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ABSTRACT 
Finite precision computer realizations of numerical weather 

prediction (NWP) and climate models are sensitively dependent on 
initial conditions and give chaotic solutions, now identified as 
deterministic chaos, an area of intensive research in all branches 
of science and other areas of human interest. Deterministic chaos 
is a consequence of the following inherent errors in numerical 
computations. (a) The continuum dynamical system such as atmospher- 
ic flows is computed as a discrete dynamical system with implicit 
assumption of subgrid-scale homogeneity. (b) Model approximations 
and assumptions. (c) Binary number representation in digital com- 
puters precludes exact number representation at the data input 
stage itself. (d) Round-of f error of finite precision computer 
arithmetic magnifies exponentially with time the above uncertain- 
ties and gives unrealistic solutions. The physics of deterministic 
chaos is not yet identified. In this paper, a summary of a recently 
developed nondeterministic cell dynamical system model for deter- 
ministic chaos is presented. The model predicts approximate round- 
off error doubling on an average for each iteration with propaga- 
tion of round-off error to mainstream computation within 100 itera- 
tionsin single precision computations. Round-off error will propa- 
gate to mainstream computation and give unrealistic solutions in 
numerical weather prediction (NWP) and climate models which incor- 
porate thousands of iterations in long-term numerical integration 
schemes. 

INTRODUCTION 
'Chaos1 means disorder or lack of predictability. Deterministic 

chaos is the name given to the sensitive dependence on initial 
conditions of finite precision computer realizations of nonlinear 
mathematical models of dynamical systems. A dynamical system is a 
system that changes it behaviour with time, e.g., weather, climate, 
stock market price fluctuations, spread of infectious diseases in a 
population, heart rhythms, electrical activity of the human brain, 
etc. Though the governing equations are Ideterministic', i.e., 
precisely formulated and written down, the numerical solutions are 
chaotic because of sensitive dependence on initial conditions and 
therefore named 'deterministic chaos1. Deterministic chaos pre- 
cludes long-term predictability. Sensitive dependence on initial 
conditions was identified nearly a century ago by PoincarG in his 
study of the three body problem. Advent of computers and graphical 
display facilities in the late nineteen fifties facilitated numeri- 
cal solutions and in 1963 Lorenz (1) identified sensitive depend- 
ence on initial conditions in a simple mathematical model of at- 
mospheric flows. Ruelle and Takens (2) were the first to identify 
the similarity between deterministic chaos and turbulence in fluid 
flows; turbulence is as yet an unresolved problem in fluid dynam- 
ics. Investigations by scientists and mathematicians revealed 
surprising order underlying deterministic chaos, such as the uni- 
versal Feigenbaum's constants (3) a and d which characterise the 
universal period doubling route to chaos, where, transition to 
chaos occurs by successive period doublings in the computed result. 
Since 1980 'Chaos Science' is an intensive area of research in all 
branches of science and other areas of human interest such as 



economics, politics and art (4). The delicate and beautiful pat- 
terns of deterministics chaos generated by iterative solutions of 
simple nonlinear equations as seen on computer colour graphics has 
fascinated people in general and accounts for the widespread inter- 
est in this field. The1 physics of deterministic chaos is not yet 
identified. Simple nonlinear equations give chaotic i.e., random 
solutions. Random chance, i.e., unpredictable behaviour governs 
many natural phenomena such as weather and climate. Investigations 
in Chaos Science may help simulate complex,apparently unpredictable 
behaviour by means of simple equations and help identify a 'Theory 
of Everythingt (TOE). 

In this paper, a brief summary and current status of 
deterministic chaos with special reference to weather and climate 
prediction,followed by,a summary of a nondeterministic cell dynami- 
cal system model for deterministic chaos in computer realizations 
of dynamical systems (5) is presented. 

DETERMINISTIC CHAOS : CURRENT STATUS 
Traditionally, mathematical models of dynamical systems are 

formulated using Newtonian continuum dynamics where it is assumed 
that the rate of change dX/dt of variable X with time t is continu- 
ous over infinitesimally small intervals of time dt. A dynamical 
system is characterised by M variables Xi, i = 1,. . .M. The govern- 
ing equations for the time evolution of the dynamical system are 
written as 

The governing equations, in. general, are nonlinear i.e., without 
analytical solutions. Numerical solutions are then obtained as 
successive iterations such as 

where the value Xn+ of the variable X at the (n+l)th instant is a 
function F of Xn w h h  implicit error feedback loop. The following 
errors are inherent to finite precision computer realizations of 
continuum dynamical systems such as Eq. (3) : (a) Continuum dynami- 
cal system (Eq.2) is computed as discrete dynamical system such 
that 

with implicit assumption of sub-grid scale homogeneity (b) Binary 
computer arithmetic precludes exact number representation at the 
data input stage itself (c) Errors of model approximations and 



assumptions. Round-off error of finite precision computer arithme- 
tic magnifies exponentially with time the above errors (a) to (c) 
and gives chaotic solutions, i.e., deterministic chaos. Determinis- 
tic chaos in time evolution has been investigated extensively as 
compared to spatial evolution of the dynamical system. Since the 
spatial evolution - is a function of time, the spatial pattern is 
also expected to exhibit deterministic chaos, i.e., sensitive 
dependence on initial conditions. sensitive dependence on initial 
conditions implies long-term spatiotemporal correlations in comput- 
ed solutions. 

