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We consider dynamical systems determined by distributions of real analytic vector
fields, the equations of motion, and the associated gauge transformation are pre-
sented in detail. A gradation of the associated Lie algebras leads to the consider-
ation of polynomial vector fields. The minimization of kinetic energy action in the
class of horizontal curves associated with the distribution is formulated as a sub-
Riemannian geodesic problem. Normal geodesics are fully described for the so-
called Gaveau–Brockett distribution. The exponential mapping, the unitary spheres,
and the wave fronts are calculated for particular cases. © 2008 American Institute
of Physics. �DOI: 10.1063/1.2897031�

I. INTRODUCTION

Certain nonlinear dynamical systems can be described by means of families of vector fields
that are usually called distributions. Such distributions encode the nonlinearities of the system and
allow to write the corresponding differential equations. This situation is particularly transparent in
the geometric theory of nonholonomic dynamical systems, see, for instance, Ref. 14. For distri-
butions with a finite number of vector fields, the structure of the spanned Lie algebra, that is, the
Lie algebra obtained by Lie bracketing iteratively the vector fields, determines most of the relevant
properties of the system: existence of solutions, energy minimizing trajectories, etc. This is one of
the reasons for which, for a given distribution, one expects to find another which is in certain sense
equivalent, in such a way that the latter generates a nilpotent Lie algebra. The collection of
techniques pointing out in that direction goes in the literature under the names of nilpotent ap-
proximations and nilpotentizations, see, for instance, the survey by Hermes8 and the recent book
by Montgomery.13 The study of the variational problem of minimizing the kinetic energy for left
invariant distributions on nilpotent Lie groups has been tackled in the literature under various
approaches, from the theory of hypoelliptic operators in mathematical physics �see Refs. 5 and 6�
to the so-called sub-Riemannian geometry, see �Ref. 13� passing of course through the formalism
of the geometric theory of nonlinear control systems �see Ref. 2�.

We study a nonlinear dynamical model defined in terms of distributions of polynomial vector
fields satisfying the so-called bracket generating condition, such a condition guarantees the exis-
tence of trajectories provided the base manifold is connected. Examples of problems which can be
expressed in these terms can be found in plasma physics5 and nonholonomic mechanics.13

Let M be a smooth manifold and TM its tangent bundle, a distribution � of rank n on M is
a smooth rank n subbundle of TM. Two flags of modules of vector fields are naturally associated
with �, namely, the derived and the lower central Lie flags, defined inductively as follows:

��0� = �, ��i+1� = ��i� + ���i�,��i��, ��0� � ��1� � . . . � ��i� . . . ,

�0 = �, �i+1 = �i + ��0,�i�, �0 � �1 � . . . � �i . . . ,
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respectively. In general, these flags are different. The distribution � is said to be bracket generat-
ing, if for each p�M, there exists a positive integer m for which �p

�m�=TpM. A point p�M is
said to be regular for �, if all the ��i� have constant rank in a small enough neighborhood of p. An
absolutely continuous curve t�q�t� is said to be horizontal, if q̇�t����q�t��, almost everywhere.
For bracket generating distributions, Chow-Rashevski’s theorem13 guarantees that any p ,q�M
can be connected by a horizontal curve, provided M is connected. A sub-Riemannian metric on
M can be defined by considering a smooth varying inner product q� �· , · �q in ��q�. For horizon-
tal curves t���t�, the length and the energy functionals are defined as customary,

���� =� ��̇,�̇�1/2 and E��� =
1

2
� ��̇,�̇� , �1�

respectively. If M is connected then the sub-Riemannian distance between q1 ,q2�M is well
defined. d�q1 ,q2�=inf���q� 	q : �0,Tq�→M is horizontal and q�0�=q1 ,q�Tq�=q2
, and the sub-
Riemannian geodesic problem on M consists of the minimization of the functional � in the class
of horizontal curves. For curves parametrized by arc length, the variational problems for the
functionals � and E are equivalent.

Here, we shall be concerned only with distributions � which are bracket generating and call g

the Lie algebra given by �i�
�i�. This leads to a natural decomposition g=H � V, in terms of the

“horizontal” vector space H=� and the “vertical” vector space V given by the complement.
Remember for later use that for a Lie algebra g, we have the derived and the lower central series
defined as follows:

g�0� = g, g�i+1� = �g�i�,g�i��, g�0� � g�1� � . . . � g�i� . . . ,

g0 = g, gi+1 = �g0,gi�, g0 � g1 � . . . � gi . . . .

A Lie algebra is called solvable if g�i�=0 for a certain integer i and it is called step j nilpotent if
g j =0 for a certain integer j�1. All nilpotent Lie algebras are solvable since g�i��g2i. In conse-
quence, if g is nilpotent we have a sequence of subalgebras according to its solvable length, given
by the smallest integer i for which g�i�=0, which is at most equal to k+1 for step 2k algebras.

In this work, we consider the nonlinear dynamical systems given by bracket generating dis-
tributions of real analytic vector fields. We approach the problem as a sub-Riemannian geodesic
problem on the underlying manifold; we integrate the geodesic equations and describe some of the
associated geometry.

