
LINUX CLUSTER POSSIBILITIES IN 3-D

PHOTO QUALITY IMAGING AND

ANIMATION

Arjun Jain

5th Semester CSE

Room No. 231

Chamundi Block

R.V. College of Engineering

Bangalore-59

9886260870

arjun@rvce.ac.in

November 15, 2003

1



1 ABSTRACT

We present the PC cluster - Blob built in the Department of Computer Science and

Engineering, Bangalore. The structure of the cluster is described and the perfor-

mance is evaluated by rendering benchmark Persistence of Vision 3-D images.

1.1 BACKGROUND

With the increasing needs of market there is a high demand for High-end computing

systems. One of the major drawbacks of these High-performance systems is their

enormous cost. Moreover such systems are not scalable and therefore not suitable

for a growing industry with ever growing computing needs. The requirement is a

Lowcost, High-Performance system which is Scalable. In such a scenario, Cluster

technology aptly fits in. A Linux cluster is a high performance low cost parallel

computing engine capable of delivering on big scientific and engineering problems.

It is basically Loosely Coupled network of Linux servers functioning as a single

parallel machine. The basic philosophy being able to harness the computational

power of many as such low performing machines when used together. Clusters have

been found to deliver the performance of a Conventional supercomputer at low cost.

1.2 TECHNOLOGY

GNU/Linux (http://www.gnu.org) is used as the operating system for the

cluster. PVM 3.1 (http://www.netlib.org/) was used as the Virtual Ma-

chine. Since Paralell Virtual Machine has an extensive library that is

compatible with ANSI C and C++ for message passing with slave time-

out feature, PVM was used here. POV-RAY 3.5c (http://www.povray.org)

2



was used as the Image Rendering software to render photo realistic 3-d

images. The load balancing was done by a custom made patch developed-

PVM-Pov which renders images on the cluster. PVM-Pov divides the im-

age to be rendered into blocks, spawns the slaves and the rendered images

are send back to the master where they are integrated generate the final

image.

1.3 DESIGN

Ray-Tracing is perhaps one of the most processor consuming tasks for

the industry today. Huge Vectors and MPPs are employed to render

photo-quality images. Also with increasing hardware comes increase in

price. Rendering of complex images on a cluster is a unique concept

wherein the image is divided into number of sub images (by the custom

made patch) as objects and layers. Each of these layers in turn are then

spawned to the slaves by the master. The slaves then process their load

and their rendered share is sent back to the master. The master then

integrates all the layers and objects received from the slaves and thus the

final image is rendered.

1.4 RESULTS

The results obtained by rendering images on the cluster have been more

than satisfactory. The statistics generated (described in detailed later)

have been very encouraging as described for one of our test benchmarks

benchmark-3-5c.pov are as follows: a single node workstation rendered

3



the image at 1024x768 resolution in 59 minutes and 23 seconds. The

same image rendered on our Cluster with 7 nodes took 10 minutes and

2 seconds which implies an efficiency of 81.12%. Thus cluster developed

is an industry standard Beowulf Class Linux cluster built using off the

shelf regular PCs.

1.5 CONCLUSION

Each 10 second motion picture quality animation consists of at least 800

frames. One frame of the POV-Ray benchmark benchmark.pov at a

resolution of 1024 x 768 took 59.23 mins on a high end system AMD

1800+ with 128 MB DDR Ram . Thus a similar 10 second animation

will take only 32 days 18 hours and 40 minutes approximately. Thus the

only possible alternatives in this field of high quality image and graphics

rendering is either an inexpensive and scalable Cluster or an expensive

Vector.

2 INTRODUCTION

Computational image rendering is widely used for generating images and

graphics for the motion pictures industry and bio-modelling. From the

mathematical point Ray-tracing is a rendering technique that calculates

an image of a scene by shooting rays into the scene. The scene is built

from shapes, light sources, a camera, materials, special features, etc. For

every pixel in the final image one or more viewing rays are shot into the

scene and tested for intersection with any of the objects in the scene.

4



Viewing rays originate from the viewer, represented by the camera, and

pass through the viewing window (representing the final image).Every

time an object is hit, the color of the surface at that point is calculated.