Computed solutions are plotted in the phase space (an abstrac- 
tion) defined by M co-ordinates which represent the M variables of 
the dynamical system. The values of M variables at any instant are 
plotted as a point in the M-dimensional phase space, e.g., the 
u,v,w momenta of an air parcel along the x,y and z directions 
respectively will have a 6-dimensional phase space. The line join- 
ing the successive points in phase space gives the trajectory of 
the dynamical system. The trajectory traces a 'strange attractor' 
(another abstraction), so-called because of its strange convoluted 
shape is the final destination of all possible trajectories. Two 
initially close points diverge exponentially with time though still 
within the strange attractor domain. The strange attractor has 
selfsimilar fractal geometry. Self-similarity implies identical 
geometrical shape at all scales of magnification, i.e., the sub- 
units resemble the whole. The word 'fractal' coined by Mandelbrot 
(6) in 1977 implies broken (fractional) Euclidean structure whose 
fractal dimension D is given by D = dlnM/dlnR where M is the mass 
contained within a distance R from a point in the extended object. 
A constant value for D implies uniform stretching on a logarithmic 
scale. Objects in nature, in general possess a multifractal struc- 
ture, i.e., the fractal dimension D is different for different 
length scales R. The selfsimilar fractal spatial pattern of dynami- 
cal systems evolve by selfsimilar fluctuations on all time scales. 
Selfsimilar fractal geometry to the spatial pattern implies long- 
range spatial correlations. The power spectrum of temporal fluctua- 
tions is broadband, and follows the inverse power law form l/fB 
where f is the frequency and B the exponent. Inverse power law form 
for power spectra imply long-range temporal correlations or per- 
sistence, i.e., memory. Deterministic chaos in computed dynamical 
systems is therefore characterised by long-range spatiotemporal 
correlations. Such long-range spatiotemporal correlations are 
ubiquitous to dynamical systems in nature and is recently identi- 
fied as signatures of self-organized criticality (7). Atmospheric 
flows exhibit long-range spatiotemporal correlations as manifested 
in the selfsimilar fractal geometry to the global cloud cover 
pattern concomitant with inverse power law form for power spectra 
of temporal fluctuations documented by Lovejoy and Schertzer ( 8 ) .  

The physics of deterministic chaos, i.e., self-organized criti- 
cality in real world and computed model dynamical systems is not 
yet identified. The fidelity of computed model solutions is ques- 
tionable in the absence of analytical (true) solutions (9). Comput- 
ed model predictions should be accepted with caution. Alternatives 
for more realistic prediction are statistical models such as the 
16-parameter long-range monsoon prediction model of Gowarikar et a1 
(10) based on well documented long-range spatiotemporal correla- 
tions, namely, self-organized criticality in atmospheric flows. 

Realistic prediction of dynamical evolution of real world 
systems such as atmospheric flows, therefore require alternative 
concepts for physical laws, formulation of structurally stable 
governing equations which are stable to small perturbations and 
robust computational techniques which do not incorporate error 
feedback as in the case of numerical integration schemes. It is 



therefore required to formulate simple (algebraic) governing equa- 
tions with analytical solutions or solutions which do not require 
numerical integration. 'In this paper a non deterministic cell 
dynamical system model for deterministic chaos in computer realiza- 
tions of dynamical system (5) is summarised. The model predicts a 
approximate round-off error doubling on an average for each itera- 
tion. Round-off error will propagate into the mainstream computa- 
tion and give unrealistic solutions in NWP and climate models which 
incorporate thousands of iterations in long-term numerical integra- 
tion schemes. 

