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1. INTRODUCTION

Long range spatial and temporal correla-
tions in dynamical systems is identified as sig-
natures of self-organized criticality (Bak, Tang
and Wiesenfeld 1988) or deterministic chaos
(Procaccia 1988). The strange attractor pattern
characterising deterministic chaos in atmosphe-
ric flows is manifested as the fractal geometry
to the global cloud cover pattern _céonsistent
with the inverse power-law form v ©, where
vis the frequency and B the exponent for the
atmospheric eddy energy spectrum (Lovejoy and
Schertzer (1986). The physical mechanism res-
ponsible for the observed robust spatiotemporal
structure of the strange attractor of dynamical
systems is not yet identified (Procaccia 1988).
In this paper, a cell dynamical system model
for turbulent shear flows in the ABL is pre-
sented.

2. CELL DYNAMICAL SYSTEM MODEL FOR
DETERMINISTIC CHAOS IN DIGITAL COMPU-
TER REALIZATION OF NONLINEAR
MATHEMATICAL MODELS.

2.1 Cell Dynamical System Model

In this nondeterministic computational te-
chnique, the dynamical system is assumed to
consist of an assembly of identical unit cells.
Starting with arbitrary initial conditions the
evolution of the dynamical system proceeds at
successive unit length steps during unit inter-
vals of time following arbitrary laws of inter-
action between adjacent cells. The cellular
automata belongs to the cell dynamical system
described above and does not require calculus
based long term integration schemes. However,
the cellular automata rules for evolution do not
have any physical basis. A cellular automata
computational scheme incorporating the physics
for model and real world atmospheric flows is
described in the following.

2.2 Computer precigsion and deterministic

chaos

Digital computer realizations of continuum
mathematical models of dynamical systems are
subject to the following inherent uncertainities
characterizing deterministic chaos. (i) Sensitive
dependence on initial conditions. (ii) Model
results scale with computer precision. (iii) Mo~
del results exhibit periodicities related to
computer precision (Beck and Roepstorff 1987).
In the following it is shown that computer pre-
cision related roundoff error generates selfsimi-
lar fractal internal structure to the phase space
trajectory of the computed model output with
sensitive dependence on initial conditions.

t
Let OROR 1 (Fig.l) be a Euclidean strai-

i = U = '
ghtline where ORo RoR 1 drR. Let OROR 1

be measured with a yardstick of length dRo
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which is slightly less than dR. The measured
length ORl is equal to 2dRo and is slightly less
than 2dR.

Ry

Figure 1 : The Internal structure of strange attra-
ctor design traced by digital compu-
ter realizations of nonlinear mathe-
matical models of atmospheric flows
and observed real world atmospheric
flows.

The measurement procedure may be represented
geometrically by the triangle ORoRl
OR°=R°R1 = dR. The original Euclidean straight

line OROR’ ] now acquires a curvature and the

where

apparent angular turning d6 caused by the
imprecise measurement is R;BRI. In the
AROORl the apparent length OR; after two sta-
ges of imprecise measurement is equal to the
vector sum of the first two length steps. All
possible such apparent structure generated in
the phase space by the computed output can
be represented by a solid of revolution about
the axis ORo and whose vertical section is the

triangle OR Ro‘ The spatial integration of the

successive limprec:'xse computational length step
distributions give the spatial domain for the
final computation W units of scale length R per
unit. The discrete size of the yardstick gene-
rates apparent structure to the phase space

domain of the computed output.

In the following the computational structu-
re of numerical models is guantified by analogy
with large eddy formations in turbulent shear



flows. Townsend (1956) has shown that large
eddies of appreciable intensity form as a chan-
ce configuration of the turbulent motion. Consi-
der a large eddy of radius R which forms in
a field of isotropic turbulence with turbulence
length and velocity scales 2dR and w, respecti-
vely. The dominant turbulent eddy radius is
therefore equal to dR. The root mean sguare
(r.m.s) velocity of circulation AW in the large
eddy of radius R is

2GR, 2
T R Y
The above analogy of the generation of coherent
structures by small scale turbulent fluctuations
in fluid flows is directly applicable to the
generation of intermal structure created by dis-
crete yardstick length to the phase space tra-
jectory of compted numerical model outputs.
The similarity of deterministic chaos in numeri-
cal model outputs to turbulence in fluid flows
was first pointed out by Ruelle and Takens
(1971). Eq. (1) is directly applicable to digi-
tal computations of nonlinear mathematical mode-
ls where w, units of yardstick length dR result
in a total computation of dW units of numerical
length scale R. Eq.(l) gives the progressive
increase of the number of units of precise com-
putation w, of scale length dR with increase
in computational steps. Denoting by Wn and

wn+l' (n+l)th intervals
of computation with respective numerical length

(aw)? = (1)

the successive n and

scales Rn = dR and Rn+l= R, Eg. (1) may be
written as
2 - I B 2
Wna = 2 den (2)
The magnitude of the numerical length scale

Rn(dR) increases with the computation. R_ is
equal to W, at the nth interval of computg:ion

beginning with unit values for Rn’ Rn +1 and
Wn. The apparent curvature, i.e. angular tur-
ning d@ in radians of the computed output Wn+1
is given by Rn/Rn+l‘ The domain length Rn+1
of the computed output is given by the cumula-
tive vector sum of Rn' the yardstick length.
The values of Rop? Wn, R de, W and ©

n n+l
are tabulated in Table 1.

