
SPEECH RECOGNITION USING ARTIFICIAL
NEURAL NETWORKS

MINI PROJECT REPORT
(February-June 2004)

Project Code- RV04CS6P21

Submitted in the partial ful�llment of requirements for VI Semester, B.E.,
Computer Science and Engineering,

Visveswariah Technological University, Belgaum
by

Anushruthi Rai (1RV01CS011)
Arjun Jain (1RV01CS013)
Nalini V (1RV01CS059)

under the guidance of
Dr. Vishwanath,
Mr. Nagesha,

Mrs. Rohini Patil,
and

Mr. Pujar

Department of Computer Science and Engineering
R.V. College of Engineering, Bangalore

R.V. COLLEGE OF ENGINEERING
Department of Computer Science and Engineering

Bangalore - 59

CERTIFICATE

This is to certify that mini project titled Speech Recognition using Neural Net-
works has been successfully completed by

• Arjun Jain (1RV01CS013)

in partial ful�llment of VI Semester B.E, (Computer Science and Engineering), during
the period February-June 2004 as prescribed by the Visveswariah Technological Univer-
sity, Belgaum.

Signature of

Sta� Incharge Prof. B.I. Khodanpur, HOD Examiner 1 Examiner 2

Contents

1 Abstract 1

2 Literature Survey/Back Ground 2
2.1 Feature Extraction Methods . 2

2.1.1 The Fourier Transform . 2
2.1.2 Discrete Fourier Transform . 3
2.1.3 Linear Predictive Coding (The method implemented) 4

2.2 Pattern Classi�cation Methods . 5
2.2.1 Template Matching . 5
2.2.2 Dynamic Warping Method . 5
2.2.3 Neural Network Approach(The method implemented) 5

3 Requirements Document 6
3.1 Purpose . 6
3.2 Glossary . 6
3.3 System Model: Data Flow Model . 7

3.3.1 0-Level DFD . 7
3.3.2 1-Level DFD . 7

3.4 Functional Requirements . 8
3.5 Non functional requirements . 8
3.6 Hardware Requirements . 8
3.7 Software Requirements . 8
3.8 System Evolution . 8
3.9 Requirement Speci�cation . 9

4 Methodology(Design Document) 10
4.1 Architecture . 10
4.2 Abstract Speci�cation . 10
4.3 Data Structure Design . 10
4.4 Algorithm Design . 11

4.4.1 Phase I: Speech recording and extraction of features 11
4.4.2 Phase II: Pattern Classi�cation . 11

CONTENTS ii

4.4.2.1 Structure of a neuron. 12
4.4.2.2 A Neural Network . 12
4.4.2.3 The Back propagation Algorithm 13
4.4.2.4 Feed forward Dynamics 13
4.4.2.5 Training the neural network 15

5 Implimentaion 17

6 Experiment Analysis And Testing 41
6.1 Feeding Test Data . 41
6.2 Unit Testing . 41

6.2.1 lpc() . 41
6.2.2 learn() . 41

6.3 Interface Testing . 41
7 Conclusion and future Enhancement 43

8 References 44

List of Figures

2.1 cos(2pt) + cos(10pt) + cos(20pt) . 3
2.2 Fourier Transform, X(f), of x(t) . 3
2.3 Discrete Signal . 4
2.4 Discrete Fourier Transform, X(f), of x(t) 4
2.5 LPC of letter a . 4
4.1 A 3-Layer Neural Network . 13
4.2 Sigmoid Activation Function . 14
4.3 Gradient Descent . 14

Acknowledgment

I wish to place on record, my grateful thanks to Prof. B.I.Kodhanpur, head of de-
partment of computer science, RVCE for providing all of us encouragement and guidance
throughout our work.
I also convey my sincere regards toMr Vishwanath ,Mr Nagesha,Mrs Rohini Patil
and Mr Pujar, in charge, Mini Project lab RVCE for providing invaluable suggestions
and guidance at all stages of development of this package.
I would also like to place my special thanks to all the sta� of computer science depart-
ment.
I thank all my friends for their help and encouragement, which has helped a lot in the
completion of this project.

Chapter 1

Abstract

It is a well-known fact that building speech recognition systems is one of the hottest areas
of research .Speech recognition has been an important part of the civilization for many
centuries. We depend on intelligent and recognizable sounds for common communications.

In this project, spoken commands are recognized by the system and executed. The
project consists of two phases. The �rst part deals with recognizing the formant frequen-
cies associated with the input voice and the second phase involves pattern classi�cation
using Arti�cial Neural Networks.

Chapter 2

Literature Survey/Back Ground

The Process of speech recognition can be divided into the process of 1-Feature Ex-
traction and 2-Pattern Classi�cation. The various techniques for feature extraction
commonly user are 1-Fourier transformations, 2-Discrete Fourier transformations
and 3-Linear Predictive Coding. The most popular techniques for pattern analysis
and classi�cation for the features thus obtained are 1-Template matching, 2-Dynamic
Warping Method and 3-Arti�cial Neural Network Approach.

We now explain brie�y the various techniques and the reason for us having chosen a
particular technique.