For this purpose the amount of light coming from any light source in

the scene is determined to tell whether the surface point lies in shadow

or not. If the surface is reflective or translucent new rays are set up

and traced in order to determine the contribution of the reflected and

refracted light to the final surface color, but in order to achieve results

comparable with those generated by conventional techniques experimen-

tal we need supercomputers power or parallel computers cluster. In this

way such tasks are solved during the last decade of 20th century. Clusters

based on PCs running Linux have become the cheapest supercomputers

in the academic and commercial field. We created such a cluster in The

Department of Computer Science, R.V. College of Engineering (CSE,

RVCE). The clusters performance have been tested by generating many

such test images.

3 PERSONAL COMPUTER CLUSTER

With the power and low prices of today’s PCs and the availability of

100 Mb/s Ethernet interconnect, it makes possible to combine them to

build High- Performance-Computing and Parallel Computing environ-

ment. Today, there is a wide range of switches available, ranging from 8

to over 100 ports, some with one or more Gigabit modules that lets you

build large systems by interconnecting such switches or by using them

5



with a Gigabit switch. Switches have become inexpensive enough, so

there is not much reason to build your network by using cheap hubs or

by connecting the nodes directly in a hypercube network. The local area

PC cluster was made in The Department of Computer Science, RVCE

for image processing and rendering. PC cluster of 7 nodes: all of them

dual AMD 1.8 G Hz processors; all have 128 MB RAM, a 40 GB disk

drives. Machines have been installed with the standard RedHat 9.0 and

WinXP(parallel cluster runs in Linux OS at this time). All PCs are

assumed to boot from a their own hard drive and have a fast Ethernet

network (100 Mb/s) connection to a switch controlling the private cluster

network. The suggested range of addresses for a private network is from

192.168.100.1 to 192.168.100.20. Nobody is able to connect directly to

a compute node from outside this network anyway. This keeps normal

traffic from interfering with inter-node communication and vice versa.

Thus the total memory 896 MB; total disk space 280 GB. We use cus-

6



tom made PVM-Pov Cluster software - a high-performance parallel image

rendering environment for workstation and PC clusters [2]. PVM-Pov

uses the PVM 3.1 high performance communication library a dedicated

communication library for cluster computing (it allows using many types

of networks). Communication library used is faster than usual TCP pro-

tocol. In addition a trunking is possible (installation and use of up to 4

NICs). Under the PVM virtual machines users are not aware whether or

not a system is a cluster of single/multi-processor computers or a clus-

ter of clusters. PVM system has check point function. It allows restart

function and improves a reliability of the system. Available compilers are

gcc and g++ compilers C, C++ and HPF. The cluster differs from the

network of workstations in security,application software, administration,

booting and file systems. Application software uses underlying message

passing system like Parallel Virtual Machine (PVM). There are many

ways to express parallelism, but message passing is the more effective

and more modern.

For administering the cluster we have login node with a keyboard,

monitor and mouse. Other nodes can be headless (no keyboard, mouse,

or monitor) but in our way there are all machines like login node, because

our cluster is made on the basis all equal class. Any machine can be logged

into from the login node using secure shell(ssh) and can be administered.

7



4 DESIGN

Image generation using Ray-tracing is a is a rendering technique that

calculates an image of a scene by shooting rays into the scene. The scene

is built from shapes, light sources, a camera, materials, special features,

etc.

For every pixel in the final image one or more viewing rays are shot into

the scene and tested for intersection with any of the objects in the scene.

Viewing rays originate from the viewer, represented by the camera, and

pass through the viewing window (representing the final image).

Every time an object is hit, the color of the surface at that point is

calculated. For this purpose the amount of light coming from any light

source in the scene is determined to tell whether the surface point lies

in shadow or not. If the surface is reflective or translucent new rays are

set up and traced in order to determine the contribution of the reflected

and refracted light to the final surface color.

Now this is a very ’heavy’ and time-taking job for the processor. For

every pixel atleast three to four rays are shot and tested for intersection.

