Using design patterns to improve aspect reusability and dynamics

Andrey Nechypurenko
Siemens AG, CT SE2
Otto-Hahn-Ring 6
Munich, 81739, Germany

andrey.nechypurenko@mchp.siemens.de

ABSTRACT
After the first implementations of AOP languages allow developers to exercise in applying the idea of concern separation in OOP, it becomes clear that despite opening new possibilities for developers, aspects are still software entities with all related old problems like reusability, customizability and effectiveness. In addition, the need to be able to dynamically switch aspects on and off has also been realized.

This paper provides contribution to research in the field of theoretical background for effective aspect implementation and introduces the design pattern-based Detector framework as a way to improve aspect reusability and to add the possibility to dynamically add/remove aspect-related functionality in the applications.

This paper also motivates aspect type classification as control-flow and state- triggered and proposes a way to deal with both types in a similar way by separating aspectual condition detection and handling using Observer-based Detector framework.
1. PROBLEM STATEMENT
One size does not fit all. If you are a software engineer who should create a library which will be used by other developers to build higher level libraries or applications, sooner or later you will realize that there is a set of incompatible (preemptive) requirements you should satisfy. There are two possible ways in this situation: a) to analyze the possible usage scenarios and optimize the library for the most likely use-cases; b) provide customization possibilities to let the library be tuned for concrete needs.

If you chose the first approach, 90% of your customers probably will be happy but the rest 10% will be forced to either re-implement required functionality or to code “between the lines” to achieve their goals.

With the second approach, you will need to define the set of interfaces to your system to provide the way to customize the system by substituting existing (default) functionality with custom implementation. This approach is well described in [Kiczales92] and the idea of “dual-interface” system was presented as a possible solution where the “primary” interface is the business functionality exposed by the system and the “secondary” is the interfaces which provide different application customization possibilities.

In this paper I would like to address the problem of how the set of interfaces for application customization (“secondary” interfaces) should look like. The problem stems from the fact that with general-purpose libraries it is impossible to predict what kind of functionality will need to be customized. In extreme case, to provide highest degree of flexibility, all tasks (like memory allocation, error handling, synchronization, etc.) should be done indirectly using some kind of delegation to the substitutable implementation. The Strategy design pattern [GoF] is a possible way to implement such a delegation. But in practice, it is impossible to predict all situations where such flexibility will be necessary. It means that there will always be a risk that the one who will use your library will need to tune something that was not foreseen in the implementation.

To solve this problem, at least three tasks should be accomplished: a) define the functionality to be customized which is possibly distributed over the whole application, b) figure out how this definition should looks like in order to be reusable, robust, introduce minimum overhead, etc. and c) substitute existing implementation with the custom version.

AOP is the modern way to separate the functionality which crosscut the application, localize the implementation of such crosscutting concerns and weave the custom implementation back to the application. So the implementation part in this paper will rely on currently available AOP support provided by the AspectJ language and would concentrate on the second part - how the “secondary” interfaces should look like.

Currently available AOP languages like AspectJ provide linguistic means to localize crosscutting concern (aspect) related code in a single logical unit (aspect definition), and to define points (join points) in the dynamic call graph of a running program where aspect-related functionality should be inserted and executed. Despite obvious advantages, there are still problems left that need to be addressed by software architects who are trying to apply the idea of separation of concerns for developing next-generation software systems. This paper focuses on the three following problems:

· Aspect reusability problem - how to avoid application specific code in aspect implementation.

· Aspect dynamics problem - how to make it possible to switch on/off aspect-related functionality.

· Aspect uniformity problem - there are at least two major aspect categories: control-flow- and state-triggered aspects. Despite different nature, it is desirable to handle both categories in the similar way.

Depending on the AOP support provided by the respective aspect language, the problems mentioned above could be even more complicated in case no access to the source code is available – it is not possible to add/remove already available compiled aspect implementation to existing compiled application or dynamically switch aspect-related functionality on/off.