2.1 Feature Extraction Methods

2.1.1 The Fourier Transform
Since frequency is one of the important pieces of information necessary to accurately
recognize sound, it is necessary to have a transformation that allows one to break a signal
into its frequency components. The most common way to do this is the Fourier transform.
The Fourier transform of a signal is the representation of the frequency and amplitude
of that signal. The Fourier transform of a signal can obtained mathematically by the
equation 2.1, where i is the imaginary number and the || || represents magnitude.

X(f) =

∥∥∥∥∥
∫ ∞
∞

x(t)e−2πftdt

∥∥∥∥∥ (2.1)

The Fourier transform of the signal in Figure 2.1 would then be given as �gure 2.2
The Fourier Transform has its di�culties in accurately recognizing voice data, and

the Short Term Fourier Transform has problems as well. However, each methodology
is very good with a di�erent aspect of the problem. The Fourier Transform resulted in
excellent frequency resolution, while the Short Term Fourier Transform provided good
time resolution. The obvious solution would be to take the best of both worlds.

2.1 Feature Extraction Methods 3

Figure 2.1: cos(2pt) + cos(10pt) + cos(20pt)

Figure 2.2: Fourier Transform, X(f), of x(t)

In most practical signals, low frequencies are stationary over the length of the signal.
High frequencies however, tend to come and go over short intervals of time. Therefore,
low frequencies should be analyzed over a longer time interval, and higher frequencies
should be checked over a short interval. The result is a multi-resolution analysis, which
is essentially the wavelet solution.

2.1.2 Discrete Fourier Transform
Take the signal in �gure 2.3 as an example. This signal is discrete, so the Discrete Fourier
Transform, shown in equation 2.2, is used to produce �gure 2.4. The Discrete Fourier
Transform is symmetric, so the �rst half of the data is really all that is interesting and so
that is all that is shown. Ignore the x-axis and observe the location of the spikes. There
are two spikes in the low frequency range, and one spike in the high frequency range. As
seen in the DFT thus obtained, the high frequencies are attenuated. Thus, the method is
rejected.

X(k) =
N−1∑
n=0

x[n](t)e
−2πikn

N dt (2.2)

2.1 Feature Extraction Methods 4

Figure 2.3: Discrete Signal

Figure 2.4: Discrete Fourier Transform, X(f), of x(t)

2.1.3 Linear Predictive Coding (The method implemented)
LPC is a modi�cation of DFT. LPC starts with the assumption that the speech signal
is produced by a buzzer at the end of a tube. The glottis (the space between the vocal
cords) produces the buzz, which is characterized by its intensity (loudness) and frequency
(pitch). The vocal tract (the throat and mouth) forms the tube, which is characterized
by its resonances , which are called formants.

Figure 2.5: LPC of letter a

2.2 Pattern Classi�cation Methods 5

2.2 Pattern Classi�cation Methods
Once we have extracted the features of the speech signal we go for pattern classi�cation
methods.

2.2.1 Template Matching
This is one of the simplest methods to measure similarity. Let ti be the ith lpc value of
the test sample. And oi be the ith lpc value of the training sample. The test sample is
compared with each of the training sets and the one with the best match is the one with
the least Euclidean distance. Euclidean distance is given by:

E =

√∑
(tj − oj)2 (2.3)

ti is the ith lpc value of the training sample. oi is the ith lpc value of the test sample.

2.2.2 Dynamic Warping Method
This is the oldest method that has been used to identify speech. In this method speech is
divided into frames of 30ms at every 15 ms intervals (allowing overlap). The lpc features
of each frame are extracted.

A frame of the test sample is compared with the corresponding frame in the training
sample by applying Euclidean formula. xi- ith lpc value of the xth frame of the test sample.
yi- ith lpc value of the yth frame of the training sample. The dynamic equation is given
by:

c(x, y) = min(c(x− 1, y), c(x, y − 1), c(x− 1, y − 1)) + ed(x, y) (2.4)
Where c(x, y) measures the dissimilarity between the test sample (up to frame x) and
training sample (Upton frame y). The test sample is compared with all the trained
samples, and one with the least c(x, y) gives the best match.

2.2.3 Neural Network Approach(The method implemented)
A neural network is composed of a number of interconnected units (arti�cial neurons).
Each unit has an input/output(I/O) characteristics and implements a local computa-
tion or function. The output of any unit is determined by the I/O characteristics, its
interconnection to other units and (possibly) the external inputs.

Learning in biological systems involves adjustments to the synaptic connections that
exist between the neurons. This is true of ANN as well. Learning typically occurs by
example through training, or exposure to a truth-ed set of input/output data where the
training algorithm iteratively adjusts the connection weights (synapses). These connection
weights store the knowledge necessary to solve speci�c problems.

Chapter 3

Requirements Document

3.1 Purpose
Speech recognition systems are widely used in security systems. Speech analog signal
consumes a lot of space. It can be converted to text, transferred along any communication
channel, reconverted back to speech on the receiver side. This saves considerable space.
Speech recognition systems are good tools for those who are not fast at typing or who
do not know to type. In this project we demonstrate speech recognition through voice
commands.

3.2 Glossary
Linear predictive coding: LPC analyzes the speech signal by estimating the formants,
removing their e�ects from the speech signal, and estimating the intensity and frequency
Arti�cial Neural Networks: Also referred to as connectionist architectures, parallel
distributed processing and neuromorphic systems, an arti�cial neural network (ANN)
is an information processing paradigm inspired by the way the densely interconnected,
parallel structure of the mammalian brain process information. Arti�cial neural networks
are collections of mathematical models that emulate some of the observed properties of
biological nervous systems and draw on the analogies of adaptive biological learning.