Each ray has its equation and each equation has to be solved for inter-

section. Each pixel needs to be rendered and simple ray tracing can be

done for a uniprocessor system using the following algorithm.

Select center of projection and window on viewplane

for(each scan line in image){

for(each pixel in scanline){

determine ray from center of projection through pixel;

8



for(each object in the scene){

if(object is intersected and is closest considered thus far)

record intersection and object name;

}

set pixel’s color to that at closest object intersection;

}

}

Now, instead of rendering the entire image on the same system we

here use a clustered system in the following way: the image is broken up

into still smaller blocks. Each slave is to then render one or more of these

blocks independently and send the rendered image back to the master

where all the blocks are integrated to form the final image. This can be

explained using the following algorithm.

This is an algorithm to add 75 integers on a clustered system with 3

slave nodes and one master node.

/* Algorithm for the master program */

initialize the array ‘items’.

/* send data to the slaves */

for i = 0 to 3

Send items[25*i] to items[25*(i+1)-1] to slave Pi

end for

/* collect the results from the slaves */

9



for i = 0 to 3

Receive the result from slave Pi in result[i]

end for

/* calculate the final result */

sum = 0

for i = 0 to 3

sum = sum + result[i]

end for

print sum

The algorithm for the slave can be written as follows.

/* Algorithm for the slave program */

Receive 25 elements from the master in some array say ‘items’

/* calculate intermediate result */

sum = 0

for i = 0 to 24

sum = sum + items[i]

end for

send ‘sum’ as the intermediate result to the master

Here each slave is given the task of adding 1/3 of the total no of

integers and the final result of these 25 addition is sent to the master

10



where it adds the 3 results from the slaves to get the final result of the

addition of 75 integers. Thus the job is done in paralell.

5 RESULTS

The algorithms described and developed were used to generate many

benchmark 3-D images such as the famous skyvase.pov, chess.pov and

blob.pov. All the experiments under consideration here were carried on

clusters with 4, 3, 2, and single processor systems.

5.1 SKYVASE.POV

The benchmark SKYVASE rendered at 1024x768 resolution is shown bel-

low:

11



This image takes approximately 14 seconds in a quard processor sys-

tem and 17 in the tri processor system.

12



In a uniprocessor system the same takes 38 seconds and in a bi pro-

cessor system 20 seconds thus with a degradation of only 2% to 14%.

5.2 CHESS.POV

This is a more complex nad heavier image than the Skyvase. The bench-

mark CHESS 2c rendered at 10024x768 resolution is shown bellow:

This image takes approximately 150 seconds in a quard processor sys-

tem and 210 in the tri processor system.

13



In a uniprocessor system the same takes 580 seconds and in a bi pro-

cessor system 350 seconds thus with a degradation of only 12% to 14%.

6 REFRENCES

1.PVM: Parallel Virtual Machine - A User’s Guide and Tutorial for Net-

worked Parallel Computing, Al Geist, Adam Beguelin, Jack Dongarra,

Robert Manchek, Weicheng Jiang and Vaidy Sunderam, MIT Press.

Available at http://www.netlib.org/

2.MPI: The Complete Reference, Marc Snir, Steve Otto, Steven Huss-

Lederman, David Waker and Jack Dongarra, MIT Press. Available at

http://www.netlib.org/.

3.RS/6000 SP: Practical MPI Programming,Yukiya Aoyama and Jan

Nakano, International Techical Support Organization, IBM Corporation,

14



http://www.redbooks.ibm.com/.

4.A Beginner’s Guide to PVM Parallel Virtual Machine, Clay Breshears

and Asim YarKhan, Joint Institute of Computational Science, University

of Tennessee, USA. www-jics.cs.utk.edu/PVM/pvm/ guide.html.

5.PVM: An Introduction to Parallel Virtual Machine, Emily Angerer

Crawford, Office of Information Technology, High Performance Comput-

ing, www.hpc.gatech.edu/seminar/pvm.html.

6.www.povray.org - POVRAY sources for UNIX

7.PVM home http://www.epm.ornl.gov/pvm/pvm home.html

8. PVMPOV from sunsite.unc.edu

15


