher Law, when twenty thousand replicas 

were performed for Zn76+Ca40 collision using LATINO model. 

 

   This way, critical temperature estimates equal to 

7.5MeV for collision Zn
76
+Ca

40
 (Fig. 5) and 8.7 MeV 

for collision Zn
76
+Ar

40
, were obtained.  These values 

are close to those obtained by Tapas Silk et al. [15], 

using as criticality signature the maximum of the 

constant volume heat capacity.  And the difference 

between the critical temperatures hereby estimated 

comes out to be minimal, in agreement with the results 

reported by Souza et al. [5]. 

IV.   CONCLUSIONS 

   An iterative algorithm was developed to obtain 

computational evidence about the influence of the term 

(N-Z) on nuclear matter critical temperature, comparing 

estimates for collisions with distinct values of (N-Z).  

The difference between the critical temperatures 

estimated was of about 1MeV for collisions Zn
76
+Ca

40
 

and Zn
76
+Ar

40
, in agreement with experimental and 

theoretical results recently reported about the minimal 

influence of isospin on nuclear matter critical 

temperature. 
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