3.3 System Model: Data Flow Model 7

3.3 System Model: Data Flow Model

3.3.1 0-Level DFD

0-Level DFD

3.3.2 1-Level DFD

Training Process

3.4 Functional Requirements 8

Training with new patterns

3.4 Functional Requirements
The voice command is accepted through the microphone The command is re�ected on
the screen and executed.

3.5 Non functional requirements
The response time should be less than 10 seconds.

3.6 Hardware Requirements
High resolution sound card, high quality microphone and preferably a fast CPU. Also a
system able to run the bellow mentioned softwares.

3.7 Software Requirements
Linux(Red Hat 9.0), Octave for mathematic/electronic operations, Gcc compilers, edi-
tors(gedit,kwrite) and the Troltech's Qt library for the interface design.

3.8 System Evolution
The system is strictly user dependent. To make it more accurate, the user has to train
more.

3.9 Requirement Speci�cation 9

3.9 Requirement Speci�cation
The recognition system should consist of 2 parts.
Training session: Where the user trains the network with the desired commands.
Testing Session: The user says a command and the command is executed. ï»¿

Chapter 4

Methodology(Design Document)

4.1 Architecture
It consists of a microphone, digital signal processor, a wave analyzer , a pattern classi�er
and display.

4.2 Abstract Speci�cation
The voice command is accepted through the microphone The command is re�ected on
the screen and executed.

4.3 Data Structure Design
The following �oating point arrays build up the various components of the Arti�cial Neu-
ral Network:

1. double **input- Then input layer of the network.
2. double *hidden- The hidden layer.
3. double **output- The output layer of the neural network.
4. double **target- The expected target output.
5. double *bias- The bias to each neuron.
6. double **weight_i_h- The weight matrix from the input to the hidden layer in the

network.
7. double **weight_h_o- The weight matrix from the hidden to the output layer in

the network.

4.4 Algorithm Design 11

8. double *errorsignal_hidden- The error propagated from the hidden layer.
9. double *errorsignal_output- The error propagated from the output layer.

4.4 Algorithm Design

4.4.1 Phase I: Speech recording and extraction of features
In This phase, the voice of the user is recorded. Then the octave library function lpc()
is used for the extraction of the features in the speech. These lpc values are written to a
text �le.

record();

lpc();

FILE *fp=lpc.txt

4.4.2 Phase II: Pattern Classi�cation
In this phase, the extracted lpc values are inputed to the neural network of classi�cation
and the neural network return the probabilities of possible patterns. The various functions
used for the above mentioned purpose are:

1. void initialize_net ()- This is the method with initializes and allocates runtime
heap memory for the various data structures.

2. int compare_output_to_target ()- This module is responsible for the compari-
son of the output of the network to the expected output in the learning phase. This
function is called by the learn function.

3. void load_data ()- This function loads the data from the text �les into the various
data structures like the weight matrices.

4. void save_data (char *argres)- This function saves the data into the text �les.
5. void forward_pass (int pattern)- The forward pass is the function which is

responsible for the propagation of the input from the input to the hidden and the
hidden to the output layers.

6. void backward_pass (int pattern)- This function propagates the output pat-
tern to the hidden layer and the hidden layer to the input layer. It is used to
propagate the error and readjusts the weight matrices.

7. void compute_output_pattern ()- This is the function which �nally computes
the output pattern. This function generates the probability of output for each
neuron(possible output) of the output layer.

4.4 Algorithm Design 12

8. float bedlam (long *idum)- This is a function implemented to generate the ini-
tial random weight matrices. The inbuilt random function (srand())is not used
because for optimum learning there are rules for constructing the initial weight
matrices.

9. void learn ()- This module does the complete learning. It propagates the input
using (void forward_pass (int pattern)), compares it with the desired output
by calling (int compare_output_to_target ()) and �nally readjusts the weight
matrices by propagating the error back (void backward_pass (int pattern)).

10. void test ()- This function computes the probability of the test input pattern to
the possible outputs.

11. void print_data ()- This is a function which can be used to display the �nal
probabilities of the various outputs to the either console or to a �le. It calls void
print_data_to_screen () or void print_data_to_file ().

12. void change_learning_rate ()- This is a simple function which is used to change
the learning rate of the network. The initial default learning rate alpha=0.05.

4.4.2.1 Structure of a neuron.

Our "arti�cial" neuron will have inputs (all N of them) and one output:

4.4.2.2 A Neural Network

A single neuron by itself is not a very useful pattern recognition tool. The real power
of neural networks comes when we combine neurons into the multilayer structures, called
neural networks. The following �gure represents a simple neural net:

As you can see, the neuron has:
Set of nodes that connect it to inputs, output, or other neurons, also called synapses.
A Linear Combiner, which is a function that takes all inputs and produces a single value.
A simple way of doing it is by adding together the Input multiplied by the Synaptic
Weight:

for(int i = 0; i < NumOfInputs; i++)

Sum += Input[i] * Weight[i];

An Activation Function. It will take ANY input from minus in�nity to plus in�nity and
squeeze it into the -1 to 1 or into 0 to 1 interval. Finally, we have a threshold. It de�nes
the INTERNAL ACTIVITY of a neuron should be when there is no input. In general,
for the neuron to �re ,the sum should be greater than threshold. For simplicity, we will

4.4 Algorithm Design 13

Figure 4.1: A 3-Layer Neural Network

replace the threshold with an EXTRA input, with weight that can change during the
learning process and the input �xed and always equal (-1).

