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SUMMARY

This study explores the use of fractal analysis in the numerical description of chromatin appearance in breast cytology. Images of
nuclei from fine-needle aspiration biopsies of the breast are characterized in terms of their Minkowski and spectral fractal dimensions,
for 19 patients with benign epithelial cell lesions and 22 with invasive ductal carcinomas. Chromatin appearance in breast epithelial cell
nuclear images is demonstrated to be fractal, suggesting that the three-dimensional chromatin structure in these cells also has fractal
properties. A statistically significant difference between the mean spectral dimensions of the benign and malignant cases is demonstrated.
The two fractal dimensions are very weakly correlated. A statistically significant difference between the benign and malignant cases in
lacunarity, a fractal property characterizing the size of holes or gaps in a texture, is found over a wide range of scales. These differences
are particularly pronounced at the smallest and largest scales, corresponding respectively to fine-scale texture, indicating whether
chromatin is clumped or fine, and to large-scale structures like nucleoli. Logistic regression and artificial neural network classification
models are developed to classify unknown cases on the basis of fractal measures of chromatin texture. Using leave-one-out
cross-validation, the best logistic regression classifier correctly diagnoses 95·1 per cent of the cases. The best neural network model can
correctly classify all of the cases, but it is unclear whether this is due to overtraining. Fractal dimensions and lacunarity are useful tools
for the quantitative characterization of chromatin appearance, and can potentially be incorporated into image analysis devices to assure
the quality and reproducibility of diagnosis by breast fine-needle aspiration biopsy. ? 1998 John Wiley & Sons, Ltd.
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INTRODUCTION

Numerous studies have aimed at developing image
analysis procedures for the resolution of difficult differ-
ential diagnoses in cytology and histopathology. The
general approach used involves characterizing nuclei
with numerical measures of factors considered subjec-
tively by pathologists. A diagnosis is assigned on the
basis of these features (also referred to as descriptors), in
accordance with a prescribed classificatory approach
determined and validated on the basis of representative
sets of cases. Among the most useful features
for cytological applications have been measures of
nuclear size, pleomorphism, and chromatin appearance.
This study evaluates the use of fractal descriptors of
chromatin appearance in breast cytology.

In image analysis, chromatin appearance is expressed
in terms of the texture of a digitized nuclear image, i.e.,
the spatial distribution of grey values. A nuclear image
can be viewed as a surface for which the x- and
y-coordinates represent position and the z-coordinate
represents grey level. Figures 1 and 2 illustrate the
texture of representative benign and malignant breast
epithelial cell nuclei. While qualitatively they look dif-
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ferent, it has proven exceedingly difficult to assess
quantitatively such subjective differences in texture in a
way suitable for classificatory analysis. A number of
approaches have been suggested,1 based on Markovian
analysis,2,3 run length statistics,4 textons,5 Fourier
analysis,6 mathematical morphology,7 and local grey
level variation.8 The most popular approach, based on
Markovian analysis, may yield over 60 highly corre-
lated9 features which are difficult to interpret and do not
correspond to the visual impressions of pathologists.10

Fractal geometry offers an alternative approach to
chromatin texture description.

Fractal geometry provides a framework to describe
mathematically objects exhibiting structure over a range
of scales.11 Such objects, which have no characteristic
size but rather exhibit similar detail on many scales, are
called fractals and may be described by their fractal
dimensions and by measures of lacunarity. Applications
of fractal geometry to pathology12,13 have concentrated
on using fractal dimensions to characterize the structural
complexity or irregularity of cell14,15 and nuclear16

membranes, of tissue shape,17–19 and of cell growth
in vitro.20,21 In this work, we use methods of fractal
analysis to describe the structure of chromatin in light
microscopic images of breast epithelial cell nuclei. We
demonstrate differences in fractal properties between
benign and malignant cases, and show how fractal
dimensions and lacunarity can be used in conjunction
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367FRACTALS AND BREAST CANCER DIAGNOSIS
with logistic regression and artificial neural network
classifiers to diagnose breast lesions.

MATERIALS AND METHODS

Cytological and histological materials

Cytology specimens were obtained from 41 patients,
of whom 22 were diagnosed with invasive ductal carci-
noma and 19 as benign with no atypia. Each diagnosis
was made by a cytologist and independently confirmed
by a pathologist on the basis of histopathological find-
ings. With the exception of two cases, all histopathologi-
cal diagnoses were reconfirmed by a second pathologist.
Cytological specimens were processed using the ultrafast
Papanicolaou protocol.22

Image analysis

Image acquisition was performed on a self-assembled
system based on a Gateway 2000 486DX2/50E micro-
computer augmented with Sprynt i860 image processing
boards and the Semper 6 Plus graphics program, con-
nected to a Nikon Optiphot microscope equipped with a
100# Nikon Plan objective through a Sony DXC-M2
? 1998 John Wiley & Sons, Ltd.
camera. For each specimen, randomly selected epithelial
cell nuclei were segmented, excluding overlapping and
damaged nuclei as well as those with insufficient con-
trast. Segmentation was performed using an arc-forming
method,23 involving the selection of three points on the
margin of a nucleus, the computation and display of the
arc connecting these points, and the extension of this
contour with additional arcs until the whole profile is
outlined. We have found this approach to be the most
reproducible method for segmenting cytological images.
Subsequent image processing and descriptor computa-
tion was performed using software written in C and run
on a Silicon Graphics Indigo2 workstation and Silicon
Graphics Power Challenge XL supercomputer. Nuclear
images were normalized8 to compensate for possible
differences in staining and lighting conditions and then
screened to assure that they were complete, properly
segmented, and of sufficient contrast for texture analysis.
A total of 2621 images were collected, with a minimum
of 55 and a mean of 64 nuclei per patient.