Apart from this introduction, this paper contains six sections. In Sec. II, we set the dynamical
problem that plays the role of archetype of the theory and is related to variational problems in
nonlinear dynamics. For this case, we depict the Lie algebraic structure and exhibit a gauge
transformation under which the variational equations remain invariant. In Sec. III, we propose a
coordinate-free method for step-�m+1� nilpotent Lie algebras g with g�2�=0. We write explicitly a
Philip Hall basis for the Lie algebra that clarifies by means of a gradation the hierarchy of
dynamical systems proposed by Brockett and Dai in Ref. 3. We develop also some low dimen-
sional examples. In Secs. IV–VII, we discuss the first degree of the gradation and obtain explicit
expressions for the geodesics �Sec. V�. The obtained formulas, allow us to present some of the
sub-Riemannian geometry of the problem, in particular, the characterization of unit spheres, the
complete parametrization of the exponential mapping �Sec. VI�, and the conjugate locus in Sec.
VII.

II. THE MODEL VARIATIONAL PROBLEM

In this section, we consider the nonlinear dynamical system in Rn+1, determined by a bracket
generating distribution � of real analytic vector fields X1 , . . . ,Xn, given as
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Xi =
�

�xi
+ �i

�

�y
, i = 1, . . . ,n , �2�

where �i�x� are the real analytic functions in n variables. The horizontal curves, i.e., absolutely
continuous curves t�q�t� such that q̇�t��spanspan�X1�q�t�� , . . . ,Xn�q�t��
, are solutions of the
following differential system:

q̇ = �
i=1

n

ẋiXi�q� , �3�

where q= �x ,y�T�Rn+1, and y satisfies

ẏ = �
i=1

n

ẋi�i�x� .

For the first degree Lie brackets, we write

Xij ª �Xi,Xj� = Fij
�

�y
,i, j = 1, . . . ,n ,

with the antisymmetric matrix elements Fij, defined as

Fij =
�

�xj
�i −

�

�xi
� j .

It is easy to verify that the Jacobi identity reads as follows:

�iFjk + � jFki + �kFij = 0.

Observe that that since the � j do not depend on y, all fields

adXi1
adXi2

¯ adXik
�Xj� for k � 0

commute among themselves. This is important since then the Lie algebra g spanned by the
distribution �, that is, g=�i�

�i�, is solvable with derived series g=g�0��g�1��g�2�= �0
.
Further, g is filtered ���i����j� for i� j, and ���i� ,��j�����i+j�� and graded �g=�i�0 � �i with

�i+1= �� ,�i� and ��i�=� j=0
i � j�, for details on these definitions see, for instance, �Ref. 9�. We shall

call the parts of �i to be homogeneous of degree i.
Together with the anticommutativity of the Lie bracket, the Jacobi identity bounds the number

of linearly independent vector fields generated for the derived and the central flags. To see this, let
us define the fields of depth r as follows:

X� = adX�r
adX�r−1

¯ adX�2
�X�1

�, � = ��r,�r−1, . . . ,�1�, r � 1,

with integers � j =1, . . . ,n. If all fields are distinct and of depth one, the Jacobi identity is a �three
terms� condition relating fields of depth three. For more than one field of depth two, the identity
is trivial. Moreover, when two fields, say, Xi and Xj, are of depth one, and the third one, say, X, is
of depth s�1 then

�Xi,�Xj,X�� = �Xj,�Xi,X�� ,

expression that relates fields of depth s+2, which is just the statement of the commutativity of the
partial differentiation, �i� j =� j�i. In conclusion, the Jacobi identity states that for r�3 the order of
the �i for i�3 in X� is irrelevant.

Let now G be the simply connected Lie group associated with the Lie algebra g, in such a way
that the Xi are left invariant vector fields. We can define a smooth varying inner product �·,·� at
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each plane ��q�=span�X1�q� , . . . ,Xn�q�
 by declaring �Xi�q�
 to be an orthonormal set.
The distribution � determines a variational problem on G. energy-minimizing horizontal

curves t�q�t� satisfy �q̇ , q̇�= �ẋ , ẋ�; for that reason, it shall be convenient to introduce the angles
0�	i
2� and radii Ri, with i=1, . . . �n /2� such that

ẋ2i−1 = Ri cos 	i, ẋ2i = Ri sin 	i. �4�

For n odd, an extra radius

ẋn = R�n/2�+1 �5�

shall be necessary, in any case �ẋ , ẋ�=�iRi
2=1, and therefore the �Ri
 can be parametrized using

spherical coordinates.
The standard variational method �see, for example, Ref. 4� consists in the study of the La-

grangian,

L =
�0

2
�ẋ�2 + ��ẏ − ��, ẋ�� .

There are two classes of extremal curves, the ones for which �0=0, called abnormal or singular,
and the ones for which �0�0, usually called normal. For the latter, we can set without loss of
generality that �0=1; the Euler–Lagrange equations in this case are the following:

ẍ = �Fẋ, �̇ = 0,

where F is the skew-symmetric matrix with entries Fij. Clearly, the Lagrange parameter � is a
constant of motion. The Euler–Lagrange equations are invariant with respect to the gauge trans-
formation

�i � �i +
�	

�xi
,

for a sufficiently smooth function 	�x�. The Lagrangian and the fields are mapped to

L − �
d	

dt
and Xi +

�	

�xi

�

�y
,

respectively, and the Lie algebra remains invariant. In terms of differential forms, the connection
1-form of � is

A = dy − �
j

� jdxj .

Clearly �A ,Xi�=0. The curvature 2-form of the distribution is

F = 2dA = �
j,k

Fjkdxj ∧ dxk.

