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which is slightly l e s s  than dR. The measured 
Long range spat ia l  and temporal correla- length OR1 is equal t o  2dR and is sl ightly l e s s  

tions in dynamical systems is identified a s  siq- o 
natures of ~ self-orgar&ed cri t icali ty ( Bak , T G ~  than 2 d R -  
and W iesenfeld 1988) o r  deterministic chaos 
( Procaccia 1988). The strange attractor pattern 
characterising deterministic chaos in atmosphe- 
r i c  flows is manifested a s  t h e  fractal  geometry 
t o  t h e  global cloud cover pattern fpnsistent 
with t h e  inverse power-law form v- , where 
v i s  t h e  frequency and B t h e  exponent for  t h e  
atmospheric eddy energy spectrum ( Lovejoy and 
Schertzer (3986).  The physical mechanism res- 
ponsible for  the  observed robust spatiotemporal o 
structure of t h e  strange attractor of dynamical 
systems is not yet  identified (Procaccia 1988). 
In t h i s  paper,  a ce l l  dynamical system model 
for turbulent shear flows in the  ABL is pre- 
sented. 

2. CELL DYNAMICAL SYSTEM MODEL FOR 
DETERMINETIC CHAOS IN DIGITAL COMPU- 
TER REALIZATION OF NONLINEAR 
MATHEMATICAL MODELS. 

2.1 C e l l  D y n a m i c a l  S y s t e m  M o d e l  

In t h i s  nondeterministic computational te- 
chnique, t h e  dynamical system is assumed t o  
consist of an assembly of identical unit cells .  
Starting with arbi t rary  initial conditions t h e  
evolution of t h e  dynamical system proceeds at  
successive unit length steps during unit inter- 
vals of time following arbi t rary  l a w s  of inter- 
action between adjacent cells. The c e l l o r  
automata belongs t o  t h e  ce l l  dynamical system 
described above and does not require calculus 
based long term integration schemes. However, 
t h e  cellular automata rules for evolution do not 
have any physical basis. A cellular automata 
computational scheme incorporating t h e  physics 
for model and rea l  world atmospheric flows is 
described in t h e  following. 

2.2 C o m p u t e r  ereciaion and deterministic 
chaos - 
Digital computer realizations of continuum 

mathematical models of dynamical systems a r e  
subject t o  t h e  following inherent uncertainities 
characterizing deterministic chaos. (i) Sensitive 
dependence on init ial  conditions. (ii) Model 
results  scale with computer precision. (iii) Mo- 
del  results  exhibi t  periodicities related t o  
computer precision (Beck and Roepstorff 1987). 
In t h e  following it is shown tha t  computer pre- 
cision related roundoff e r ro r  generates selfsimi- 
l a r  fractal  internal structure t o  t h e  phase space 
trajectory of t h e  computed model output with 
sensitive dependence on init ial  conditions. 

Let ORoR'l (Fig.1) be a Euclidean strai- 

ghtline where ORo = R o R q l  = dR. L e t  ORoRt l  

be measured with a yardstick of lcngth d~~ 

Figure 1 : The Internal structure of strange attra- 
ctor design traced by digital compu- 
t e r  realizations of nonlinear mathe- 
matical models of atmospheric flows 
and observed rea l  world atmospheric 
flows. 

The measurement procedure may be represented 

geometrically by t h e  triangle ORoRl where 

ORo=RoR1 = dR. The original Euclidean straight 

l ine ORoRT1 now acquires a curvature and t h e  

apparent angular turning d 0  caused by t h e  

imprecise measurement is R In t h e  

A RoORl t h e  apparent length OR1 after  two sta- 

ges of imprecise measurement is equal t o  t h e  

vector sum of t h e  first two length steps. A l l  

possible such apparent structure generated in 

the  phase space by the  computed output can 

be represented by a solid of revolution about 

t h e  axis  ORo and whose vert ical  section is t h e  

triangle ORIRo. The spat ia l  integration of t h e  

successive imprecise computational length step 

distributions give t h e  spatial  domain for  t h e  

final computation W units of scale length R per 

unit. The discrete s ize  of the  yardstick gene- 

ra tes  apparent structure t o  t h e  phase space 

domain of t h e  computed output. 