Fractal dimension calculations

Several related mathematical formulations of fractal
dimension have been suggested, such as Hausdorf–
Fig. 1—Surface plot of a benign breast epithelial cell nucleus
J. Pathol. 185: 366–381 (1998)
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Besicovitch dimension, Minkowski–Bouligand dimen-
sion, Kolmogorov box-counting dimension, spectral
dimension, and Korčak dimension.24 Each method for
determining fractal dimension may characterize a par-
ticular aspect of the fractal nature of a nuclear image;
not all fractal dimensions are applicable in every con-
text. In particular, it is important to make a distinction
between self-similar and self-affine fractals, since the
methods used to calculate dimensions differ between
these two classes of fractals. Mandelbrot25 illustrates
this difference by comparing measurement on the earth’s
surface, where the choice of north–south and east–west
as the coordinate axes is in a sense arbitrary and
distances are meaningful, to measurement on a graph of
volume versus pressure, where the choice of coordinate
axes is canonical but distances √(ÄV)2+(Äp)2 are mean-
ingless and therefore cannot be used in determining the
fractal dimension. In the first case, linear log–log scaling
would demonstrate that an object is self-similar, while in
the second case, linear log–log scaling would show that
it is self-affine. Since for our surface plots the x- and
y-coordinates represent position and the z-coordinate
represents grey level, fractal characterization of the
images should use methods appropriate for self-affine
objects. In this study, we characterize breast epithelial
? 1998 John Wiley & Sons, Ltd.
cell nuclei using the Minkowski–Bouligand fractal
dimension (DMB) and the spectral fractal dimension
(DS).

Minkowski–Bouligand dimensions—Minkowski–
Bouligand dimensions were determined using a modifi-
cation of the variation method of Dubuc et al.26,27 This
method is based on the concept of å-variation. In the
digitized grey scale image of a nucleus, an intensity value
between 0 and 255 is associated with each pixel. The
å-oscillation for a given pixel is defined as the difference
between the maximum and minimum intensity values of
all pixels within a distance å of the given pixel, i.e., all
pixels in a disc of radius å, centred at the given pixel. In
terms of the surface plot, the distance å is measured in
the x–y plane, thus avoiding the meaningless distances
discussed in the previous paragraph. The å-variation for
the whole nucleus, denoted as Vf(å), is the sum of the
å-oscillations for all pixels in the image. The Minkowski
dimension is estimated by 3 minus the slope of the
least-squares line fitting the plot of log å versus log Vf(å)
over a suitable range of å’s. In this study, Vf(å) was
computed for each nucleus at 145 values of å, ranging
between 1 and 20 pixels (0·135 and 2·69 ìm), and also
over a shorter range of resolutions, considering 21
Fig. 2—Surface plot of a malignant breast epithelial cell nucleus
J. Pathol. 185: 366–381 (1998)



369FRACTALS AND BREAST CANCER DIAGNOSIS
values of å between 1 and 7 pixels (0·135 and 0·942 ìm).
This method is illustrated in Fig. 3.

Spectral dimensions—Spectral dimensions of the
nuclei were determined using the iterative spectral
dimension method. Spectral dimensions are based on
Fourier analysis. The power spectrum PZ(u,v)P2 of an
image z(x,y) is the square of the magnitude of its two-
dimensional discrete Fourier tranform Z(u,v). Fractal
images are typified by a power spectrum in which there
is a l/fâ dependence on frequency,28 i.e., PZP2=Cf-â. In
particular, Voss29 has shown that for statistically self-
affine fractal Brownian motion, the spectral exponent â
is related to a fractal similarity dimension Ds by the
equation Ds=(7-â)/2. However, since power spectra are
determined from an image’s two-dimensional Fourier
transform, conventional methods for determining the
spectral dimension of surface28 require a rectangular
image, which poses a problem since nuclei have irregular
shapes. The requirement of rectangularity can be over-
come using an iterative method to determine the spectral
dimension.30 This approach embeds a nuclear image in a
rectangular image and iteratively fills in the remainder of
the image so that it shares similar properties to the
nucleus in the Fourier domain.

Lacunarity analysis

Fractal dimensions quantify textural complexity and
irregularity and therefore can be used to discriminate
? 1998 John Wiley & Sons, Ltd.
between diagnostic categories for which these properties
differ. However, they do not provide a unique descrip-
tion of an entire textured surface, for as is illustrated in
Fig. 4, two fractals can have strikingly different appear-
ances yet still possess the same fractal dimensions.
Mandelbrot34 introduced the notion of lacunarity to
describe one particular aspect of the texture of a fractal:
the largeness of its gaps or holes. As such, lacunarity
would appear to describe features such as voids,
chromatin clearings and nucleoli, which pathologists
regard as important in the diagnosis of malignancy.

Several expressions for lacunarity have been suggested
in the physics literature. The approach that we follow
here is based on the gliding box method of Allain and
Cloitre.35 The gliding box method is designed for binary
images, i.e., images in which all pixels take the value 0
or 1, and while it can be modified for grey scale data,
this results in a loss of resolution.36 Nuclear images
can be binarized by thresholding: all pixels with grey
values greater than a specified level take the value 1
(white), while the remaining pixels are assigned to 0
(black).