Here, dF=0 is an analog of the homogeneous Maxwell equations �Jacobi identity� for this prob-
lem. Further, A is a higher dimensional analog of the vector potential and dA is the corresponding
analog of the magnetic field. The above gauge transformation leads to

A � A − d	 and F � F .

Therefore, by means of gauge transformations, we can add to our convenience exact differentials
leaving both the equations of motion and the curvature invariant.
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For real analytic vector fields the resulting Lie algebra could be infinite in general, which
cannot be our case, since we are assuming that the distribution � is bracket generating. Therefore,
the vector fields must generate finite Lie algebras.

III. GRADED NILPOTENT LIE ALGEBRAS

The distribution introduced above can be studied by considering the Taylor series expansion
around the origin

� j�x� = �
i1,. . .,in�0


 1

i1!i2! ¯ in!

�i1

�x1
i1
¯

�in

�xn
in

� j�x�

x=0

x1
i1
¯ xn

in.

The general analytic case has been studied among others by Lafferriere and Sussmann.11 Brockett
and Dai.3 have proposed a hierarchy of nonlinear dynamical systems by considering a finite
number of terms in the Taylor series, that is, they take polynomial vector fields in particular
coordinate systems. Clearly if the �i are polynomials of degree at most m, then the resulting Lie
algebra g shall be finite as required. Furthermore, g shall be nilpotent of order of nilpotency m
�i.e., step m+1�, since then �k=0 for all k�m. We propose here a coordinate-free method to study
this problem.

We consider a general approach that leads naturally to the classification problem of isomor-
phism classes of finite dimensional nilpotent Lie algebras. Furthermore, our results provide a
coordinate-free method for studying nonlinear dynamical systems. We consider a rank n distribu-
tion �, as that given in the preceding section, but for general linearly independent polynomial
functions �i of degree m. Denote the Lie algebra generated by � as g. This Lie algebra is filtered,
graded �recall ��i�=� j=0

i � j�, and nilpotent of step-�m+1�. Further, g has solvable length two, i.e.,
g�2�=0. The skew symmetry of the Lie bracket together with the Jacobi identity implies that not all
commutators can be linearly independent. A generic formulation of the problem for nilpotent Lie
algebras would be reached once a basis for the commutators is explicitly given. For then the
underlying simply connected Lie group can be obtained by means of the exponential map and the
BCH formula, privileged coordinates can be used to write a canonical basis of invariant vector
fields.

Lemma: The number of linearly independent vector fields in �r is Dn,r=r� n+r−1
r+1

� for r�0.
Furthermore, the Lie algebra g has dimension n+1+Dn+1,m− � n+m

m
�.

Proof: It is clear that after m brackets the resulting vector fields are central. Since the fields of
distinct depths are linearly independent, the dimensions of the subspaces �r can be computed
directly by consideration of the Jacobi identity as follows.

Assume that there are Dn,m−2 fields X of depth m−1 for m�2. They produce then nDn,m−2

fields �Xi ,X� of depth m. However, there are n�n−1� /2 Jacobi identities

�Xj,�Xi,X��� = �Xi,�Xj,X��� ,

for each of the Dn,m−3 fields X� of depth m−2, relating fields of depth m, which must be subtracted.
However, again, we must consider the n�n−1��n−2� /3! Jacobi identities,

�Xj,�Xi,�Xk,X���� = �Xi,�Xj,�Xk,X���� = �Xi,�Xk,�Xj,X���� ,

which are anyway satisfied for each of the Dn,m−4 fields X� of depth m−3. These identities must be
subtracted from those relating the fields of depth m−2, and hence added to the total sum. For then,
following the same reasoning, the general recurrence formula is

�
k=0

m

�− �k�n

k
�Dn,m−k−1 = 0, m � 2.

The initial conditions are as follows. First, Dn,0=0, since there are no two terms Jacobi
identities relating fields of depth m and containing only m fields of �. Second, Dn,−1=−1, because

032704-5 Dynamical systems and sub-Riemannian geometry J. Math. Phys. 49, 032704 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



of the identity with m fields in � and finally Dn,−s=0, s�1, because there are no deeper relations.
The solution of the formula is, in fact, Dn,m, as given above. This can be corroborated by deducing
first the generating function �n−1 /x� / �1−x�n for the Dn,m. The dimension of the algebra can be
obtained using the identity

�
k=0

m �n + k − 1

k
� = �n + m

m
� .

�

Note the difference with Witt’s dimension formula for free Lie algebras9 for r�93. Once we
know the dimension of g we shall describe precisely a Philip Hall basis.1,11,14 Let us recall that
such a basis consists of a totally ordered set �P , � 
 given by the following:

�1� The Xi belong to P.
�2� If A ,B�P and length �A�
 length�B�, then A�B.
�3� If C is not in �, then C�P iff C= �A ,B� with A ,B�P, A�B and either B�� or B

= �D ,E�, with D ,E�P, D�A and D�E.

Evidently in our case the total order � is determined by the depth of the bracket.
Proposition: A Philip Hall basis P of the step-�m+1� nilpotent Lie algebra g is given as

follows.

�1� The n elements of � and the Dn,1=n�n−1� /2 fields of depth two Xi1,i2
= �Xi1

,Xi2
�, for i1
 i2.