The �rst layer is known as the input layer, the middle layer is known as hidden layer
and the last layer is the output layer.

4.4.2.3 The Back propagation Algorithm

The primary objective of this session is to explain how to use the back propagation training
functions in the to train feed forward neural networks to solve speaker dependent speech
recognition problems. There are generally four steps in the training process:

1. Assemble the training data
2. Create the network object
3. Train the network
4. Simulate the network response to new inputs

4.4.2.4 Feed forward Dynamics

When a BackProp network is cycled, the activations of the input units are propagated
forward to the output layer through the connecting weights.

netj =
∑

wjai (4.1)

4.4 Algorithm Design 14

where ai is the input activation from unit i and wji is the weight connecting unit i to unit
j. However, instead of calculating a binary output, the net input is added to the unit's
bias and the resulting value is passed through a sigmoid function:

F (netj) =
1

1 + e−netj+j
(4.2)

The sigmoid function is sometimes called a "squashing" function because it maps its
inputs onto a �xed range.

Figure 4.2: Sigmoid Activation Function

Figure 4.3: Gradient Descent

4.4 Algorithm Design 15

4.4.2.5 Training the neural network

The lpc values of each of the training sets is fed as input to the neural network. The
target o/p is made 1 at the corresponding neuron the training set alphabet corresponds
to. The are 100 inputs and x o/p s (x-corresponds to the no. of voice commands). The
training is iterated and the weights are adjusted for each training sample.

Let e represent the input layer and a represent the output layer. Let e be the set
of inputs. e represents the �rst 100 lpc values (formant frequencies) and b be the set of
outputs. There are x outputs. ne represents the no. of neurons in the input layer and
na represents the no. of neurons in the o/p layer. w1 represents the weights between
the input and hidden layer, w2 represents the weight between the hidden layer and the
output layer.

Initializing random weights to the matrices

for(i=1;i<=nhid;i++)

for(j=1;j<=ne;j++)

w1[i][j]=rand()small weights;

for(i=1;i<=na;i++)

for(j=1;j<=nhid;j++)

w2[i][j]=rand()small weights;

The training step
The lpc values of each of the training sets is fed as input to the neural network. The target
o/p is made 1 at the corresponding neuron the training set voice command corresponds
to. There are 100 inputs. At least 4 training samples for each command is required to
get good results. The training is iterated and the weights are adjusted for each training
sample.

for(i=0;i<=nhid;i++)

{

r=0;

for(j=1;j<=ne;j++)

r+=w1[i][j]*e[j];

h[i]=1.0/(1+exp(-r));

}

The output at each hidden layer is given by:
hj = f(netj), which can be obtained by:

for(i=1;i<=na;i++)

4.4 Algorithm Design 16

{

r=0;

for(j=1;j<=nhid;j++)

r+=w2[i][j]*h[j];

b[i]=1.0/(1+exp(-r));

}

The output at the hidden layer acts as the input to the next layer . bj = f(netj),
where netj represents the hidden layer.

Backpropagate the error to adjust w2.

for(i=1;i<=na;i++)

{

err=a[i]-b[i];

error[i]=err;

tt=alpha*err*b[I]*(1-b[I]);

for(j=1;j<=nhid;j++)

w2[i][j]=w2[i][j]+tt*h[j];

}

E is the Euclidean distance or the error. ti is the target o/p and oj is the obtained o/p.

E =
∑
j

(tj − oj)
2 (4.3)

wji = α ∗ dj ∗ ij (4.4)
Where α is the learning rate.

The Back propagation algorithm developed in this chapter only requires that the weight
changes be proportional to the derivative of the error. The larger the learning rate al-
pha the larger the weight changes on each epoch, and the quicker the network learns.
However, the size of the learning rate can also in�uence whether the network achieves
a stable solution. If the learning rate gets too large, then the weight changes no longer
approximate a gradient descent procedure. (True gradient descent requires in�nitesimal
steps). Oscillation of the weights is often the result.

Chapter 5

Implimentaion

//Backpropagation, binary sigmoid function network

#include <iostream.h>

#include <fstream.h>

#include <stdlib.h>

#include <math.h>

#include <ctype.h>

#include <stdio.h>

#include <float.h>

#include<string.h>

char person[30];

char infile[30];

char outfile[30];

double **input,

*hidden,

**output,

**target,

*bias, **weight_i_h, **weight_h_o, *errorsignal_hidden, *errorsignal_output;

int aaa = 4;

int trialn;

int input_array_size = 100,

hidden_array_size = 100,

output_array_size = 10,

max_patterns,

bias_array_size = 110,

gaset = (unsigned long) &aaa,

number_of_input_patterns = 0, pattern, file_loaded = 0, ytemp = 0, ztemp =

0;

18

double learning_rate = 0.7, max_error_tollerance = 0.1;

char filename[128];