In applying the gliding box method to irregularly
shaped images such as nuclei, complications may arise in
determining the lacunarity; for this reason, we determine
the weighted lacunarity.37 The precise nature of these
complications is beyond the scope of this paper, and the
interested reader is referred elsewhere for an explana-
tion, as well as for the mathematical derivation of and
motivation for the weighted lacunarity formula.37
Fig. 3—Variation method plot used to determine the Minkowski dimension for a typical malignant breast epithelial cell nucleus
(DMB=2·49, r=0·991)
J. Pathol. 185: 366–381 (1998)
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The gliding box method characterizes texture using an
s#s pixel ‘gliding box’. The box is initially placed at the
upper left corner of the image. The number of white
pixels in the image contained in the gliding box is
counted. This value is denoted n1 and can take any value
from 0 to s2. The gliding box is moved one pixel to the
right, and the number of white pixels at this new
location, denoted n2, is counted. In a similar manner, the
box glides over the entire image, moving to all N
positions at which it covers at least one pixel of the
image, at each location recording the number of white
pixels, ni, in the image. Additionally, at each position a
weighting factor wi, equal to the number of pixels in the
gliding box that are part of the image, is recorded.
Weighted lacunarity is defined as

Ë*(s)=G
i=1

N

wi G
i=1

N

(ni
2/wi) SG

i=1

N

niD2./
Weighted lacunarity curves for the mathematical fractals
in Fig. 4 are shown in Fig. 5. While these fractals have
the same dimensions, they can be differentiated on the
basis of the lacunarity curves. Thus, lacunarity comple-
ments fractal dimensions in characterizing texture. In
fact, lacunarity analysis is a useful method not just for
mathematical fractals, but for real-world data as well.
Figure 6 illustrates a pair of nuclei with the same
spectral fractal dimensions (2·36) and Minkowski
dimensions (2·82) over the range 0·135–0·942 ìm,
together with their normalized weighted lacunarity
curves. The nucleus on the left has a prominent nucleo-
? 1998 John Wiley & Sons, Ltd.
lus while the nucleus on the right does not, so we would
expect the nucleus on the left to be more lacunar. This is
confirmed by the lacunarity curves.

Statistical analysis

Statistical analysis was performed on an Apple Power
Macintosh 8100/110 using JMP and Microsoft EXCEL.
Fig. 4—Two mathematical fractals, called Sierpinski carpets, with identical fractal dimension but different appearance. A Sierpinski carpet31 is
constructed32,33 by beginning with a square and subdividing it into b2 subsquares, out of which l2 subsquares are cut. This process can be
iteratively repeated on each of the remaining subsquares, at each stage removing the l2 subsquares from the same positions. The Figure shows
three stages. It can be mathematically shown that the fractal (Hausdorf) dimension of a Sierpinski carpet is given by the formula32

D=log(b2"l2)/log(b). Since b=7 and l=3 for both carpets, they have a common fractal dimension of log 40/log 7=1·896. They differ in terms of
which subsquares are removed. While fractal dimension is insufficient to discriminate between these carpets, the holes are larger in the carpet on
the left, while the carpet on the right is more homogeneous. This difference can be quantified in terms of lacunarity
Fig. 5—Weighted lacunarity curves of the Sierpinski carpets in Fig. 4.
The carpet on the left has larger holes and is therefore more lacunar
J. Pathol. 185: 366–381 (1998)



371FRACTALS AND BREAST CANCER DIAGNOSIS
Pearson correlation coefficients were determined for
plots of log å versus log Vf(å) to assess the appropriate-
ness of the fractal model. Mean areas and Minkowski
dimensions were determined for each patient. Mean
spectral dimensions were determined only considering
nuclei with fractal dimensions Ds between 2 and 3 and
multiplicative prefactors C less than 2000. The 239
nuclei not meeting these criteria were considered to have
converged incorrectly to nonsensical values and were
therefore excluded from determinations of mean spectral
dimensions. In addition, the area of each nucleus was
determined. Fractal dimensions were compared between
benign and malignant cases using two-way analysis of
variance (ANOVA), treating diagnosis as a fixed effect
and patient as a nested random effect. Correlation
coefficients between Minkowski and spectral dimensions
were determined. Mean areas and lacunarities at each
box size and threshold were determined for each patient.
Patient means of lacunarity were compared between
benign and malignant cases at each box size and
threshold using Student’s t-test.

Classification approaches: logistic regression and neural
networks

A variety of classificatory algorithms, such as logistic
regression, discriminant analysis, and artificial neural
networks, can be used to diagnose cases on the basis of
morphometric descriptors.38 Using a training set of
cases with known features and diagnoses, a classification
algorithm can be trained or optimized for the particular
diagnostic setting of interest. This process involves
determining an optimal set of features (e.g., mean spec-
tral dimension and mean nuclear area) and parameters
(e.g., regression coefficients in logistic regression or
neuron weights and number of hidden neurons in an
artificial neural network) in the classificatory model.
Subsequently, unknown cases can be diagnosed using
the trained classifier. A useful approach to evaluate the
? 1998 John Wiley & Sons, Ltd.
efficacy of a classificatory algorithm for a data set is to
perform leave-one-out cross-validation.39 This is often
referred to as jack-knife analysis,40 and here we use the
terms interchangeably. Since here we consider 41 cases, a
single run of a jack-knife analysis involves training a
classifier on 40 of the cases and testing the accuracy of
its diagnosis on the remaining ‘masked case’, repeating
this process 41 times so that each case serves as the
masked case.