In t h e  following the  computational structu- 

r e  of numerical models is quantified by analogy 

with large eddy formations in turbulent shear 



flows. Townsend (1956) has  shown t h a t  la rge  
eddies  of appreciable intensity form a s  a chan- 
ce configuration of t h e  turbulent motion. Consi- 
de r  a large eddy of rad ius  R which forms in 
a f ie ld  of isotropic turbulence with turbulence 
length and velocity scales 2dR and w, respecti- 
vely. The dominant turbulent eddy radius  is 
therefore equal t o  dR. The root mean square  
( r . m . s )  velocity of circulation dW in t h e  la rge  
eddy of radius R is 

The above analogy of t h e  generation of coherent 
s tructures by s m a l l  scale turbulent fluctuations 
in fluid flows is di rec t ly  applicable t o  t h e  
generation of internal s tructure created by dis-  
crete yardst ick length t o  t h e  phase space t ra -  
jectory of compted numerical model outputs. 
The similari ty of deterministic chaos in numeri- 
cal model outputs t o  turbulence in fluid flows 
was f i r s t  pointed out by  Ruelle and Takens 
(1971). Eq. (1) is di rec t ly  applicable t o  digi- 
tal computations of nonlinear mathematical mode- 
Is where w, units of yardst ick length dR result 
in a to ta l  computation of dW units of numerical 
length scale R .  Eq. (1) gives  t h e  progressive 
increase of t h e  number of units of precise com- 
putation w, of sca le  length dR with increase 
in computational s teps .  Denoting by W n  and 

W n + l t  t h e  successive n and (n+ l ) th  in terva ls  

of computation with respective numerical length 

scales Rn = dR and Rn+l= R ,  Eq. (1) may be 

written a s  

The magnitude of t h e  numerical length scale 
R (dR) increases with t h e  computation. R is 
e t u a l  t o  W n  a t  t h e  nth in terva l  of computakon 
beginning with unit values f o r  R n ,  Rn+l and 
wn. The apparent  curvature, i.e. angular tur- 
ning d e  in radians of t h e  computed output Wn+l 

is given by  Rn/Rn+l. The domain length Rn+l 

of t h e  computed output is given by t h e  cumula- 
t i v e  vector sum of R t h e  yardst ick length. n '  
The values of Rn+lt Writ Rn d e ,  Wn+l and 8 

a re  tabulated in Table 1. 

Table 1 : The computed spa t ia l  growth of t h e  
strange a t t rac tor  design traced by  
dynamical systems as shown in Fig.1. 

It is seen t h a t  t h e  phase space trajectory of 
t h e  computed output W and t h e  domain length 
R follow t h e  Fibonacci mathematical number 
series. The internal  s tructure of t h e  phase spa- 
ce trajectory of nonlinear model outputs there- 
fore  consists of t h e  quasiperiodic Penrose tiling 
pattern ( ~ & s s e n  1988) a s  shown in Fig.1. It 
is seen from Table 1 and Fig.1 t h a t  starting 
from e i ther  s i d e  of t h e  in i t ia l  computation s t ep  
ORo t h e  computation W proceeds in logarithmic 
sp i r a l  curves OR1R2R3R4R5 such t h a t  m e  com- 

plete cycle is executed by t h e  numerical com- 

putation W after 5 length s t eps  of computation 

on e i t he r  s i d e  of ORo, i.e. clockwise and anti- 

clockwise rotation. The overa l l  envelope of 
t h e  computation W follows t h e  logarithmic spi-  
ral pattern. The incremental units of computa- 
tion dW of domain length dR a t  any stage of 
computation is non-Euclidean because of internal 
s tructure generated by w, units of discrete 
yardst ick length dR. A measure of t h e  depart- 
ure from Euclidean shape  of computed model 
output W caused by  d iscre te  yardst ick length 
is derived a s  follows. L e t  k be t h e  steady 
s ta te  fractional space (two-dimensional) occupied 
by t h e  d iscre te  yardst ick length distribution 
in t h e  two-dimensional Euclidean phase space 
of t h e  computed output. 

k is t h e  non-dimensional s teady s t a t e  measure 
of t h e  departure from Euclidean shape  of t h e  
computed model output. Earl ier  it was shown 
t h a t  successive computational s t e p s  generate 
angular turning d 8  of t h e  computed output W 
given by  dR/R which is a constant equal t o  
1/ T where r is t h e  golden mean. Further 
t h e  successive values of t h e  computed output 
W units of numerical length scale R follow t h e  
Fibonacci mathematical number series. T h e r e  
fore,  t h e  value of k t  t h e  fractional departure 
from Euclidean geometrical shape of t h e  compu- 
ted  output is derived from Eq. ( 3 )  a s  