MODEL CONCEPTS 
In summary,deterministic chaos is a direct result of round-off 

error growth in iterative computations (Eq.3), i.e., long-term 
numerical integration schemes. Round-off error growth is visualised 
in Fig. 1 and explained in the following. qn single precision 
computations (computer) the precision is 10- or the round-off 
error is Computer precision is analogous to yardstick length 
dR in length measurement. Two points separated by a distance les 
than yardstick length dR cannot be distinguished as separate. In 
the following discussions computer precision is treated as analo- 
gous to yardstick length in length measurement. One unit of length 
measurement of yardstick length dR has the following two inherent 
uncertainities (a) Lengths less than dR will be measured as equal 
to dR. (b) Lengths less than 2dR will also be measured as equal to 
dR. The uncertainty domain associated with unit measurement of 
yardstick length dR can be represented by a circle OR2R11R2 of 
radius OR1 equal to dR (Fig. 1). The precision decreases or the 
yardstick length R increases with successive iterations (Eq.3). In 
the following discussions dR or r refers to the precision inherent 
to the computational system comprising of the digital computer and 
the input uncertainities of the model dynamical system. The in- 
creased imprecision with successive iterations is represented by 
increasing yardstick length R. The computational domain, namely, 
the strange attractor, is expressed as the product WR of the number 
of units of computation W of yardstick length (precision) R. The 
spatial integration of microscopic round-off error domains OR2RI1R2 
of macroscale lengths R gives the computed domain (Fig 1 ) The 
growth of uncertainity domain with successive iterations to give 
the macroscale strange attractor pattern is analogous to formation 
of large eddy structures as envelopes of enclosed microscope scale 
eddy fluctuation domains (1112) The computed strange attractor 
pattern can be visualised as the envelope of enclosed microscopic 
scale uncertainity domains 

ORZR1 IR% 
w, units of computation of 

yardstick length dR may be represen ed as a rectangle of sides w, 
and dR. The spatial integration of such round-off error domains 
results in W units of computation of decreased precision, i.e., 
increased yardstick length R. W units of computation of yardstick 
length R may be expressed as a function of higher precision compu- 
tational domain w,dR as (5) 

w, units of computation of yardstick length dR forms the higher , 

precision earlier stage computation for the next stage. 



Therefore Eq.(5) may be written as 

Starting (n=l) with one unit of computation (W1) of unit yardstick 
length (R1=l) , the uncertainity (dR) in the computation is equal 
to the number of units of computation, i.e., (dR) = WL = I, since 
one unit of computation generates one unit of uncertainty. At the 
end of the first stage of computation the uncertainity or yardstick 
length increase to R2 [=Rl+(dR)1=2] and is equivalent to W2(=1.284) 
units of computation from Eq.6. The successive values of W and R 
are found to follow the Fibonacci mathematical number series. A 
polar diagram kig. 2)of the successive values of yardstick length R 
or the number of units of computation W traces a logarithmic spiral 
with Fibonacci winding number and the quasiperiodic Penrose tiling 
for the internal structure. Since the computed domain (strange 
attractor) is resolved as the product WR of the number of units of 
computation W of yardstick length R, the computed domain can also 
be resolved into the quasiperiodic Penrose tiling pattern. The 
overall trajectory of the dynamical system traces the logarithmic 
spiral R = rebQ where b = tana, a being the crossing angle (Fig 
2) for small angular turning Q 

dR 1 
tan a = - a = - - -  

R r 

Therefore the equation for the logarithmic spiral which quantifies 
the exponential increase of uncertainity in initial conditions is 
given as 

An initial uncertainity, i.e., yardstick length r, grows to 1.855r 
for unit angular turning , i. e. , 7r/5 radians for each length step 
growth with Fibonacci winding number. The uncertainity therefore 
doubles on average for each iteration. Round-off error will 
propagate into mainstream computation within 100 iterations and 
give unrealistic solutions in conventional numerical weather 
prediction'and climate models which incorporate thousands of itera- 
tions in long-term numerical integration schemes. 

The mode1 also enables to show that the power spectra of 
chaotic dynamical systems follow the universal inverse power law 
form of the statistical normal distribution (5) thereby illustrat- 
ing the universality underlying the round-off error. growth dynam- 
ics. The computed strange attractor is therefore a mathematical 
artefact of the universal process of round-off error growth in 
computed dynamical systems. Earlier numerical experiments (13) had 
shown that the round-off error doubles for each iteration. 



CONCLUSIONS 
The important conclusion of the present study is that round-off 

error will propagate into mainstream computation and give unrealis- 
tic solutions in numerical weather prediction (NWP) and climate 
models which incorporate thousands of iterations in long-term 
numerical integration schemes. 

Realistic prediction of weather and climate require alternative 
concepts for physical laws and formulation of structurally stable 
governing equation, i.e., stable to small perturbations and robust 
computational techniques which do not have error feedback to main- 
stream computation. It is now realised that realistic simulation 
requires formulation of simple (algebraic) governing equations with 
analytical solutions or solutions which do not require numerical 
integrations. 

It has been possible to simulate realistically the observed 
self-organised criticality in atmospheric flows by a recently 
developed nondeterministic cell dynamical system model for at- 
mospheric flows (11,12). 
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