We performed jack-knife analyses using logistic
regression models41 with a variety of fractal features as
well as measures of nuclear area. The jack-knife analysis
was repeated for each combination of features consid-
ered, except in a few instances where it was only
necessary to consider a few patients to verify that a
combination of features resulted in poor classificatory
performance. In the terminology of logistic regression,
the ‘covariates’ were the features while the ‘independent
variable’ was the diagnosis. The fractal textural features
included means and standard deviations of spectral and
Minkowski–Bouligand fractal dimensions, of weighted
lacunarity at a variety of box sizes, and of the multipli-
cative prefactor C, which can be viewed as a measure of
lacunarity in the frequency domain. The weighted lacu-
narity measures considered included weighted lacunarity
Ë*(s), log weighted lacunarity log [Ë*(s)] [also referred to
as log Ë*(s)], normalized weighted lacunarity Ë*(s)/Ë*(1)
[also referred to as normalized Ë*(s)], and normalized
log weighted lacunarity log[Ë*(s)]/log[Ë*(1)] [also
referred to as normalized log Ë*(s)]. The weighted lacu-
narity measures considered were further restricted on the
basis of the results of the statistical comparisons of these
features between benign and malignant cases. The
measures of nuclear area considered were the mean,
minimum, and standard deviation per patient. Logistic
regression was performed using JMP (SAS Institute,
Cary, NC, U.S.A.) on an Apple Power Macintosh
8100/110. The various classificatory models were evalu-
ated in terms of accuracy, sensitivity, specificity, predic-
tive values, and kappa (ê) statistics. In some models, the
classifier was unable to predict the diagnosis for certain
patients, resulting in three categories of ‘diagnoses’:
benign (negative test), malignant (positive test), and no
prediction (uncertain test); the determination of per-
formance measures in such models follows the approach
of Garcia-Romero et al.42

Jack-knife classification was also performed with
back-propagation artificial neural networks.43 General
overviews of neural networks and their applications to
pathology can be found in several recent reports.40,44–46

Several neural network models were compared, differing
from each other on the basis of architecture; the selec-
tion of input neurons, i.e., area and fractal texture
features; and the coding of diagnoses in output neurons.
Neural networks were trained using the Levenberg–
Marquardt learning rule,47–49 which is markedly faster
than standard conjugate gradient methods, thus
enabling more neural network models to be considered.
The models were implemented in the MATLAB Neural
Networks Toolbox (The MathWorks, Inc., Natick,
MA, U.S.A.) on several Silicon Graphics computers,
including a Power Challenger XL supercomputer.
Fig. 6—Two nuclei with equal fractal dimensions and their weighted
lacunarity curves. The nucleus on the left is more lacunar
J. Pathol. 185: 366–381 (1998)
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RESULTS

Fractality of chromatin texture

The log–log plots of Vf(å) vs. å were linear, with
correlation coefficients r greater than 0·95 in 98 per cent
of the nuclei (median r=0·981, minimum r=0·914), as
illustrated in Fig. 3, and fractal Minkowski dimensions
of the nuclei were strictly greater than their topological
dimensions. Thus, we conclude that the fractal model is
an appropriate one; chromatin appearance in breast
cytology specimens is fractal over the range of resolu-
tions considered. As such, it is appropriate to use fractal
dimensions as descriptors of chromatin appearance in
image analysis. Over the smaller range of resolutions,
the fit was even better, with a median r of 0·993 and a
minimum of 0·985.

Fractal dimensions

Minkowski dimensions for the 41 cases are shown in
Fig. 7. The patient means of Minkowski dimension
averaged 2·527 for the benign cases and 2·510 for the
malignancies. This difference was marginally significant
(p=0·067). Over the smaller range, average patient
means of Minkowski dimension were 2·333 for the
benign cases and 2·319 for the malignant cases, a
statistically significant difference (p=0·044). Thus,
Minkowski dimensions were smaller over this range.
The dependence of Minkowski dimension on the range
of resolutions considered may suggest that fractal
dimension changes depend on the range of resolutions,
or may simply be a consequence of edge effects.

Spectral dimensions for the 41 patients are shown in
Fig. 8. The average mean spectral dimension was 2·853
for the benign cases and 2·796 for the malignancies, a
? 1998 John Wiley & Sons, Ltd.
difference which was determined to be very highly
significant (p=0·000011). Spectral and Minkowski
dimensions for individual nuclei were weakly correlated
(r= "0·166 for the 2382 non-excluded nuclei), as were
patient means of spectral and Minkowski dimensions
(r= "0·134). These correlations are illustrated in Fig. 9.

Lacunarity

Figure 10 illustrates weighted lacunarities of the 41
cases thresholded at the third quartile of the intensity
histogram, as a function of the box size. At each scale,
all of the most lacunar cases are seen to be malignancies,
and patient means of weighted lacunarities are greater in
Fig. 7—Mean Minkowski dimensions for the 41 cases. Horizontal lines represent mean
values
Fig. 8—Mean spectral dimensions for the 41 cases. The horizontal line
represents the mean value
J. Pathol. 185: 366–381 (1998)
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the malignant cases then in the benign ones. Figure 11
demonstrates the significance of these differences.
For the images thresholded at the third quartile, the
differences in patient means are significant at almost all
box sizes and the maximum p value of 0·0505 at s=6
pixels (0·807 ìm) is barely above the cut-off for signifi-
cance. The difference is especially significant at the
smallest and largest scales. These correspond respect-
ively to fine-scale texture, such as whether chromatin is
clumped or fine, and to large-scale structures like
nucleoli. While increased nucleolar number or size is not
pathognomonic for malignancy, nucleolar alterations
provide diagnostically important information for Pap-
stained breast cytology specimens:50 eosinophilic macro-
nucleoli51 as well as excessive variability in size, shape,
and numbers of nucleoli52 tend to be associated with
malignancy. Differences in weighted lacunarity between
benign and malignant cases are not as pronounced
when the images are segmented at the first and second
quartiles of their intensity histograms. While the plot of
p as a function of s follows the same shape at the three
thresholds, p values are higher at the second quartile
than at the third quartile, and even higher at the first
quartile.

Logistic regression classification

The results of the jack-knife analyses of logistic
regression classification performance are summarized
in Tables I–III.