Table 1 : The computed spatial growth of the
strange attractor design traced by
dynamical systems as shown in Fig.l.

R Wn drR de wn+l e

1 1 1 1 1.254 1
2 1.254 1.254 0.627 1.985 1.627

3.254 1.985 1.985 0.610 3.186 2.237

5.239 3.186 3.186 0.608 5.121 2.845

8.425 5.121 5.121 0.608 8.234 3.453

13.546 8.234 8.234 0.608 13.239 4.061

21.780 13,239 13.239 0.608 21,286 4.669

35.019 21.286 21.286 0.608 34,225 5.277

56.305 34.225 34.225 0.608 55.029 5.885

90.530 55.029 55.029 0.608 88.479 6.493
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It is seen that the phase space trajectory of

“the computed output W and the domain length

R follow the Fibonacci mathematical number
series. The internal structure of the phase spa-
ce trajectory of nonlinear model outputs there-
fore consists of the quasiperiodic Penrose tiling
pattern (Janssen 1988) as shown in Fig.l. It
is seen from Table 1 and Fig.l that starting
from either side of the initial computation step
ORo the computation W proceeds in logarithmic

spiral curves 012117t21={31={41={5

plete cycle is executed by the numerical com-
putation W after 5 length steps of computation

on either side of ORO, i.e. clockwise and anti-

such that one com-

clockwise rotation. The overall envelope of
the computation W follows the logarithmic spi-
ral pattern. The incremental units of computa-
tion dW of domain length 4R at any stage of
computation is non-Buclidean because of internal
structure generated by w, units of discrete
yardstick length dR. A measure of the depart-
ure from Euclidean shape of computed model
output W caused by discrete yardstick length
is derived as follows. Let k be the steady
state fractional space (two-dimensional) occupied
by the discrete yardstick length distribution
in the two-dimensional Euclidean phase space
of the computed output.

A 4dr
daw R

k (3)

k is the non-dimensional steady state measure
of the departure from Euclidean shape of the
computed model output. Earlier it was shown
that successive computational steps generate
angular turning d© of the computed output W
given by dR/R which is a constant equal to
1/T where T is the golden mean. Further
the successive values of the computed output
W units of numerical length scale R follow the
Fibonacci mathematical number series. There—
fore, the value of k, the fractional departure
from Euclidean geometrical shape of the compu-
ted output is derived from Eq. (3) as

k = = 0.382 (4)

>—_u L

Since the steady state non-dimensional fractional
departure from Euclidean shape of the strange
attractor design traced in the phase space by
the computed output W during successive length
step increments is equal to 0.382, i.e. less
than half, the overall Euclidean shape of the
strange attractor is retained. Integrating Eqg.
(3) for computation starting with w, units of
length dR

] (s)



The computed numerical output W follows
a logarithmic spiral with Z equal to the scale
ratio of the domain length R with respect to
the yardstick length 4R, i.e. Z = R/dR. The
above concept of the growth of the computatio-
nal structure W in successive length step incre-
ments dR is analogous to cellular automata com-
putational technigque and is identified as the
universal period doubling route to chaos. The
generation of strange attractors with selfsimilar
fractal structures in computer realizations of
nonlinear mathematical models is a direct conse-
quence of computer precision related roundoff
errors. The geometrical structure of the stran-
ge attractor is quantified by the recursion re-
lation at Eg. (2). Eqg. (2) is identified as the
universal algorithm for the generation of the
strange attractor pattern in computer realiza-
tions of nonlinear mathematical models.
2.3 Feigenbaum's oconstant for deterministic
chaos

The Feigenbaum's constant a and 4 for
the universal period doubling route to chaos
may be derived directly from the universal
recursion vrelation, i.e. Eg. (2) as shown in
the following.

The Feignbaum's constant a is given by
the successive spacing ratios W for adjoining
period doublings. W and R are respective
successive spacing ratio since by concept W
and R are computed as incremental growth steps
dwWw and dR for each stage of computation.

The recursion relation at Eg. (2) may
be written as follows
2 4 3
WR W R
2(=) = 7(=) (=) (6)
w,r w, r
From Eq. (2) it can be shown that a = 1/k =

relative increase in the computed output doma-

in with respect to the yardstick length domain
= T

a2 =variance of a = I‘4

2a2 = Total variancé of the relative fractional

evolution of computed output domain for both
clockwise and anticlockwise phase space traje-
ctories.