To illustrate the problems mentioned above, the sample application called bean which is distributed as a part of AspectJ will be analyzed. This application will be also modified to demonstrate the advantages of the proposal.
1.1 Reusability Problem
The reusability problem stems from the fact that assumptions and expectations about properties like method signatures or names of methods and variables are frequently encoded directly in the aspects. Consider the following advice definition of an aspect that adds JavaBean property notification mechanism support to a Point class.
/** Advice to get the property change event

 * fired when the setters are called. It's

 * an around advice because one needs the old
 * value of the property.

 */

void around(Point p): setter(p) {

String propertyName =
thisJoinPointStaticPart.getSignature().getName().substring("set".length());
 int oldX = p.getX();
 int oldY = p.getY();

 proceed(p);

 if (propertyName.equals("X")) {
 firePropertyChange(
 p, propertyName, oldX, p.getX());
 } else {
 firePropertyChange(
 p, propertyName, oldY, p.getY());

 }

}

Figure 1. Original advice definition
This advice declaration makes assumptions about the existence of X and Y properties (marked by bold font) and corresponding getter/setter methods. Such an assumption leads to the impossibility to use the complete aspect for classes with other attributes because the advice mentioned above will fail to call corresponding notification methods.
1.2 Dynamics Problem

To illustrate this problem, please consider a network application with ability to detect intrusions and react on such a situation by switching to SSL protocol to transmit information over the network.

SSL, as any other encryption introduces calculation overhead, which is not desirable when application, performs in secure environment (for example intranet). But if the environment state changed and is considered as insecure (intrusion attempt detected), additional encryption should be turned on. This behavior could be treated as security-related aspect of the application and illustrates the need to be able to turn certain functionality on/off depending on current application and execution environment state.

With most available AOP languages, after an aspect is weaved with application code, it is impossible to turn weaved functionality on or off.

1.3 Aspect Uniformity Problem

Executing some piece of code before or after certain method calls can be considered as a typical example of control-flow-triggered aspect because the call to a particular method is considered as a condition to trigger aspect functionality.

But there could be other conditions where it is also necessary to execute some specific logic. I would call such conditions as state-triggered aspects. The primary difference between these two aspect types is that in the last case execution of aspect code is not related to call graph of a running program but triggered by special events generated as a reaction to the execution environment properties.

The security aspect example mentioned in the previous section could be treated as state-triggered (not control-flow-triggered as in bean example) because the execution of this aspect is triggered by some kind of external event and will lead to the application state change. But this state (secure state) could be not initially foreseen and will be introduced later for example as a reaction to the new requirements. But if the available functionality is enough to properly react on this new state changes (for example if there is already a method in the application to switch SSL encoding on/off) what we need is to call this functionality during state change.

Network bandwidth, network packets latency, processor loading, amount of available memory and free space on hard disk could be considered as another examples of such properties. Reaction on these properties changes is typically spread across the whole application and could be treated as crosscutting concern. It is a design challenge to provide infrastructure where such a type of aspects could be well localized and handled the same way as control-flow-triggered aspects.

1.4 Paper organization

The idea of how to resolve the problems mentioned above is based on the analysis of different roles of developers in software projects where AOP is used, and different aspect types which can be found in most applications.

The remainder of this paper is organized as follows: Section 2 introduces different roles of developers in software project where AOP is used; Section 3 introduces the key ideas how to improve aspect reusability and how to add dynamics in the meaning of the possibility to programmatically plug and unplug aspect-related functionality to the application code; Section 4 compares described approaches with related work; Section 5 summarize the open issues; and Section 6 presents concluding remarks.
2. DEVELOPER ROLES IN AOP PROJECT

In order to solve the introduced problems effectively it is necessary to understand the roles the developer can play in a project where AOP is used. Understanding of such roles could help to elaborate a solution with minimized code dependencies and as a result improve development and testing parallelism.

1. Business logic implementer – this is the one whose main assignment is to implement the business functionality expected from the application or library.