As lacunarity is not described by a single number as is,
for example, spectral dimension, but rather by a func-
tion, it was necessary to restrict the lacunarity measures
considered in the logistic regression models to a few
well-chosen ones. Since Fig. 11 reveals that differences in
?

Fig. 9—Correlations between Minkowski and spectral dimensions
1998 John Wiley & Sons, Ltd.
Fig. 10—Weighted lacunarities of the 41 cases as a function of the
box size
J. Pathol. 185: 366–381 (1998)
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lacunarity between benign and malignant cases are more
pronounced when images are thresholded at the third
quartile of the intensity histogram than at the first or
second quartile, the only lacunarity measures considered
were those associated with third quartile thresholding.
Further, since these differences are most pronounced at
the smallest and largest scales considered (2 and 35
pixels), the only lacunarity measures incorporated into
the classificatory models were for box sizes of 2 and 35
pixels.
? 1998 John Wiley & Sons, Ltd.
Even having limited the number of lacunarity
measures considered, it is still unfeasible to perform the
jack-knife analysis using all possible combinations of
features to determine the group of features for which
performance is best. Instead, it is necessary to adopt a
strategy to achieve good performance while limiting
the number of regressions performed. We began with
a model including as covariates, members of the
three classes of textural descriptors for which the differ-
ence between benign and malignant cases was most
Fig. 11—p as a function of the box size s for nuclear images thresholded at the first, second, and third quartiles of the intensity
histogram. p is the significance level of the t-test comparing the mean lacunarity per case of malignant and benign cases
Table I—Two-feature and three-feature logistic regression models

Features included

Performance measures

Misclassified casesSE SP PPV NPV ACC ê

Ds(m) Ë*(35)(m) C(sd) 0·82 0·79 0·82 0·79 0·80 0·61 2, 10, 17, 18, 21, 23, 36, 39
Ds(m) Log Ë*(35)(m) C(sd) 0·82 0·79 0·82 0·79 0·80 0·61 2, 10, 17, 18, 21, 23, 36, 39
Ds(m) Normalized Ë*(35)(m) C(sd) 0·82 0·79 0·82 0·79 0·80 0·61 2, 10, 17, 18, 21, 23, 36, 39
Ds(m) Normalized log Ë*(35)(m) C(sd) 0·95 0·84 0·88 0·94 0·90 0·80 10, 17, 18, 39
Ds(m) Normalized log Ë*(35)(m) 0·86 0·79 0·83 0·83 0·83 0·66 2, 10, 17, 18, 23, 36, 39
Ds(m) C(sd) 0·77 0·74 0·77 0·74 0·76 0·51 8, 10, 17, 18, 19, 32. 36, 37, 39, 41

Normalized log Ë*(35)(m) C(sd) 0·68 0·79 0·79 0·68 0·73 0·47 1, 2, 10, 16, 20, 23, 27, 33, 38, 39, 40

SE=sensitivity; SP=specificity; PPV=positive predictive value; NPV=negative predictive value; ACC=accuracy; Ds=spectral fractal dimension;
(m)=mean; Ë*(s)=weighted lacunarity with a box size of s; C=multiplicative prefactor; (sd)=standard deviation.

Cases 1–19 are benign; cases 20–41 are malignant.
J. Pathol. 185: 366–381 (1998)



Table II—Four-featur

Features included

Performance measures

Misclassified cases Non-convergent casesSP PPV NPV ACC ê

Ds(m) Normalized 0·84 0·86 0·89 0·85 0·71 10, 12, 17, 27, 39 22
Ds(m) Normalized 0·84 0·86 0·84 0·85 0·71 10, 12, 17, 22, 27, 39
Ds(m) Normalized 0·89 0·95 0·89 0·90 0·81 10, 23, 41 17
Ds(m) Normalized 0·84 0·90 1·00 0·85 0·73 10, 12 17, 23, 27, 41
Ds(m) Normalized 0·89 0·95 0·85 0·88 0·76 17, 21, 26, 39 2
Ds(m) Normalized l 0·84 0·86 0·80 0·83 0·66 10, 12, 17, 22, 27, 39, 41
Ds(m) Normalized l 0·79 0·82 0·79 0·80 0·61 10, 12, 17, 18, 22, 27, 39, 41
Ds(m) Normalized l 0·89 0·94 0·77 0·83 0·67 10, 20, 23, 28, 39, 41 17
Ds(m) Normalized l 0·84 0·85 0·76 0·80 0·61 10, 12, 17, 23, 27, 28, 39, 41
Ds(m) Normalized l 0·84 0·90 0·80 0·83 0·67 10, 17, 21, 26, 29, 39 2

SE=sensitivity; SP=sp alue; ACC=accuracy; Ds=spectral fractal dimension; (m)=mean; Ë*(s)=weighted lacunarity with a box
size of s; C=multiplicativ

Cases 1–19 are benign
For purposes of perfo positives and malignant non-convergent cases are counted as false negatives, following the approach of

Garcia-Romero et al.42
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e logistic regression models

SE

Ë*(35)(m) C(sd) Ë*(2)(sd) 0·86
Ë*(35)(m) C(sd) Log Ë*(2)(sd) 0·86
Ë*(35)(m) C(sd) Normalized Ë*(2)(sd) 0·91
Ë*(35)(m) C(sd) Normalized log Ë*(2)(sd) 0·86
Ë*(35)(m) C(sd) Area (m) 0·86

og Ë*(35)(m) C(sd) Ë*(2)(sd) 0·82
og Ë*(35)(m) C(sd) Log Ë*(2)(sd) 0·82
og Ë*(35)(m) C(sd) Normalized Ë*(2)(sd) 0·77
og Ë*(35)(m) C(sd) Normalized log Ë*(2)(sd) 0·77
og Ë*(35)(m) C(sd) Area (m) 0·82

ecificity; PPV=positive predictive value; NPV=negative predictive v
e prefactor; (sd)=standard deviation.