�2� Xi3i1i2
=adXi3

adXi1
Xi2

, for i1
 i2� i3 and Xi2i1i3
=adXi2

adXi1
Xi3

, for i1� i2
 i3. These are a

total of Dn,2=n�n2−1� /3 linearly independent fields of depth three.
�3� The Dn,r+2 fields of depth r+3�3 for r=1, . . . ,m−3, Xji=adXjr

¯adXj1
adXi3

adXi1
Xi2

, and

Xji�=adXjr
¯adXj1

adXi2
adXi1

Xi3
, with j1� j2� ¯ � jr.

Proof: For �1�, step two or larger, there is no restriction from the Jacobi identity and clearly P
is given by � and Xi1,i2

with i1
 i2. There are n�n−1� /2=Dn,1 elements Xij as expected. For �2�,
step three or larger, notice first that for i3� i2� i1, the Jacobi identity for all three fields in � reads

�Xi3
,�Xi2

,Xi1
�� + �Xi2

,�Xi1
,Xi3

�� + �Xi1
,�Xi3

,Xi2
�� = 0.

Here, the first two terms �Xi3,i1,i2
and Xi2,i1,i3

� belong to P, but not the third Xi1,i3,i2
. Therefore, at

this depth the conditions for P take into account the Jacobi identities. Thus there are 2n�n−1�

�n−2� /3! elements Xi3i1i2

,Xi2i1i3
for i1
 i2
 i3 and 2n�n−1� /2 elements Xi1i1i2

,Xi2i1i2
with i1


 i2, giving a total of n�n2−1� /3=Dn,2 basis elements of depth three as expected. From step four
upward the Jacobi identity is nontrivial only if exactly two fields belong to �, in that case
�Xi2

, �Xi1
,X��+ �Xi1

, �X ,Xi2
��=0, for i1
 i2 and Xj �X for all Xj ��. Then, the first term belongs to

P but not the second. Again, the condition for the elements of P take fully into account the Jacobi
identity for all higher depths. For depth r+3�3, there are two subclasses:

�1� For Xji there is a single set of fields with r+3 distinct subindices: jr� ¯ � j1� i3� i2� i1
and for Xji� there are r+1 sets of linearly independent fields with r+3 distinct subindices:
jr� ¯ � j2� j1� i3� i2� i1 ; jr� ¯ � j2� i3� j1� i2� i1 ; ¯ ; i3� jr� ¯ � j1� i2� i1. In
this subclass there are a total of �r+2�� n

r+3
� linearly independent fields of depth r+3.

�2� In this subclass two or more subindices are equal; there is at least one equality and at most
r+1. For Xji, i1 is always distinct and jr� ¯ � j1� i3� i2� i1. For Xji� there are r+1 types
of inequalities: jr� ¯ � j1� i3� i2� i1, jr� ¯ � j2� i3� j1� i2� i1 , ¯ , i3� jr� ¯ � j1
� i2� i1. Now, s equalities lead to a relation with only r+2−s inequalities and each corre-
sponds to � n

r+3−s
� distinct indices. However, the s=1, . . . ,r+1 equalities can occur in � r+1

s
�

ways times the r+2 types of inequalities.

Both subclasses give together the number of linearly independent fields of depth r+3�3 as
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�r + 2��
s=0

r+1 �r + 1

s
�� n

r + 3 − s
� = �r + 2��n + r + 1

r + 3
� ,

but this is precisely Dn,r+2. �

The remaining elements of g are obtained using the skew symmetry and the Jacobi identity.
The question about the possible subalgebras of a fixed step and their classification shall not be
taken into account, since it is not relevant for a general setting. The exponential map and the BCH
formula allow now in principle to obtain in terms of the above Philip Hall basis the Lie group law
and from it the associated left invariant vector fields in canonical coordinates. These coordinates
would correspond to the so called “Philip Hall coordinates,”11 defined for analytical vector fields.

Example 1: For the step-2 algebra in n variables, up to isomorphisms, the basis is

�Xi,Xj� = Xij, i 
 j i, j = 1, . . . ,n . �6�

The remaining nontrivial elements of the algebra are Xi2,i1
=−Xi1,i2

.
Example 2: For step-3 the basis is given by

�Xi1
,Xi2

� = Xi1i2
, i1 
 i2,

�Xi3
,Xi1i2

� = Xi3,i1i2
, i1 
 i2 � i3, �Xi2

,Xi1i3
� = Xi2,i1i3

, i1 � i2 
 i3,

The remaining elements of the algebra are again Xi2,i1
=−Xi1,i2

and

�Xi1
,Xi2i3

� = Xi3,i1i2
− Xi2,i1i3

, i1 
 i2 
 i3,

with i1 , i2 , i3=1 , . . . ,n.
Example 3: For only two variables but step-�m+1�, a Philip Hall basis is

�X1,X2� = X12, adXjk
adXjk−1

¯ adXj1
X12 = Xj,12,

The remaining elements of the algebra are either zero or are

adX��jk�
adX��jk−1�

¯ adX��j1�
X12 = Xj,12,

with j= �jk , . . . , j1� for j1� j2� . . . � jk, jk=1,2, k=2, . . . ,m and ��j� is any permutation of the
elements of j and all other antisymmetric expressions.

The associated sub-Riemannian nilpotent problem is therefore given in terms of an inner
product and the distribution �, which generates a step-�m+1� nilpotent Lie algebra g of dimension
as given in the last lemma. There is a natural principal bundle �P ,M ,G0�, with total space P of
the same dimension as g, base space M of dimension n, and Abelian structure group G0, given by
the Lie group of the subalgebra generated by all basis elements of g not in �. The differential
system for q� P defines the horizontal lifts of tangent vectors on TM. In the next sections, the
step-2 problem is analyzed in detail. Some additional results concerning the step-�m+1� case will
be reported elsewhere including explicit coordinated bases.