Since t h e  steady state non-dimensional fractional 
departure from Euclidean shape  of t h e  strange 
at tractor  design traced in  t h e  phase space b y  
t h e  computed output W during successive length 
s t ep  increments is equal t o  0.382, i.e. less 
than half ,  t h e  overa l l  Euclidean shape  of t h e  
strange at tractor  is retained. Integrating Eq. 
(3 )  for  computation starting with w, units of 
length dR 



The computed numerical output W follows 
a logarithmic sp i r a l  with Z equal t o  t h e  scale .. 
rat io of t h e  domain length R with respect t o  
t h e  yardstick length dRI i.e. Z = R/dR. The 
above concept of t h e  growth of t h e  computatio- 
nal structure W in successive length step incre- 
ments dR is analogous t o  cellular automata com- 
putational technique and is identified a s  t h e  
universal period doubling route t o  chaos. The 
generation of strange attractors with selfsimilar 
fractal structures in computer realizations of 
nonlinear mathematical models is a direct  conse- 
quence of computer precision related roundoff 
errors.  The geometrical structure of t h e  stran- 
ge  attractor is quantified by t h e  recursion re- 
lation a t  Eq. (2 )  . Eq. (2 )  is identified a s  t h e  
universal algorithm for  t h e  generation of t h e  
strange attractor pattern in computer r d z a -  
tions of nonlinear mathematical models. 

2.3 Peigenbaum's con&ant for deterministic 
cham 

The Feigenbaum's constant a and d for 
t h e  universal period doubling route t o  chaos 
may be derived directly from t h e  universal 
recursion relation! i.e. Eq. ( 2 )  a s  shown in 
the  following. 

The Feignbaum's constant a is given by 
t h e  successive spacing ratios W for adjoining 
period doublings. W and R a r e  respective 
successive spacing ra t io  since by concept W 
and R a r e  computed a s  incremental growth s teps  
dW and dR for each stage of computation. 

The recursion relation a t  Eq. (2 )  may 
be written a s  follows 

From Eq. (2 )  it can be shown tha t  a = l /k  = 
relat ive increase in t h e  computed output doma- 

in wjth respect t o  t h e  yardstick length domain 
= r 

2a2 = Total variance of t h e  relat ive fractional 
evolution of computed output domain for both 
clockwise and anticlockwise phase space traje-  
ctories. 

The Feigenbaum's cmstant d is t h e  
successive spacing ratios of R for  t h e  univer- 
sal r e c u r s i y  ylelat&m3and can be shown t o  be 
equal t o  W 2  R 2  /W1 R1 . 
d is therefore equal t o  t h e  relat ive volume 
intermittency of occurrence of Euclidean strubu- 
r e  in t h e  phase space during each computational 
s tep ,  i.e. n/5 radian angular rotation a s  shown 
ear l ier  in Table 1. Therefore for one complete 
cycle of computation t h e  relat ive volume inter 
mittency of occurrence of Euclidean structure 
in t h e  computed phase space trajectory is n d. 
The reformulated universal recursion relation 
for numerical computation a t  Eq. (6)  may now 
be written in terms of t h e  universal Feigen- 

baum's constants a s  
2a = n d  

The above equation s ta tes  tha t  t h e  relat ive 
volume intermittency of occurrence of Euclidean 
structure for one dominant cycle of computation 
contributes' t o  t h e  total variance of t h e  fractio- 
nal Euclidean structure of t h e  strange attractor 
in t h e  phase space of t h e  computed numerical 
result. 

3. CELL DYNAMICAL SYSTEM MODEL 
FOR ATMOSPHERIC PLOWS 

In the  following theoretical consideration 
s i m i l a r  t o  those developed in Section 2 for  
deterministic chaos in numerical model results 
is advanced for  coherent atmospheric flow stru- 
ctures (Mary Selvam 1988). In summary! t h e  
m e a n  flow a t  t h e  planetary atmospheric bounda- 
ry l aye r  ( A B L )  possesses an inherent upward 
momentum flux of frictional origin a t  t h e  plane- 
tary surface. This turbulence scale upward 
momentum flux is progressively amplified by  
t h e  exponential decrease of atmospheric density 
with height coupled with t h e  buoyant energy 
supply by microscale fractional condensation 
on hygroscopic nuclei even in an unsaturated 
environment. The mean large scale upward 
momentum flux generates helical vortex ro l l  ( o r  
large eddy)  circulations in t h e  planetary atmos- 
pheric boundary layer and is manifested a s  clo- 
ud rows/streets and mesoscale cloud clusters 
( M C C )  in t h e  global cloud cover pattern. A 
conceptual model of large and turbulent eddies 
is shown in Figure 2. 