; cases 20–41 are malignant.
rmance measures, benign non-convergent cases are counted as false



Table III—Five-feature logistic

Features included

Performance measures

Misclassified casesSE SP PPV NPV ACC ê

Ds(m) Normalized Ë*(35)( rea (m) 0·82 0·95 0·95 0·82 0·88 0·76 12, 21, 26, 27, 39
Ds(m) Normalized Ë*(35)( rea (m) 0·82 0·95 0·95 0·82 0·88 0·76 12, 21 27, 39, 40
Ds(m) Normalized Ë*(35)( rea (m) 0·82 1·00 1·00 0·83 0·90 0·81 20, 21, 23, 39
Ds(m) Normalized Ë*(35)( rea (m) 0·91 1·00 1·00 0·90 0·95 0·90 21, 39
Ds(m) Normalized log Ë*(35 rea (m) 0·77 0·95 0·94 0·78 0·85 0·71 12, 21, 26, 27, 39, 40
Ds(m) Normalized log Ë*(35 rea (m) 0·00 0·00 0·00 0·00 0·00 "0·04 *
Ds(m) Normalized log Ë*(35 rea (m) 0·86 0·89 0·90 0·85 0·88 0·76 10, 12, 20, 21, 39
Ds(m) Normalized log Ë*(35 rea (m) 0·86 1·00 1·00 0·86 0·93 0·85 20, 21, 39

SE=sensitivity; SP=specificity; PP lue; ACC=accuracy; Ds=spectral fractal dimension; (m)=mean; Ë*(s)=weighted lacunarity with a box
size of s; C=multiplicative prefactor

Cases 1–19 are benign; cases 20–4
*Cases 12, 39, and 40 were miscla er of cases.
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m) C(sd) Ë*(2)(sd) A
m) C(sd) Log Ë*(2)(sd) A
m) C(sd) Normalized Ë*(2)(sd) A
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V=positive predictive value; NPV=negative predictive va
; (sd)=standard deviation.
1 are malignant.
ssified, while no convergence was attained in the remaind
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statistically significant: mean spectral dimension, stan-
dard deviation of the multiplicative prefactor C, and
mean lacunarities at a box size of 35 pixels. As is shown
in Table I, the best performance among the three-feature
models was attained by a model including mean spectral
dimension, standard deviation of C, and mean normal-
ized log Ë*(35). For this model, there were three false-
positive diagnoses and one false negative, so 37 of the 41
cases were correctly diagnosed. Classificatory perform-
ance was poorer in models including just two of these
textural features.

Our next attempt to improve classification perform-
ance, summarized in Table II, was to add a fourth
feature to the models, also chosen from those demon-
strating a significant difference between benign and
malignant cases. The added features included the
standard deviations of the (four) weighted lacunarity
functions at a box size of 2 pixels, and mean nuclear
area. In one model there were only two false positives;
however, in this model there were also four cases for
which maximum likelihood estimates of parameters in
the model failed to converge, making it impossible to
classify the cases as benign or malignant. Interestingly,
while the three-feature model including mean normal-
ized log Ë*(35) performed better than the three-feature
model including mean normalized Ë*(35), the opposite
was true for the four-feature models, where each model
including mean normalized Ë*(35) outperformed its
counterpart with mean normalized log Ë*(35). This find-
ing suggests that a stepwise approach41 to feature selec-
tion is likely to miss optimal sets of features in such
classifactory scenarios. Thus, it is necessary to use a
more flexible approach, as we have done.

Continuing further, we considered five-feature
models, adding both one of the four Ë*(2) measures and
mean area. They are summarized in Table III. The best
performance was attained by a model including mean
normalized Ë*(35) and the standard deviation of nor-
malized log Ë*(2). In this ‘best’ model, all cases were
classified correctly except for two false negatives.
Additionally, other variations of five-feature models
were considered, including features such as mean Ë*(35),
mean log Ë*(35), Minkowski dimension, and minimum
nuclear area, but none performed as well.

Finally, we considered some six-feature models,
adding features such as Minkowski dimension and
minimum nuclear area to the best five-feature model, but
none improved on the performance of the best five-
feature model. Thus, in this study, the highest accuracy
? 1998 John Wiley & Sons, Ltd.
attained using logistic regression to diagnose the breast
cytology specimens was 95·1 per cent.

Artificial neural network classification

While the logistic regression models considered
differed in terms of the features used as covariates,
artificial neural network models can differ in terms of a
host of parameters.53 These include not only the features
included as inputs, but also the number and arrange-
ment of hidden layers, the coding of diagnoses, the
transfer function(s) used, training and testing tolerances,
the order in which training facts are presented, and the
initial values chosen (typically at random) for the
neuron weights. We began by considering neural net-
works with the five features in the ‘best’ logistic regres-
sion model assigned to input neurons. Output diagnoses
were coded both on a 0 to 1 scale, where 0 corresponded
to a benign and 1 to a malignant diagnosis, and also on
a "1 to 1 scale, where "1 corresponded to a benign
and 1 to a malignant diagnosis. The number of hidden
neurons was varied systematically from 2 to 20. Initially,
a variety of transfer functions were considered,
including linear, log-sigmoid, and tan-sigmoid (hyper-
bolic tangent) transfer functions. However, in these
initial runs, convergence of the neural network
weights was reliably attained only when the transfer
functions in both layers were tan-sigmoid, so subsequent
runs were restricted to networks with this transfer
function.