IV. THE FIRST DEGREE OF THE GRADATION

As explained above, the first degree of the gradation corresponds to a distribution �
= �Xi , . . . ,Xn
 for which the only nonzero brackets are �Xi ,Xj�=Xij with i
 j, i , j=1, . . . ,n. Ac-
cording to the last lemma, the Lie algebra g generated by � is filtered, graded, nilpotent of step 2,
and has dimension n+ 1

2n�n−1�. We can choose coordinates �q= �x ,z�
= �x1 , . . . ,xn ,z12, . . . ,z�n−1�n��Rn
son
 for which Xi=� /�xi+� j�ixj� /�zij, together with Xij =
−2� /�zij realize a Philip Hall basis for g. Furthermore, for any horizontal curve t�q�t�, �q̇�t�
���q�t��a.e.�, q̇= �ẋ ,x∧ ẋ�.
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A sub-Riemannian metric is obtained by declaring �Xi�q�
 to be an orthonormal set at each
q= �x ,z��R
son. Energy minimizing trajectories turn out to be extremals corresponding to the
Lagrangian,

L =
�0

2
�ẋ�2 −

1

2
Tr ��ż − x ∧ ẋ� , �7�

where �= ��ij� is the skew-symmetric matrix of Lagrange multipliers.
In these coordinates, the associated extremal problem is known as the Gaveau Brockett prob-

lem. Two situations can occur. Either �0=0, which leads to the singular or abnormal case.12 The
second situation corresponds to �0�0, the so-called normal case. In this last case, we can set
�0=1, without loss of generality. In the Gaveau–Brockett problem, there are not strictly abnormal
extremals. It can be shown that any abnormal extremal can also be obtained as projection of a
normal one. We shall consider here only normal extremals.

In this case, the Euler–Lagrange equations ẍ=�ẋ and �̇=0 lead us to the conclusion that the
�ij are constants of motion and that

d

dt
�ẋ − �x� = 0.

However for x�0�=0, we obtain therefore that the initial velocity components ẋ−�x= ẋ0

constitute a set of n constants of motion. These correspond essentially to the right invariant vector
fields.

In the abnormal case, the Euler–Lagrange equations are �ẋ=0; therefore for � nonsingular
x=const, whereas for the case with a single zero eigenvalue ẋ= �0, . . . ,0 , �1�, according to the
normalization �ẋ , ẋ�=1.

V. NORMAL EXTREMALS

From here on, assume that �x ,z��Rn
son is a geodesic arc defined in certain interval, with
initial condition �x�0� ,z�0��= �0,0�, and also that �x ,z� is the projection of a normal extremal
�x ,z , ẋ ,�� with � satisfying that for n even � has all its eigenvalues different from zero, and for
n odd it has only one zero eigenvalue. For simplicity, we shall assume that the eigenvalues are
nondegenerated.

Let �� iR be the spectrum of �, and let � be its characteristic polynomial. Each ���
determines a n
n complex matrix ��=�����−��
���− I�� /�����, which is the spectral projector
associated with �. They are Hermitian matrices, and for n odd, the projector corresponding to the
eigenvalue zero is a real, symmetric n
n matrix denoted as �0.

The Lagrange–Sylvester formula for matrix functions readily yields the spectral formula

x = �
���

1

�
�e�t − 1���ẋ0, �8�

for n even plus the additional term t�0ẋ0 for n odd. Write now the nonzero eigenvalues of � as the
elements of the ordered set

�i�1,− i�1, . . . ,i��n/2�,− i��n/2�
 with �k � 0 for all k , �9�

correspondingly; the eigenvectors are the elements of the ordered set �v1 ,v−1 , . . . ,v�n/2� ,v−�n/2�
 and
the projectors the elements of the ordered set ��1 ,�−1 , . . . ,��n/2� ,�−�n/2�
. Observe that v−k=vk for
all k. Denote by �0 the projector for the zero eigenvalue and by v0 its �real� eigenvector v0, with
v0�ker �. From the definition, one obtains

�iv j = �ijvi for all i and j . �10�

Assume now that n is even, the Cayley–Hamilton theorem implies
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�i� j = �ij�i for all i and j , �11�

but then the set �v1 ,v−1 , . . . ,vn/2 ,v−n/2
�Cn is orthonormal with respect to the standard Hermitian
product �v ,w�=v†w. In fact, if i� j then

�vi,v j� = ��ivi,� jv j� = �vi,�i� jv j� = �ij . �12�

Decompose now

v j =
1
�2

��2j−1 + i�2j� ,

where the �k are real unit orthogonal vectors, i.e., �i ·� j =�ij, where · denotes the standard Euclid-
ean product in Rn. Since vk�ker��− i�kI� for each k=1, . . . , �n /2�, then