#define IA 16807

#define IM 2147483647

#define AM (1.0 / IM)

#define IQ 127773

#define IR 2836

#define NTAB 32

#define NDIV (1+(IM-1) / NTAB)

#define EPS 1.2e-7

#define RNMX (1.0 - EPS)

int compare_output_to_target ();

void load_data ();

void save_data (char *argres);

void forward_pass (int pattern);

void backward_pass (int pattern);

void custom ();

void compute_output_pattern ();

void get_file_name ();

float bedlam (long *idum);

void learn ();

void make ();

void test ();

void print_data ();

void print_data_to_screen ();

void print_data_to_file ();

void output_to_screen ();

int getnumber ();

void change_learning_rate ();

void initialize_net ();

void clear_memory ();

main (int argc, char **argv)

{

int x, y, z;

char choice;

cout << "\nEnter your name\n";

cin >> person;

19

strcpy (infile, person);

strcpy (outfile, person);

strcat (infile, "in");

strcat (outfile, "out");

ifstream in (person);

if (!in)

{

cout << "new user!!!!\n";

ofstream out, out1;

out.open (person);

out1.open (infile);

out1 << (int) 0 << " " << endl;

for (x = 0; x < bias_array_size; x++)

out << (1.0 - (2.0 * bedlam ((long *) (gaset)))) << ' ';

out << endl << endl;

for (x = 0; x < input_array_size; x++)

{

for (y = 0; y < hidden_array_size; y++)

out << (1.0 - (2.0 * bedlam ((long *) (gaset)))) << ' ';

}

out << endl << endl;

for (x = 0; x < hidden_array_size; x++)

{

for (y = 0; y < output_array_size; y++)

out << (1.0 - (2.0 * bedlam ((long *) (gaset)))) << ' ';

}

out.close ();

}

in.close ();

if (!strcmp (argv[1], "train"))

choice = '1';

else

choice = '2';

20

switch (choice)

{

case '1':

make ();

load_data ();

learn ();

clear_memory ();

break;

case '2':

load_data ();

compute_output_pattern ();

clear_memory ();

break;

case '3':

return 0;

};

}

void

initialize_net ()

{

int x;

input = new double *[number_of_input_patterns];

if (!input)

{

cout << endl << "memory problem!";

exit (1);

}

for (x = 0; x < number_of_input_patterns; x++)

{

input[x] = new double[input_array_size];

if (!input[x])

21

{

cout << endl << "memory problem!";

exit (1);

}

}

hidden = new double[hidden_array_size];

if (!hidden)

{

cout << endl << "memory problem!";

exit (1);

}

output = new double *[number_of_input_patterns];

if (!output)

{

cout << endl << "memory problem!";

exit (1);

}

for (x = 0; x < number_of_input_patterns; x++)

{

output[x] = new double[output_array_size];

if (!output[x])

{

cout << endl << "memory problem!";

exit (1);

}

}

target = new double *[number_of_input_patterns];

if (!target)

{

cout << endl << "memory problem!";

exit (1);

}

for (x = 0; x < number_of_input_patterns; x++)

{

target[x] = new double[output_array_size];

if (!target[x])

{

cout << endl << "memory problem!";

exit (1);

}

22

}

bias = new double[bias_array_size];

if (!bias)

{

cout << endl << "memory problem!";

exit (1);

}

weight_i_h = new double *[input_array_size];

if (!weight_i_h)

{

cout << endl << "memory problem!";

exit (1);

}

for (x = 0; x < input_array_size; x++)

{

weight_i_h[x] = new double[hidden_array_size];

if (!weight_i_h[x])

{

cout << endl << "memory problem!";

exit (1);

}

}

weight_h_o = new double *[hidden_array_size];

if (!weight_h_o)

{

cout << endl << "memory problem!";

exit (1);

}

for (x = 0; x < hidden_array_size; x++)

{

weight_h_o[x] = new double[output_array_size];

if (!weight_h_o[x])

{

cout << endl << "memory problem!";

exit (1);

}

}

errorsignal_hidden = new double[hidden_array_size];

if (!errorsignal_hidden)

{

23

cout << endl << "memory problem!";

exit (1);

}

errorsignal_output = new double[output_array_size];

if (!errorsignal_output)

{

cout << endl << "memory problem!";

exit (1);

}

return;

}

void

learn ()

{

int x, y;

double inpx;

cout << "\n learning....";

while (1)

{

for (y = 0; y < number_of_input_patterns; y++)

{

forward_pass (y);

backward_pass (y);

}

if (compare_output_to_target ())

{

cout << endl << "learning successful" << endl;

ofstream out;

out.open (person);

if (!out)

cout << "ha mem problem";

for (x = 0; x < bias_array_size; x++)

{

24

out << bias[x] << ' ';

}

out << endl << endl;

for (x = 0; x < input_array_size; x++)

for (y = 0; y < hidden_array_size; y++)

{

out << weight_i_h[x][y] << ' ';

}

out << endl << endl;

for (x = 0; x < hidden_array_size; x++)

for (y = 0; y < output_array_size; y++)

{

out << weight_h_o[x][y] << ' ';

}

out << endl << endl;

return;

}

}

cout << endl << "learning not successful yet" << endl;

return;

}

void

load_data ()