Jack-knife analyses for neural networks with these five
features are summarized in Table IV. Every entry in the
table represents the number of incorrect diagnoses for a
single jack-knife analysis with the specified output
coding and number of hidden neurons. It is evident from
the Table that better performance was attained using the
"1 to 1 scale. Another feature of neural network
training illustrated by the Table is that repeating a
jack-knife analysis need not yield identical performance.
Due to the different initial values chosen at random
for the neuron weights, repeat analyses resulted in
differences of up to three misclassifications. Neverthe-
less, the two jack-knife analyses with the highest classi-
ficatory accuracies were the two runs with eight hidden
neurons. These resulted in two and three of the 41 cases
misclassified, a performance comparable to that in the
best logistic regression classification model.

Since the best features for neural network classifica-
tion need not be the same as those for logistic regression
Table IV—Numbers of cases incorrectly diagnosed in jack-knife analyses using various artificial neural
network models with the features mean Ds, mean normalized Ë*(35), standard deviation of C, standard
deviation of normalized log Ë*(2), and mean area

No. of hidden neurons
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Output 0 to 1 7 10 8 6 7 10 12 8 11 11 11 12 8 8 10 8 9 7 11
coding "1 to 1 6 6 5 7 7 8 3 6 7 6 5 6 7 7 9 6 5 7 6

"1 to 1 6 4 7 5 8 6 2 6 6 8 6 4 5 6 6 8 7 5 6
J. Pathol. 185: 366–381 (1998)
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classification, we next considered neural network models
with a variety of features. Two hundred combinations of
features, denoted ‘feature sets’, were considered. Each of
these feature sets included mean spectral dimension and
mean nuclear area, and from zero to five additional
features:

(1) mean Minkowski dimension (yes/no): two options
(2) standard deviation (sd) of spectral dimension (yes/

no): two options
(3) mean multiplicative prefactor C (yes/no): two

options
(4) mean of (log/not log) (normalized/unnormalized)

Ë*(35) (yes/no): five options
(5) sd of (log/not log) (normalized/unnormalized) Ë*(2)

(yes/no): five options

Jack-knife analyses were performed using neural
networks with eight hidden neurons, tan-sigmoid trans-
fer functions, and each of the 200 feature sets. For two
of the feature sets, only one of the 41 cases was
misclassified, while for 11 feature sets there were two
misclassifications, as in the ‘best’ feature set for logistic
regression.

Since Table IV showed that there is some inter-run
variability in neural network accuracy, owing to the
dependence of the neuron weights converged upon on
their randomly chosen initial values, we next repeated
the jack-knife analyses for the 13 feature sets with one or
two misclassifications. For each feature set, the jack-
knife analysis was repeated 100 times. As observed
previously, the number of misclassifications varied from
run to run. Figure 12 is a histogram of the number of
misclassifications for 100 jack-knife analyses using a
neural network with mean spectral dimension, mean
area, mean normalized Ë*(35), and sd of normalized
log Ë*(2) as features. While in the original run using this
feature set there were two misclassifications, over the
? 1998 John Wiley & Sons, Ltd.
100 runs there were four misclassifications on average.
However, for one run there were no misclassifications,
and for two runs there was only a single misclassified
case. The performance was typical for the 13 feature sets
repeated.

DISCUSSION

Although biological structures have certain character-
istic size scales, some aspects of morphology are better
described in terms of fractal geometry than in terms of
Euclidean geometry. Our study shows that chromatin
appearance in breast epithelial cell nuclei has fractal
properties and can be described by fractal dimensions
and lacunarity measurements, which differ between
patients with benign and malignant breast lesions. These
fractal descriptors can be used in the diagnosis of
cytological specimens. That nuclear appearance is frac-
tal is highly suggestive that three-dimensional chromatin
structure is also fractal, as has been hypothesized by
Orlando and Paro.54 Supportive of this, Pentland55 has
mathematically proven that under certain assumptions,
a three-dimensional surface is fractal if and only if its
image intensity surface is fractal.

While for some types of mathematical objects, differ-
ent fractal dimensions are necessarily equivalent, the two
approaches to characterize fractal dimension that we
considered here were remarkably different. Spectral
dimensions were considerably greater then Minkowski
dimensions and there was only a weak correlation
between these two indices of fractal structure. Thus, the
two approaches seem to measure different aspects of
the fractal nature of nuclear chromatin, underscoring
the fact that no single parameter can completely describe
the fractal nature of biological structure. This obser-
vation is consistent with the results obtained in geology
by Cox and Wang,56 who found that fractal dimension
may vary systematically, depending on the measurement
method. As Mandlebrot25 has recently commented,
while initially a pre-eminent position was given to
Hausdorf–Besicovitch dimension, it is now clear that
fractal dimension is a multifaceted concept. The differ-
ent computational methods need not even theoretically
yield the same value for fractal dimension, so a surface
may have several distinct fractal dimensions.25