�2k−1 =
1

�k
��2k and �2k = −

1

�k
��2k−1 for k = 1, . . . , �n2 � . �13�

Note further that �k are eigenvectors of �2 with eigenvalue −�k
2. In conclusion, ��1 , . . . ,�n
 is an

orthogonal basis of Rn. A similar analysis can be done for n odd, by considering the linearly
independent orthogonal set �v1 ,v−1 , . . . ,v�n/2� ,v−�n/2�
, together with the �real� eigenvector v0, to
obtain the orthogonal basis ��1 , . . . ,�n−1 ,v0
, for the space of Rn. Since ẋ0�Rn is a �real� fixed
vector, it can be verified that

span�Re��ẋ0,vk�vk�,Im��ẋ0,vk�vk�
 = span�Re�vk�,Im�vk�
 ,

for k=1,2 , ¯ , �n /2�. As expected, the geodesic arcs can be easily given in terms of the wedge
products of the basis ��k
, for n even, and additionally �0=v0, for n odd. Recall now the param-
etrization given by Eqs. �4� and �5� and make the associations

�ẋ0,�2k−1� = Rk cos 	k, �ẋ0,�2k� = Rk sin 	k,

for n even, and additionally �ẋ0 ,v0�=R�n/2�+1, for n odd. These relations mean simply that the Ri are
the lengths of the projections of ẋ0 on span��2i−1 ,�2i
 and for n odd, R�n/2�+1 is the projection in the
direction of v0.

Theorem: Let �x ,z��Rn
son be a geodesic arc, for n even,

x = �
i=1

�n/2�
x̄2i−1�2i−1 + x̄2i�2i, �14�

z = �
i,j=1

�n/2�
z̄2i,2j�2i ∧ �2j + z̄2i,2j−1�2i ∧ �2j−1 + z̄2i−1,2j−1�2i−1 ∧ �2j−1, �15�

where

x̄2i−1 =
Ri

�i
�sin��it + 	i� − sin 	i�, x̄2i =

Ri

�i
�cos��it + 	i� − cos 	i� ,

z̄2i,2j =
RiRj

�i
� cos�	i − 	 j� − cos���i − � j�t + 	i − 	 j�

2��i − � j�
+

cos���i + � j�t + 	i + 	 j� − cos�	i + 	 j�
2��i + � j�

−
cos 	i�cos�� jt + 	 j� − cos 	 j�

� j
� ,
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z̄2i,2j−1 =
RiRj

�i� j
� ��i + � j��sin���i − � j�t + 	i − 	 j� − sin�	i − 	 j��

2��i − � j�

+
�� j − �i��sin���i + � j�t + 	i + 	 j� − sin�	i + 	 j��

2��i + � j�

+ sin 	 j cos��it + 	i� − cos 	i sin�� jt + 	 j�� ,

z̄2i,2i−1 =
tRi

2

�i
−

Ri
2 sin �it

�i
2 ,

z̄2i−1,2j−1 =
RiRj

�i
� cos�	i − 	 j� − cos���i − � j�t + 	i − 	 j�

2��i − � j�
−

cos���i + � j�t + 	i + 	 j� − cos�	i + 	 j�
2��i + � j�

−
sin 	i�sin�� jt + 	 j� − sin 	 j�

� j
� .

For n odd, we obtain the same summations, plus the extra terms tR�n/2�+1�0 for (14) and

�
i=1

�n/2� RiR�n/2�+1

�i
�− t�sin��it + 	i� + sin 	i� −

2

�i
�cos��it + 	i� − cos 	i���2i−1 ∧ �0

+
RiR�n/2�+1

�i
�− t�cos��it + 	i� + cos 	i� +

2

�i
�sin��it + 	i� − sin 	i���2i ∧ �0,

for Eq. (15).
Proof: Consider first n even, thus for each k� �1,n /2� we have

�kẋ0 = �ẋ0,vk�vk and �−kẋ0 = �ẋ0,v−k�v−k.

Therefore Eq. �8� yields

x = �
k=1

�n/2�
1

i�k
�ei�kt − 1��ẋ0,vk�vk −

1

i�k
�e−i�kt − 1��ẋ0,v−k�v−k = �

k=1

�n/2�
1

i�k
��cos��kt� − 1���ẋ0,vk�vk

− �ẋ0,vk�vk�� +
1

i�k
�i sin��kt���ẋ0,vk�vk + �ẋ0,vk�vk�� ,

and

2 Re��ẋ0,vk�vk� = Rj��2j−1 cos 	 j − �2j sin 	 j�, 2 Im��ẋ0,vk�vk� = Rj��2j−1 sin 	 j + �2j cos 	 j� ,

�16�

which lead to Eq. �14�. Thus

ẋ = �
j=1

�n/2�
�− Rj�sin�� jt + 	 j��2j + Rj cos�� jt + 	 j��2j−1,

and therefore an elementary integration of ż=x∧ ẋ yields the result, using Eq. �16�. Assume now
that n is odd, then
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ẋ = �0 + �
j=1

�n/2�
�− Rj�sin�� jt + 	 j��2j + Rj cos�� jt + 	 j��2j−1,

with �0= �ẋ0 ,�0��0. In consequence, once more, an elementary integration finishes the proof with
Eq. �16�. �

For arbitrary dimensions, the projections of the component x to the planes span��2i−1 ,�2i
 are
circles passing through the origin, and with radii Ri /�k. In odd dimensions, the projections of the
component x to the three dimensional subspaces span��2i−1 ,�2i ,�0
 are helices, since x varies
linearly in the direction of the vector �0. In this case, one can write explicitly t
= �ẋ0 ,�0x� / ��0ẋ0�2.

In Fig. 1, a set of trajectories is shown in the subspaces generated by �2i−1, �2i, and �0. Each
helix corresponds to a fixed �i, has radius Ri /�i, and hits the vertical �0-axis at times t
=ki2� /�i, for ki=1,2 , . . .. In Fig. 2, the trajectories are shown as functions of time and 	i in
span��2i−1 ,�2i ,�2i−1,2i
 for fixed �i. Finally, in Fig. 3, a set of trajectories for several fixed values
of �i is shown inside the unit sub-Riemannian sphere �see next section�.