MICRO SCALE CAPPING 
INVERSION IMCI)  

LARGE EDDY 

SURFACE LAYER 

Figure 2 : Conceptual model of large and 
turbulent eddies in t h e  ABL. 

The generation of turbulent buoyant energy by  
t h e  miaoscale fractional cmdensation is maxi- 
mum a t  t h e  crest  of t h e  large eddies and resul- 
ts in t h e  warming of t h e  large eddy volume. 
The turbulent eddies a t  t h e  cres t  of the  large 
eddies a re  identifiable by a microscale capping 
inversim (MCI) which r i se s  upwards with t h e  
convective growth of t h e  large eddy in t h e  
course of t h e  day. This is seen a s  t h e  rising 
inversion of t h e  day time planetary boundary 
layer  in t h e  echosonde records. The space-time 
integrated m e a n  of t h e  turbulence scale vert ical  
acceleration w, generated by dominant eddy flu- 
ctuations of radius r give -rise t o  large eddy 
acceleration W of radius R .  . . 

The above concept of large eddy growth 
from turbulences scale buoyant energy generation 
envisages large eddy growth in discrete length 
s tep  increments dR equal t o  r and is therefore 
analogous t o  t h e  ' cellular automata' computatio- 



nal  technique where ce l l  dynamical system gro- 
wth occurs in unit length s t eps  during unit in- 
t e rva l s  of time since turbulence scale yardst ick 
for  length and time a r e  used fo r  measuring lar-  
ge eddy growth. Large eddy growth by such 
length scale doubling is hereby identified a s  
t h e  universal period doubling route t o  chaos 
eddy growth process. Therefore for  turbulent 
eddy acceleration w, large eddy incremental 
growth is dR and is associated with large eddy 
acceleration dW and is given by Eq.1. The 
internal s tructure of la rge  eddy circulations 
is made up of balanced s m a l l  scale circulations 
tracing out t h e  w e l l  known quasiperiodic Pen- 
rose t i l ing pattern identified a s  t h e  quasi- 
crystal l ine structure in condensed matter phy- 
s i c s  (see Table 1 and Figure 1) . 

A s  seen from Fig 1 and from t h e  concept 
of eddy growth vigorous counter flow (mixing) 
characterises t h e  large eddy volume. The 
steady s ta te  non-dimensional fractional volume 
dilution k of t h e  la rge  eddy volume by  envi- 
ronmental mixing is given by Eq.3. Since t h e  
steady s t a t e  non-dimensional fractional volume 
dilution of la rge  eddy by inherent turbulent 
eddy fluctuations during successive length s t e p  
increments is equal t o  0.382, i.e., less than 
half, t h e  overa l l  Euclidean geometrical shape 
of t h e  large eddy is retained a s  manifested in 
t h e  cloud billows which resemble spheres .  

The turbulent eddy circulation speed and 
radius increase with t h e  progressive growth 
of large eddy a s  given by Eq.5 where t h e  con- 
stant  k equal t o  0.382 is identified a s  t h e  
Von Karman's constant. The Von Karman's con- 
stant  is therefore t h e  universal  constant for  
deterministic chaos. 

4. CONCLUSION 

The ce l l  dynamical system model for de- 
terministic chaos described in t h i s  paper ena- 
bles t o  identify t h e  quasiperiodic Penrose t i l ing 
pattern a s  t h e  internal  s tructure of t h e  strange 
at tractor  design t raced  by digi tal  com puter rea- 
lizations of nonlinear mathematical models of 
atmospheric flows a s  w e l l  a s  t h e  observed real 
world atmospheric flows in t h e  planetary atmos- 
pheric boundary layer .  The Von Karman's con- 
stant  equal t o  0.38 is t h e  universal  constant 
for  deterministic chaos which quantifies t h e  
steady state fractional departure from Euclidean 
geometry fo r  computed and real world d b a m i -  
cal systems. 
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