The Feigenbaum's constant d is the
successive spacing ratios of R for the univer-
sal recursica'l Se_latjlonBand can be shown to be

equal to W2 R2 /Wl R,".

d is therefore egual to the relative volume
intermittency of occurrence of Euclidean structu-
re in the phase space during each computational
step, i.e. m/5 radian angular rotation as shown
earlier in Table 1. Therefore for one complete
cycle of computation the relative volume inter
mittency of occurrence of Euclidean structure
in the computed phase space trajectory is 7 d.
The reformulated universal recursion relation
for numerical computation at Eg. (6) may now
be written in terms of the universal Feigen-
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baum's constants as

232 =

md

The above equation states that the relative
volume intermittency of occurrence of Euclidean
structure for one dominant cycle of computation
contributes’ to the total variance of the fractio-
nal Euclidean structure of the strange attractor
in the phase space of the computed numerical
result.

3. CELL DYNAMICAL SYSTEM MODEL
FOR ATMOSPHERIC FLOWS

In the following, theoretical consideration
similar to those developed in Section 2 for
deterministic chaos in numerical model results
is advanced for coherent atmospheric flow stru-
ctures (Mary Selvam 1988). In summary, the
mean flow at the planetary atmospheric bounda-
ry layer (ABL) possesses an inherent upward
momentum flux of frictional origin at the plane-
tary surface. This turbulence scale upward
momentum flux is progressively amplified by
the exponential decrease of atmospheric density
with height coupled with the buoyant energy
supply by microscale fractional condensation
on hygroscopic nuclei even in an unsaturated
environment. The mean large scale upward
momentum flux generates helical vortex roll (or
large eddy) circulations in the planetary atmos-
pheric boundary layer and is manifested as clo-
ud rows/streets and mesoscale cloud clusters
(MCC) in the global cloud cover pattern. A
conceptual model of large and turbulent eddies
is shown in Figure 2.

MICRO SCALE CAPPING
INVERSION {MC)

LARGE EDOY

SURFACE LAYER
.TURSULENT EDDY OF FRICTIONAL ORIGIN

Figure 2 : Conceptual model of large and
turbulent eddies in the ABL.

The generation of turbulent buoyant energy by
the microscale fractional condensation is maxi-
mum at the crest of the large eddies and resul-
ts in the warming of the large eddy volume.
The turbulent eddies at the crest of the large
eddies are identifiable by a microscale capping
inversion (MCI) which rises upwards with the
convective growth of the large eddy in the
course of the day. This is seen as the rising
inversion of the day time planetary boundary
layer in the echosonde records. The space-time
integrated mean of the turbulence scale vertical
acceleration w, generated by dominant eddy flu-
ctuations of radius r give rise to large eddy
acceleration W of radius R.

The above concept of large eddy growth
from turbulences scale buoyant energy generation
envisages large eddy growth in discrete length
step increments dR equal to r and is therefore
analogous to the 'cellular automata' computatio-



nal technique where cell dynamical system gro-
wth occurs in unit length steps during unit in-
tervals of time since turbulence scale yardstick
for length and time are used for measuring lar-
ge eddy growth. Large eddy growth by such
length scale doubling is hereby identified as
the universal period doubling route to chaos
eddy growth process. Therefore for turbulent
eddy acceleration w, large eddy incremental
growth is 4R and is associated with large eddy
acceleration dW and is given by Eqg.l. The
internal structure of large eddy circulations
is made up of balanced small scale circulations
tracing out the well known quasiperiodic Pen-
rose tiling pattern identified as the quasi-
crystalline structure in condensed matter phy-
sics (see Table 1 and Figure 1).

As seen from Fig 1 and from the concept
of eddy growth vigorous counter flow (mixing)
characterises the large eddy volume. The
steady state non-dimensional fractional volume
dilution k of the large eddy volume by envi-
ronmental mixing is given by Eg.3. Since the
steady state non-dimensional fractional volume
dilution of large eddy by inherent turbulent
eddy fluctuations during successive length step
increments is equal to 0.382, i.e., less than
half, the overall Euclidean geometrical shape
of the large eddy is retained as manifested in
the cloud billows which resemble spheres.

The turbulent eddy circulation speed and
radius increase with the progressive growth
of large eddy as given by Eg.5 where the con-
stant  k equal to 0.382 is identified as the
Von Karman's constant. The Von Karman's con-
stant is therefore the universal constant for
deterministic chaos.

4. CONCLUSION

The cell dynamical system model for de-
terministic chaos described in this paper ena-
bles to identify the quasiperiodic Penrose tiling
pattern as the internal structure of the strange
attractor design traced by digital computer rea-
lizations of nonlinear mathematical models of
atmospheric flows as well as the observed real
world atmospheric flows in the planetary atmos-
pheric boundary layer. The Von Karman's con-
stant equal to 0.38 is the wuniversal constant
for deterministic chaos which quantifies the
steady state fractional departure from Euclidean
geometry for computed and real world . dynami-
cal systems.
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