{

int x, y;

ifstream in, in1;

in1.open (infile);

in1 >> number_of_input_patterns;

bias_array_size = hidden_array_size + output_array_size;

initialize_net ();

25

in.open (person);

for (x = 0; x < bias_array_size; x++)

in >> bias[x];

for (x = 0; x < input_array_size; x++)

{

for (y = 0; y < hidden_array_size; y++)

in >> weight_i_h[x][y];

}

for (x = 0; x < hidden_array_size; x++)

{

for (y = 0; y < output_array_size; y++)

in >> weight_h_o[x][y];

}

in.close ();

for (x = 0; x < number_of_input_patterns; x++)

{

for (y = 0; y < input_array_size; y++)

in1 >> input[x][y];

}

in1.close ();

in.open (outfile);

for (x = 0; x < number_of_input_patterns; x++)

{

for (y = 0; y < output_array_size; y++)

in >> target[x][y];

}

in.close ();

return;

}

26

void

forward_pass (int pattern)

{

register double temp = 0;

register int x, y;

// INPUT -> HIDDEN

for (y = 0; y < hidden_array_size; y++)

{

for (x = 0; x < input_array_size; x++)

{

temp += (input[pattern][x] * weight_i_h[x][y]);

}

hidden[y] = (1.0 / (1.0 + exp (-1.0 * (temp + bias[y]))));

temp = 0;

}

// HIDDEN -> OUTPUT

for (y = 0; y < output_array_size; y++)

{

for (x = 0; x < hidden_array_size; x++)

{

temp += (hidden[x] * weight_h_o[x][y]);

}

output[pattern][y] =

(1.0 / (1.0 + exp (-1.0 * (temp + bias[y + hidden_array_size]))));

temp = 0;

}

return;

}

void

backward_pass (int pattern)

{

register int x, y;

register double temp = 0;

// COMPUTE ERRORSIGNAL FOR OUTPUT UNITS

27

for (x = 0; x < output_array_size; x++)

{

errorsignal_output[x] = (target[pattern][x] - output[pattern][x]);

}

// COMPUTE ERRORSIGNAL FOR HIDDEN UNITS

for (x = 0; x < hidden_array_size; x++)

{

for (y = 0; y < output_array_size; y++)

{

temp += (errorsignal_output[y] * weight_h_o[x][y]);

}

errorsignal_hidden[x] = hidden[x] * (1 - hidden[x]) * temp;

temp = 0.0;

}

// ADJUST WEIGHTS OF CONNECTIONS FROM HIDDEN TO OUTPUT UNITS

double length = 0.0;

for (x = 0; x < hidden_array_size; x++)

{

length += hidden[x] * hidden[x];

}

if (length <= 0.1)

length = 0.1;

for (x = 0; x < hidden_array_size; x++)

{

for (y = 0; y < output_array_size; y++)

{

weight_h_o[x][y] += (learning_rate * errorsignal_output[y] *

hidden[x] / length);

}

}

// ADJUST BIASES OF HIDDEN UNITS

for (x = hidden_array_size; x < bias_array_size; x++)

{

bias[x] +=

(learning_rate * errorsignal_output[x - hidden_array_size] / length);

}

28

// ADJUST WEIGHTS OF CONNECTIONS FROM INPUT TO HIDDEN UNITS

length = 0.0;

for (x = 0; x < input_array_size; x++)

{

length += input[pattern][x] * input[pattern][x];

}

if (length <= 0.1)

length = 0.1;

for (x = 0; x < input_array_size; x++)

{

for (y = 0; y < hidden_array_size; y++)

{

weight_i_h[x][y] += (learning_rate * errorsignal_hidden[y] *

input[pattern][x] / length);

}

}

// ADJUST BIASES FOR OUTPUT UNITS

for (x = 0; x < hidden_array_size; x++)

{

bias[x] += (learning_rate * errorsignal_hidden[x] / length);

}

return;

}

int

compare_output_to_target ()

{

register int y, z;

register double temp, error = 0.0;

temp = target[ytemp][ztemp] - output[ytemp][ztemp];

if (temp < 0)

error -= temp;

else

error += temp;

if (error > max_error_tollerance)

return 0;

error = 0.0;

for (y = 0; y < number_of_input_patterns; y++)

{

29

for (z = 0; z < output_array_size; z++)

{

temp = target[y][z] - output[y][z];

if (temp < 0)

error -= temp;

else

error += temp;

if (error > max_error_tollerance)

{

ytemp = y;

ztemp = z;

return 0;

}

error = 0.0;

}

}

return 1;

}

void

save_data (char *argres)

{

int x, y;

ofstream out;

out.open (argres);

if (!out)

{

cout << endl << "failed to save file" << endl;

return;

}

out << input_array_size << endl;

out << hidden_array_size << endl;

out << output_array_size << endl;

out << learning_rate << endl;

out << number_of_input_patterns << endl << endl;

for (x = 0; x < bias_array_size; x++)

out << bias[x] << ' ';

out << endl << endl;

for (x = 0; x < input_array_size; x++)

{

30

for (y = 0; y < hidden_array_size; y++)

out << weight_i_h[x][y] << ' ';

}

out << endl << endl;

for (x = 0; x < hidden_array_size; x++)