2. Aspect architect – this is the person who is responsible for defining application structure in such a form which will make it possible later on to insert different aspect related functionality. This role is not obvious and requires additional explanation. Consider the bank application which transfers money from account A to account B. The pseudo-code for transfer as a transaction-enabled method could looks like following:
/** Method to transfer money

 */

void transferMoney(
 Account source,
 Account destination,
 float amount) {

 transaction.begin();

 try {

 source.withdraw(amount);

 destination.credit(amount);

 }

 catch(OperationFailure x) {

 // rollback and report an error

 transaction.rollback();

 Logger.error(

 “Transfer: ” + source + destination);

 return;

 }

 catch(Throwable x) {

 // any other possible problems

 transaction.rollback();

 Logger.error(x.getMessage());

 return;

 }

 transaction.commit();

}

Figure 2. Transaction-aware transfer method
If now we assume that transaction processing is a crosscutting concern and will be encapsulated in aspect definition, the business logic developer could interpret it as “…just forget about transactions, the weaver will insert everything necessary in the right place” and implement the same code as following:
/** Method to transfer money

 */

void transferMoney(
 Account source,
 Account destination,
 float amount) {

 try {

 source.withdraw(amount);

 destination.credit(amount);

 }

 catch(Throwable x) {

 // any other possible problems

 Logger.error(x.getMessage());

 return;

 }

}

Figure 3. Transaction-unaware transfer method
Such an implementation does not leave the chance (or better to say makes it rather difficult) to enable transactional behavior defined as aspects because it is not necessary to rollback transaction in any places in code where a Throwable exception is catched. It is possible to try to make such an insertion context specific using function names as criteria. But you will also need to wrap the same method with begin/commit calls. This is another join point type, so you got the maintenance problem – set of transactional methods should be synchronized with criterion definition to insert rollback call in catch clause. Instead, the following code does not contain transaction specific code but essentially simplify the task of adding transaction processing using weaver:
/** Method to transfer money

 */

void transferMoney(
 Account source,
 Account destination,
 float amount) throws OperationFailure {

 try {

 source.withdraw(amount);

 destination.credit(amount);

 }

 catch(Throwable x) {

 // any other possible problems

 Logger.error(x.getMessage());

 if(x instanceof OperationFailure) {

 throw (OperationFailure)x;

 }

 }

}

Figure 4. Redesigned transaction-unaware transfer method
With this implementation it will be possible to write “around” advice which wraps the original call with begin/commit calls and invokes rollback in case of OperationFailure exception.

It means that aspect related functionality could not be added to any code. The code should be prepared to be aspectised and this is exactly the task of Aspect Architect to define the rules a) how to remove crosscutting concerns from the business logic and b) how to write the code, which let aspects be weaved easily.

3. Aspect implementer – this is a developer who writes aspect related code based on the conventions and rules defined by Aspect Architect assuming that business logic follows these conventions.

4. Application assembler – this is the developer who is responsible for defining which aspects are need to be inserted into the business logic to satisfy application requirements.
3. DETECTOR-BASED FRAMEWORK

As a way to solve the problem described in the Problem statement section and taking into account different aspect types and developer roles mentioned above the use of Observer [GoF] design pattern in combination with Component Configurator design pattern [POSA2] could be considered.

The intent of Observer design pattern is to “Define a one-to-many dependency between objects so that when one object changes state, all its dependents are notified and updated automatically” [GoF]. It is possible to use this functionality to notify all registered observers to let them execute some logic and/or influence the call graph in case of system enters the certain state (for example, low network bandwidth available) or perform certain action (for example, allocating memory)
.

The main idea is to encapsulate conditions which could lead to execution of aspect-related code using Detectors which detect particular conditions (code- or environment related) and fire events to let application react on certain conditions by executing preconfigured code which represents crosscutting concern. The following picture represents the general structure of the Detectors framework.