In this problem a geodesic arc which is projection of an abnormal extremal �not strictly
abnormal� corresponds to a straight line. We can conclude that for n odd, the helix described
above, which is projection of a normal extremal, has directrix parallel to the eigenspace corre-
sponding to the eigenvalue zero, which coincides with the line given by the abnormal.

FIG. 1. �Color online� A set of trajectories in the subspaces generated by �2i−1, �2i, and �0, as functions of time and �i.
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The component x of the geodesic arc �x ,z� can be given in a completely coordinate free
manner, as the locus of certain algebraic surfaces, as follows.

Proposition: If �x ,z� is a geodesic arc then

�kx = �k−1ẋ − �k−1ẋ0, �17�

for k=1, . . . , �n /2�. Furthermore,

FIG. 2. �Color online� A set of trajectories in the subspaces generated by �2i−1, �2i, and �2i−1,2i, as functions of time and
	i, for fixed �i.
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��x + ẋ0�2 = �ẋ0�2, �18�

where �·� denotes the standard Euclidean norm in Rn.
Proof: The equation ẋ=exp�t��ẋ0 is equivalent to �ẋ=exp�t���ẋ0. By integrating the latter

in the interval �0, t�, we obtain

�x�t� = �exp�t�� − I�ẋ0 = ẋ�t� − ẋ0,

that corresponds to Eq. �17� for k=1. A standard induction argument finishes the proof of the first
result, the second is immediate. �

Corollary: The end points of extremal curves at fixed time in the three dimensional subspaces
span��2i−1 ,�2i ,�2i−1∧�2i
 are given by the family of curves

− tan�ai
2 − ai�x̄2i−1 cos 	i − x̄2i sin 	i�

2z̄2i−1,2i
� =

x̄2i−1 sin 	i + x̄2i cos 	i

x̄2i−1 cos 	i − x̄2i sin 	i

. �19�

These curves project down to the planes span��2i−1 ,�2i� to the family of cochleoids

�i
2 = x̄2i−1

2 + x̄2i
2 =

− 2ai

�it
�x̄2i−1 sin 	i + x̄2i cos 	i� , �20�

for fixed 	i, with ai= tRi. The set of intersection points of the above three dimensional curves with
the plane x̄2i=0 is the curve

x̄2i−1 =
2ai

�it
sin

�it

2
, z̄2i,2i−1 =

ai
2

�it
−

ai
2 sin �it

�i
2t2 . �21�

Proof: The first two results follow from the last theorem, which leads to

− �it = 2 tan−1 x̄2i−1 sin 	i + x̄2i cos 	i

x̄2i−1 cos 	i − x̄2i sin 	i

. �22�

The last plane curve arises after observing that the plane x̄2i=0 is obtained after setting 	i=
−�it /2. �

Remarks: Remember that the cochleoid is the barycenter of the circle. Since

FIG. 3. A set of helicoidal trajectories in the subspaces generated by �2i−1, �2i and �2i−1,2i, as functions of time t
� �0,1�, 	 and several fixed values of �i inside the unit sub-Riemannian sphere.

032704-13 Dynamical systems and sub-Riemannian geometry J. Math. Phys. 49, 032704 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



ż̄2i,2i−1 =
− ai

t
�x̄2i−1 sin 	i + x̄2i cos 	i� ,

the inverses of the multipliers �i give an amount of how much the horizontal trajectories deviate
from the directions parallel to the planes span��2i−1 ,�2i
. In particular, for t=2�k /�i, for integral
k, ż2i,2i−1 vanishes, whereas it reaches its maximum absolute value 2Ri

2 /�i for the times t= �2k
+1�� /�i (see Fig. 2). Finally, let us remark that since

�i =
2Ri

�i
sin

�it

2
, t � 0 �23�

does not depend on 	i, then the resulting curves, for �i and t constant as functions of 	i, are
circles of radii �i centered at the origin and parallel to the plane span��2i−1 ,�2i
. For t
=2k� /�i, the radii are zero and for t= �2k−1�� /�i they acquire their maxima 2Ri / 	�i	.

In Fig. 4, the locus of end points �x̄2i−1 , x̄2i , z̄2i,2i−1� of trajectories starting at the origin for
	i=0 and t=1 is shown. The displayed curve met the �vertical� z̄2i,2i−1-axis at �i=2�ki, for ki

= �1, �2, . . .. The projection of this curve on the plane span��2i−1 ,�2i� is the cochleoid displayed
in Fig. 5. Here the origin is met again at �i=2�ki, for ki= �1, �2, . . .. The projection on the plane
span��2i−1 ,�2i∧�2i−1� is the first curve of Fig. 6, the other three curves correspond to 	i

=� /4,� /2, and 3� /4, respectively. The intersection of all the curves of the kind given in Fig. 4
with the plane x̄2i=0 is given in Fig. 7.

Let �0,T� be a sufficiently small interval, and let t� ��x ,z� , �u ,��� be a trajectory of the
system, satisfying the initial condition ��0,0� , �ẋ0 ,���. The exponential mapping projects the
covector �= �ẋ0 ,�� into the geodesic arc �x ,z�. The study of the geometric properties of the
exponential mapping passes then through an appropriate parametrization of the covector in terms
of algebraic invariants of the problem. The first component of the covector can be parametrized
according to Eqs. �4� and �5�.