As shown above, lacunarity also provides useful
diagnostic information, complementing fractal dimen-
sions in characterizing fractal properties of chromatin
texture. Optimal feature sets for both logistic regression
and neural network classifiers included lacunarity fea-
tures, suggesting that fractal dimensions are insufficient
to characterize entirely the fractality of nuclear texture.
As mentioned above, the difference in weighted
lacunarity between benign and malignant cases was
especially significant on scales corresponding to fine-
scale texture, such as chromatin coarseness, and to
large-scale structures like nucleoli. The ubiquity of these
qualitative features in pathological diagnosis suggests
that lacunarity, as a numerical measure of them, should
have a broad range of applications in quantitative
diagnostic pathology.
Fig. 12—Histogram of the number of misclassifications out of 41 cases
for a jack-knifed neural network model with eight hidden neurons,
tan-sigmoid transfer functions, and input neurons corresponding to
mean spectral dimension, mean area, mean normalized Ë*(35), and
standard deviation of normalized log Ë*(2). One hundred obser-
vations; mean=4·08 misclassifications; standard deviation=1·44
misclassifications
J. Pathol. 185: 366–381 (1998)
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The logistic regression model with the optimal feature
set resulted in classificatory accuracy exceeding 95 per
cent. This model shows particular promise and would be
a good candidate for clinical trials to evaluate the
diagnostic potential of fractal measures of chromatin
appearance. The presence of jack-knife runs with zero
and one misclassifications indicates that an optimized
neural network can improve on logistic regression classi-
fication. However, this improved performance requires
further validation, since it could be attributable to
overtraining.38,57 Neural network overtraining is most
commonly manifested in terms of a disparity in classifier
performance between training and test sets. Two com-
peting factors are at work in neural network training: (1)
the network learns general characteristics of the classifi-
catory task, and (2) the network learns particular char-
acteristics of the members of the training set. As the
criterion for ending neural network training becomes
more stringent and neural network training is allowed to
proceed longer, the balance generally shifts towards the
latter factor.57–59 Consequently, the performance on
new cases, such as the masked case in our jack-knife
analysis, for which the particular characteristics of
the training set are not applicable, can be markedly
reduced.

This ‘classical’ form of overtraining is not present in
our study. The optimized neural network achieved a
100 per cent classification rate of test cases on which it
had not been trained. Nevertheless, a more subtle form
of overtraining may come into play. By considering
many neural network models, the networks at each
step in a single jack-knife analysis may still focus on
particular characteristics of the masked case. Although
a network cannot learn particulars of the masked case
through its training process, it may effectively ‘learn’
these particulars through a process of selection. By
considering for each case 100 nearly identical versions
of the same network, differing only in the randomly
selected initial weights, some of these may be predis-
posed to converging to neuron weights resulting in a
correct classification for the masked case. A jack-knife
analysis in which such neural networks are trained for
all of the most diagnostically challenging cases may
exhibit perfect classificatory performance, although
some of the networks trained in this jack-knife run
may not correctly diagnose further new cases. The
scope of this potential problem remains unclear and
the issue of overtraining in repeated jack-knife analyses
requires further study. While literature exists on neural
network generalization, these studies typically address
the classical form of overtraining. For practical
purposes, the generalizability of the ‘optimal’ neural
networks trained in the best jack-knife analyses could
be evaluated through prospective testing on new
cases.

Thus, this study shows how fractal texture features
can be used in the cytological diagnosis of breast
cancer to attain a diagnostic accuracy of 95·1 per cent
using logistic regression, and potentially approaching
100 per cent using neural networks. Other investigators
have also developed image analysis-based systems for
the cytological diagnosis of breast epithelial cell
? 1998 John Wiley & Sons, Ltd.
lesions. King et al.,60 using texton5-based measures of
chromatin texture61 and stepwise discriminant analysis
for classification, attained an accuracy of 92·3 per cent
but a sensitivity of only 78·6 per cent. Hutchinson
et al.62 used run-length4 texture features as well as
features from a low-resolution contextual analysis,
combined with stepwise discriminant analysis for
classification. Excluding fibroadenoma cases, this
method correctly classified 93 per cent of cases.
Wolberg et al.63,64 quantified texture using a measure
of grey scale variation, and classified cases using
MSM-Tree, a decision tree method. Ten-fold cross-
validation, which is comparable to the jack-knife
analysis but excludes one-tenth of the cases from the
training set at a time, rather than a single case at a
time, estimated accuracy at 97·2 per cent; a sub-
sequent prospective study correctly classified all the
benign and malignant cases. However, not all the
benign masses in this study were histologically
confirmed.

Recently there has been considerable interest within
the cytology community in image analysis devices for
quality assurance, particularly in the area of cervical
cytology, where the United States Food and Drug
Administration has approved two instruments for
rescreening.65,66 A review67 of 83 published series on
fine-needle aspiration (FNA) biopsy of the breast
reported false-negative rates ranging from 0 to 35 per
cent, indicating that breast FNA diagnostic performance
varies widely between institutions. Thus, ancillary image
analysis techniques could serve an important role for
quality assurance in this setting as well. Although diag-
nostic accuracy has been quite high in pilot studies using
image analysis for breast FNA diagnosis, it is commonly
observed that test efficacy in practice is less than that
observed in pilot studies; this phenomenon may be
attributable to a number of reasons, such as the broader
spectrum of disease observed in practice and the
differing conditions under which a test may be
administered.68–70 Ultimately, the most effective
approach may well be some hybrid combining the best
features of the various methods developed to date. In
this study, we limited the number of features considered,
since our purpose was to test the usefulness of fractal
texture descriptors. Nevertheless, the inclusion of other
descriptors may contribute to higher diagnostic per-
formance in practice. Observations in past studies sug-
gest that, in many cases, features based on the size
distribution of nuclear areas are extremely useful in
cytological diagnosis.71 Other useful features may
include contextual descriptors, such as those considered
by Hutchinson et al.,62 and other classes of texture
descriptors. Similarly, the incorporation of fractal tex-
ture features could improve the performance of the
classificatory models in other studies. A further area in
which more sophisticated classificatory models may be
needed is in the diagnosis of borderline epithelial lesions
of the breast, where even the histopathological diag-
nosis is fraught with high inter-observer variability.72

Ongoing efforts are aimed at developing image analysis
techniques to assist cytologists in making this subtle
distinction.
J. Pathol. 185: 366–381 (1998)
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