[image: image1.wmf]

notify

manage

Detectors

Runtime Environment

Application

Code

Detectors

Repository

Aspects

Logging

Security

Property

Change

Notification

Figure 5. Framework structure
The goal of this structure is to allow processing of different conditions by inserting Detectors in the places where such a conditions could become true. A Detector itself does not contain any processing code but plays the Observable role and just provides the information that something happens and lets aspect-implementation play the Observer role and handle such an event using provided context information. Weaver could perform the Detector insertion task for code-related aspects. All the other Detectors types (for example to capture execution environment-related conditions, or composite detectors) should be configured into the Detector Repository by application developer.

To describe the framework in more details, let me revisit the bean example mentioned above applying proposed application structure.
3.1 Modified Bean Example

To modify the bean example we need to make the following steps.

1. Decide what kind of events we would like to detect using Detectors.

2. Figure out how to insert these Detectors. Manually or using AOP language

3. Implement the aspect as a listener for events fired by Detectors.

4. Instantiate Detectors and register them in the Repository.

5. Subscribe listeners for corresponding events.

The following subsections elaborate on each of these steps.

3.1.1 Event Types We Would Like To Detect

To support property change notification mechanism we need to execute our specific code before and after each property modification call (setter method) with our code. It means that we need to detect the before method call condition and after method call condition. Or using another words – we need to insert Detector before and after each setter call.

3.1.2 How to Insert Detectors

Based on the condition types described in previous section we could say that our events are code-related and the best way to insert such a Detector is to define an around advice and let weaver insert this definitions in proper places. The following is the possible definitions of such an advice.
/** Advice to get the property change event fired
 * when the setters are called. It's an around
 * advice because you need the old value of the
 * property.

*/

void around(Point p): setter(p) {

 // Obtaining detector instance from the

 // Repository

 if(aroundDetector_ == null) {
 aroundDetector_ =
 (AroundDetector)DetectorRepository.instance().

 get("around_setters");

 }

 if(aroundDetector_ != null) {

 // Before condition detection

 aroundDetector_.before(
 thisJoinPointStaticPart, p, this);

 }

 // Original method call

 proceed(p);

 if(aroundDetector_ != null) {

 // After condition detection

 aroundDetector_.after(
 thisJoinPointStaticPart, p, this);

 }

}

Figure 6. Advice definition for Detector insertion
This definition contains four steps.

1. Obtaining a Detector instance from the Repository using the “around_setter” string as a key for requests. Using a repository here allows different implementations of the Detector class itself. It is also possible that an “around_setter” Detector does not exists at all. In such a case no aspect code will be executed at all and the code will behave as without aspects at all.

2. Because in this example the Detector itself is a passive object we need to let the Detector “detect” the before condition by calling the corresponding method. This method contains the code, which is responsible for notifying all registered listeners.

3. Call original setter method using the proceed() keyword supported by AspectJ to let the original setter method be executed.

4. This step is similar to step 2 but lets Detector detect after condition.

Note, how the implementation specific code is removed from the advice declaration using detectors. Now this declaration could be considered as reusable because there is no assumptions about interface structure and property names in the advice declaration. This code just defines the place where the condition detection event will be fired.

3.1.3 Detector Implementation

The Detector is the Observable object and is responsible for maintaining observers list and notifying them.

public class AroundDetector

{

 public void addAroundListener(AroundListener l)

 {…}

 public void removeAfterListener(AfterListener l)
 {….}

 public void before(JoinPoint.StaticPart jpsp,

 Object target_object,

 Object advice) {…}

 public void after(JoinPoint.StaticPart jpsp,

 Object target_object,

 Object advice) {…}

 protected void notifyAfterListeners(

 AfterNotification n) {…}

}

Figure 7. Detector implementation
3.1.4 Implement the Aspect as a Detector Listener

The relationships between detector and aspect implementation are represented by means of the Observer pattern.

public class AroundSetterListener implements
 BeforeListener, AfterListener

{

 public void notifyBefore(BeforeNotification n){

 this.p = (Point)n.getTarget();
 this.propertyName =
 n.getJPStaticPart().getSignature().
 getName().substring("set".length());

 this.oldX = this.p.getX();
 this.oldY = this.p.getY();

 }

 public void notifyAfter(AfterNotification n) {

 if(this.propertyName.equals("X")) {
 ((BoundPoint)(n.getAspect())).
 firePropertyChange(
 this.p, this.propertyName,
 this.oldX, this.p.getX());

 } else {
 ((BoundPoint)(n.getAspect())).
 firePropertyChange(
 this.p, this.propertyName,
 this.oldY, this.p.getY());

 }

 }

 private String propertyName;
 private int oldX;
 private int oldY;
 private Point p;

}

Figure 8. Aspect as a Detector Listener
Now the code, which was initially in the advice declaration (see Figure 1), has been moved to the listener implementation.