{

for (y = 0; y < output_array_size; y++)

out << weight_h_o[x][y] << ' ';

}

out << endl << endl;

for (x = 0; x < number_of_input_patterns; x++)

{

for (y = 0; y < input_array_size; y++)

out << input[x][y] << ' ';

out << endl;

}

out << endl;

for (x = 0; x < number_of_input_patterns; x++)

{

for (y = 0; y < output_array_size; y++)

out << target[x][y] << ' ';

out << endl;

}

out.close ();

cout << endl << "data saved" << endl;

return;

}

void

make ()

{

int x, y, z;

double inpx;

ofstream out;

ifstream in;

31

cout << "Enter the no.of patterns u wanna train : ";

cin >> z;

FILE *inf = fopen (infile, "r");

fscanf (inf, "%d", &trialn);

fclose (inf);

inf = fopen (infile, "r+");

fprintf (inf, "%d", trialn + z);

fclose (inf);

inf = fopen (infile, "a");

FILE *ouf = fopen (outfile, "a");

for (x = 0; x < z; x++)

{

char ent;

cout <<

"1.ls \n2.date \n3.pwd \n4.mail \n5.pinky \n6.dmesg \n7.who am i \n8.cal \n9.ps";

cout << "\nenter choice ";

int ch;

cin >> ch;

cin.get (ent);

int i;

for (i = 0; i < output_array_size; i++)

{

if (ch - 1 == i)

fprintf (ouf, "%d ", 1);

else

32

fprintf (ouf, "%d ", 0);

}

fprintf (ouf, "\n\n");

cout << "press enter and speak\n";

cin.get (ent);

system ("octave nn.m>dummy.txt");

in.open ("data.txt");

for (y = 0; y < input_array_size; y++)

{

in >> inpx;

fprintf (inf, "%f ", inpx);

}

fprintf (inf, "\n\n");

in.close ();

}

fclose (inf);

fclose (ouf);

return;

}

float

bedlam (long *idum)

{

int xj;

long xk;

static long iy = 0;

static long iv[NTAB];

float temp;

33

if (*idum <= 0 || !iy)

{

if (-(*idum) < 1)

{

*idum = 1 + *idum;

}

else

{

*idum = -(*idum);

}

for (xj = NTAB + 7; xj >= 0; xj--)

{

xk = (*idum) / IQ;

*idum = IA * (*idum - xk * IQ) - IR * xk;

if (*idum < 0)

{

*idum += IM;

}

if (xj < NTAB)

{

iv[xj] = *idum;

}

}

iy = iv[0];

}

xk = (*idum) / IQ;

*idum = IA * (*idum - xk * IQ) - IR * xk;

if (*idum < 0)

{

*idum += IM;

}

xj = iy / NDIV;

iy = iv[xj];

iv[xj] = *idum;

if ((temp = AM * iy) > RNMX)

{

return (RNMX);

34

}

else

{

return (temp);

}

}

void

test ()

{

pattern = 0;

while (pattern == 0)

{

cout << endl << endl << "There are " << number_of_input_patterns

<< " input patterns in the file," << endl <<

"enter a number within this range: ";

pattern = getnumber ();

}

pattern--;

forward_pass (pattern);

output_to_screen ();

return;

}

void

output_to_screen ()

{

int x;

// cout << endl << "Output pattern:" << endl;

for (x = 0; x < output_array_size; x++)

{

cout << endl << (x + 1) << ": " << output[pattern][x] << " binary: ";

if (output[pattern][x] >= 0.9)

cout << "1";

else if (output[pattern][x] <= 0.1)

cout << "0";

else

cout << "intermediate value";

}

cout << endl;

35

return;

}

int

getnumber ()

{

int a, b = 0;

char c, d[5];

while (b < 4)

{

do

{

c = getchar ();

}

while (c != '1' && c != '2' && c != '3' && c != '4' && c != '5'

&& c != '6' && c != '7' && c != '8' && c != '9' && c != '0'

&& toascii (c) != 13);

if (toascii (c) == 13)

break;

if (toascii (c) == 27)

return 0;

d[b] = c;

cout << c;

b++;

}

d[b] = '\0';

a = atoi (d);

if (a < 0 || a > number_of_input_patterns)

a = 0;

return a;

}

void

compute_output_pattern ()

{

36

custom ();

}

void

custom ()

{

char filename[128];

register double temp = 0;

register int x, y;

double *custom_input = new double[input_array_size];

if (!custom_input)

{

cout << endl << "memory problem!";

return;

}

double *custom_output = new double[output_array_size];

if (!custom_output)

{

delete[]custom_input;

cout << endl << "memory problem!";

return;

}

char ent;

cin.get (ent);

for (;;)

{

cout << "press enter and speak";

cin.get (ent);

cout << endl;

system ("octave nn.m>dummy.txt");

ifstream in ("data.txt");

temp = 0;

if (!in)

37

{

cout << endl << "failed to load data file" << endl;

return;

}

for (x = 0; x < input_array_size; x++)

{

in >> custom_input[x];

}

for (y = 0; y < hidden_array_size; y++)

{

for (x = 0; x < input_array_size; x++)

{

//cout<<"wt="<<weight_i_h[x][y]<<endl;

temp += (custom_input[x] * weight_i_h[x][y]);