3.1.5 Instantiate Detectors and Register them in the Repository
After running the weaver our initial code will be Detector-enabled. It means that we provide the infrastructure for detecting conditions of interest. It is like installing the communication channels for information distribution. But in addition, we need to provide information suppliers and consumers. In our case detectors are suppliers and aspect implementation as listeners are consumers. This task could be well formalized using the Component Configurator design pattern where detectors play the component role and the Detector Repository plays the Component Repository role.

Using this idea, two steps should be done to equip the code with Detectors: 1) instantiate the detector and 2) register the detector in the repository. Actually, if the Detector repository is implemented as a Singleton, the registration task could be handled in the Detector base class. In such a case the only thing that should be done is just a detector instantiation.

3.1.6 Subscribe Listeners for Corresponding events
The code, equipped with detectors will not expose any aspect –relevant behavior. We need to register our aspect implementations as listeners for certain detectors. The following code demonstrates how to make this step.

AroundSetterListener my_listener =

 new AroundSetterListener ();

AroundDetector around_detector =
 (AroundDetector)DetectorRepository.instance().
 get("around_setter");

if(around_detector == null ||
 !(around_detector instanceof AroundDetector)) {

 System.out.println(
 "Requested Detector not found");
 System.exit(1);

}

around_detector.addListener(my_listener);

Figure 9. Registering aspect implementation
This code fragment contains the following steps.

1. Instantiating the concrete listener implementation.

2. Obtaining a corresponding detector instance from the repository.

3. Subscribe the listener to the event produced by the obtained detector.

3.2 State-triggered Aspects

The previous sections describe in details how to insert code related aspects and let them detect the conditions of interest.

According to the classification presented in section 1.3 there is a second group of aspects – state-triggered. Using the detector-listeners paradigm, we could hide the different nature of aspects behind detectors. It means that the only difference in environment related case would be where and how corresponding detectors will evaluate available environment properties and fire events.

There are two possibilities – active and passive condition evaluations.

3.2.1 Active Condition Evaluation

In this case, there should be dedicated execution thread within the application. This thread periodically calls corresponding detection methods of detectors to let them evaluate available properties and decide whether to fire events (call registered listeners) or not.

3.2.2 Passive Condition Evaluation

In this case, execution of evaluation methods within detectors should be done using one of the application threads. Such behavior could be achieved for example by inserting evaluation calls before and/or after each or dedicated set of application business methods.

3.3 Tasks and Roles

As an advantage of proposed approach consider the following analysis of developer roles and corresponding responsibilities.

The tasks described above correspond to the different roles identified in section 3. The following table summarizes role/task relationships.

Table 1. Role/task relationships summary

	Role
	Task

	Business logic implementer
	Implement business logic

	Aspect architect
	Design code to make it possible later to introduce aspect-related behavior

	Aspect implementer
	Provide aspect implementation

	Application assembler
	Create application by putting together business logic and required aspects

This table demonstrates that proposed pattern provides clear separation of development roles. Such a separation could increase development parallelism. Such role/task definition could also be used as a hint for assigning code artifacts owners and project directory structure.
3.4 Performance Impact

It is obvious that introducing additional calls (for example before and after business method call) has negative impact on performance. But in the case of an empty listener list or even absence of detectors at all, the performance impact could be treated as really small if the business logic is complex. In case of trivial or really fast logic implemented by business methods, performance impact could be considerable comparing with overall time required for method execution.

4. RELATED WORK

The idea to use some kind of objects whose responsibility is to detect conditions of interest and let react on particular state in the execution environment is not new. The QuO framework [QuO] uses SystemCondition objects to provide interfaces to resources, mechanisms, objects, and ORBs in the system that need to be measured and controlled by QuO Contracts. However, the QuO framework is concentrated on QoS related aspects and does not provide easy possibility to seamlessly integrate source code related aspects into the infrastructure defined by the framework. QualProbes [QualProbes] is another framework which introduces not only the ways to catch particular events and/or state changes using Probes but also automates the adaptation algorithm by defining target condition and the ways to influent the system to reach this desired condition. This framework is also concentrated on QoS aspects as the QuO framework and does not cover execution flow related aspects.

In [Aspectual], the authors present the idea of aspect definition and implementation separation using a new term - Connector. This approach is similar to the idea presented in this paper. Detectors could be treated as a kind of connectors which just provide the link between the place where condition of interest was registered and code which handle this particular condition. [Aspectual] paper does not cover the state-triggered aspects though proposed approach could probably be used to cover this aspect type also.

5. OPEN ISSUES

As an alternative to the Observer pattern based framework, the Interceptor design pattern [POSA2] could also be considered. More concretely – in case of control-flow-triggered aspects, Detectors could be inserted “between” the method calls and “intercept” the invocation. But this is the simplest case. The proposed framework also makes it possible to install the aggregated detectors which observe the more primitive ones and correlate fired events. In this scenario, detectors looks rather like observables then interceptors. A state-triggered aspect is another case where detectors are more observables as interceptors. Especially if active condition evaluation is used (there is a dedicated execution thread to evaluate conditions in the detectors), each detector could block on detection call or itself get notification from another objects used to detect condition of interest.

But I am not quite sure that combination of Interceptor and Strategy pattern could not resolve the problems mentioned in this paper. I am going to evaluate this approach also.

6. CONCLUSIONS

This paper proposes the way to define application customization (“secondary”) interface as a Detector-based framework. Using such framework could also improve aspect reusability and introduce dynamics by interpreting the cases when aspectual functionality should be invoked as conditions detected by special classes called Detectors and processed by classes listening for notifications from Detectors. Such separation simplify the task of application fine tuning and allows changes to be introduces later in development time or even after deployment using reconfiguration possibility provided by Component Configurator pattern.

7. ACKNOWLEDGMENTS

I would like to say thank you to Klaus Ostermann who introduced the AOP to me and spent a lot of his time discussing the topics presented in this paper with. I am also appreciated hard but very helpful criticism and valuable paper improvement suggestions I have got from Frank Buschman. I am also would like to say thank you to Roman Pichler for reviewing early versions of this paper.
8. REFERENCES

[Kiczales92] Kiczales G. Towards a New Model of Abstraction in Software Engineering. In proceedings of the international workshop on new models for software architecture, November 4 – 7, 1992, Tokyo.

[POSA2] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann, Pattern-Oriented Software Architecture: Patterns for Concurrency and Distributed Objects, Volume 2, Wiley & Sons, New York, NY, 2000.

 [GoF] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley, Reading, MA, 1995.

[QuO] Schantz RE, Loyall JP, Atighetchi M, Pal PP. Packaging Quality of Service Control Behaviors for Reuse. ISORC 2002, The 5th IEEE International Symposium on Object-Oriented Real-time distributed Computing, April 29 - May 1, 2002, Washington.

[QualProbes] Li B, Nahrstedt K, QualProbes: Middleware QoS Profiling Services for Configuring Adaptive Applications.

[Aspectual] Lieberherr K., Lorenz D., Mezini M., Programming with Aspectual Compone

� The Interceptor pattern [POSA2] could be considered as an alternative. Please see the Open Issues section for discussion on this topic.

PAGE

_1076418232.doc
[image: image1.bmp]

Runtime Environment

Application Code

Detectors

Detectors Repository

manage

Aspects

Logging

Security

Property Change Notification

notify