}

hidden[y] = (1.0 / (1.0 + exp (-1.0 * (temp + bias[y]))));

temp = 0;

}

for (y = 0; y < output_array_size; y++)

{

for (x = 0; x < hidden_array_size; x++)

{

temp += (hidden[x] * weight_h_o[x][y]);

}

custom_output[y] =

(1.0 / (1.0 + exp (-1.0 * (temp + bias[y + hidden_array_size]))));

temp = 0;

}

int lett;

double max = 0;

for (x = 0; x < output_array_size; x++)

{

if (custom_output[x] > max)

{

max = custom_output[x];

38

lett = x;

}

}

switch (lett)

{

case 0:

cout << endl << "ls" << endl;

system ("ls");

break;

case 1:

cout << endl << "date" << endl;

system ("date");

break;

case 2:

cout << endl << "pwd" << endl;

system ("pwd");

break;

case 3:

cout << endl << "mail" << endl;

system ("mail");

break;

case 4:

cout << endl << "pinky" << endl;

system ("pinky");

break;

case 5:

cout << endl << "dmesg" << endl;

system ("dmesg");

break;

case 6:

cout << endl << "who am i" << endl;

system ("who am i");

break;

case 7:

39

cout << endl << "ls" << endl;

system ("ls");

break;

case 8:

cout << endl << "cal" << endl;

system ("cal");

break;

case 9:

cout << endl << "ps" << endl;

system ("ps");

break;

}

in.close ();

cout << endl;

}

delete[]custom_input;

delete[]custom_output;

return;

}

void

clear_memory ()

{

int x;

for (x = 0; x < number_of_input_patterns; x++)

{

delete[]input[x];

}

delete[]input;

delete[]hidden;

for (x = 0; x < number_of_input_patterns; x++)

{

delete[]output[x];

}

delete[]output;

for (x = 0; x < number_of_input_patterns; x++)

{

40

delete[]target[x];

}

delete[]target;

delete[]bias;

for (x = 0; x < input_array_size; x++)

{

delete[]weight_i_h[x];

}

delete[]weight_i_h;

for (x = 0; x < hidden_array_size; x++)

{

delete[]weight_h_o[x];

}

delete[]weight_h_o;

delete[]errorsignal_hidden;

delete[]errorsignal_output;

file_loaded = 0;

return;

}

Chapter 6

Experiment Analysis And Testing

6.1 Feeding Test Data
The test sample is fed to the Neural Network. Using the trained weights the o/p at
each neuron is calculated. The o/p of each neuron at the o/p layer is found. The voice
command corresponding to the neuron that gives the maximum o/p is the match required.

The greater the no. of training samples ,greater is the accuracy. As the number of
commands increases more training samples have to be given.Lesser the allowable error,
the greater is the accuracy. But these factors limit speed.

6.2 Unit Testing
Each module was tested independently.

6.2.1 lpc()
Initially 2000 lpc values were taken.It gave good results but took more time to learn.
Hence it was reduced to 100 which gave faster results without considerably sacri�cing
accuracy.

6.2.2 learn()
The error tolerance was initially set to 0.1. This did not give good results.The outcome
was better with 0.05 tolerance.

The other modules were tested and they gave no problems.

6.3 Interface Testing
After all the modules (feature extraction, recognition, front-end) were compiled and tested
individually using unit testing, they were integrated to make the �nal product. After

6.3 Interface Testing 42

that, each test performed in the unit testing phase (refer section Unit Testing) was then
performed on the product as a whole.

Many errors were then recti�ed like:
• The sting class of C++ used of the back-end were all changed to QString to make
it compatible with the Qt1 libraries used.

• All functions were explicitly prototyped for the Qt libraries to be able to call them
from the private section of the classes.

1Qt is the library by Troltech inc used for the GUI design for the front-end

Chapter 7

Conclusion and future Enhancement

The program is capable of talking voice commands and carrying out the speci�ed operation
by that command. The percentage accuracy is about 85%. Also it take a considerable
time in processing the voice input.
In future, we propose to enhance the system for:

• Increase the accuracy by using more di�erentiating features like mel frequencies
instead of lpc values.

• Decreasing the processing time by using less no of input features for each command
but using improved input methods.

• Provide for �ltering of noise to the input signal and further improvise it by using
hardware �lters and dsp processors.

• Improvise it to work for continuous speech.
• Walk towards speaker independency by decreasing the threshold amount of traning
required by the network for successful pattern classi�cation.

Chapter 8

References

1. Digital Processing of Speech Signals: L. R. Rabiner and R. W. Schafer Prentice-Hall
(Signal Processing Series), 1978

2. The Government Standard Linear Predictive Coding : LPC-10
3. Thomas E. Tremain. Speech Technology Magazine, April 1982, p. 40-49
4. Simon Haykin: Neural Networks, A Comprehensive Foundation, Second Edition
5. B. Yegnanarayana : Arti�cial Neural Networks
6. Robert J. Schalko� : Arti�cial Neural Networks
7. Yann LeCun, Leon Bottou, Genevieve B. Orr, Klaus-Robert Müller: Neural Net-

works: Tricks of the Trade
8. Paul J. Werbos, Backpropagation: basics and new developments, The handbook of

brain theory and neural networks, MIT Press, Cambridge, MA, 1998