FIG. 4. The end points of trajectories of fixed length in the subspace span��2i−1 ,�2i ,�2i−1∧�2i
, as functions of the
frequency �i for t=1 and 	i=0.
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In the coordinate system given by ��1 ,�2 , . . . ,��n/2�
, � is block diagonal and therefore it is
parametrized by its eigenvalues. Set �=Re, with an orthogonal matrix R, then R�RT is block
diagonal in the standard base �ei 	ei= �0, . . . ,1 , . . . ,0�
. Thus, the exponential map, R3n/2�R3n/2, is
fully parametrized as follows.

FIG. 5. The projection on the plane span��2i−1 ,�2i
 for 	i=0 as function of the frequency �i.

FIG. 6. The projection on the plane span��2i−1 ,�2i−1∧�2i
 for four values of 	i.
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for n even and n odd respectively.

VI. SMALL RADII SPHERES AND WAVE FRONTS

The wave front is defined as the set of end points of geodesics of fixed length. The unit sphere
is the set of points of geodesics at unit sub-Riemannian distance from the origin and is contained
in the wave front. A set of examples is given in arc length units.

In Fig. 8, the wave front of trajectories in the three dimensional subspaces
span��2i−1 ,�2i ,�2i−1∧�2i� is shown. For a given eigenvalue �i and, say, t=1, the inscribed pa-
raboloids are parametrized by the initial velocities, i.e., by their moduli Ri� �0,1� and their
orientation 	i� �0,2��. The flat section corresponds to rectilinear trajectories for �i=0 and all
surfaces lie inside the unit sub-Riemannian sphere. For �i=2�, the paraboloid degenerates into a
segment on the z̄2i,2i−1 axis from 0 to 1.

A well known surface of revolution in three dimensional ambient subspaces corresponds to
the small unit Heisenberg–Brockett sphere and the wave front in span��2i−1 ,�2i ,�2i−1∧�2i
 for
t=1, as functions of �i and 	i starting from the one forms used here. In Fig. 9, the sphere and part
of the wave front inside it are shown for � /2
	i
2�. This surface of revolution can be obtained
by a rotation of the curve shown in Fig. 4. The cochleoidal helices given by Eq. �19� are easily
recognized as well as the cochleoids of Eq. �20�. Finally, the rotation around the axis �2i∧�2i−1 of
the curve given by Eq. �21� yields the wave front shown in Fig. 10. The unit sphere for other
equivalent one forms associated with ż2i,2i−1=x2i−1ẋ2i−x2iẋ2i−1+a�d /dt�x2i−1x2i, for several values
of the real constant a shown in Fig. 11. The wave front changes correspondingly.

FIG. 7. The intersection of the curves for all 	i and �i with the plane x̄2i=0.
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New examples of sections of the wave front and the unit sphere are shown in Fig. 12 in
span��2i−1 ,�2i ,�2i−1∧�0
, span��2i−1 ,�2i ,�2i∧�0
, for n odd, for 	i=0.

VII. CONJUGATE LOCUS AND GEODESICS LENGTHS

From the above sections, we have gained some insight on the horizontal curves joining the
origin with the axes xf =0. Let us now find the conjugate locus of the origin, that is, the points for

FIG. 8. A three dimensional section of the wave front in span��2i−1 ,�2i ,�2i−1∧�2i�, shown inside the unit sub-Riemannian
sphere.

FIG. 9. �Color online� The wave front in span��2i−1 ,�2i ,�2i−1∧�2i�, as function of �i and 	i.
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FIG. 10. �Color online� The wave front as in Fig. 9, but obtained by a rotation of Fig. 7.

FIG. 11. �Color online� The unit sphere for several gauges.
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which the exponential mapping fails to be an immersion. For this end, the standard procedure is to
compute the set of zeros of the corresponding Jacobian. In our problem the Jacobian is, for n even,

Det�exp� = �
i=1

�n/2�
2Ri

3t

�i
4 �2 cos �it + �it sin �it − 2� ,

which is zero for t=0, and for all � jt=2�kj, with kj integer. The first zero of the Jacobian after the
origin is at the largest �i, say, �max, such that �maxt=2�. Therefore, the exponential map is singular
along the axes �2i−1∧�2i, for n even. Also for n odd follows the same result if additionally
R�n/2�+1=0, since the Jacobian for the nontrivial coordinates is the same as for n even. The given
axes are the conjugate locus of the origin and the first conjugate point of the origin is reached at
time 2� /�max.

An instructive way to recognize the conjugate locus of the origin is to consider the Jacobi
fields7,12 associated with the Lagrangian equation �7� defined by the second variations

J�t� = 
 �

��
q��t�


0
,

where � is a parameter associated with a family of geodesics q��t�. In the subspaces
span��2i−1 ,�2i ,�2i∧�2i−1
, Jacobi fields can be calculated by considering the variation of the
angle 	i. Since z2i,2i−1 does not depend on 	i, the resulting vector fields are parallel to the plane
span��2i−1 ,�2i
 and are associated with the rotations x2i−1�2i−x2i�2i−1. Therefore, the Jacobi fields
vanish for x=0, making again clear that the conjugate locus are the axes with directions �2i∧�2i−1.
For n odd, it is needed again that R�n/2�+1=0. These fields satisfy the Jacobi equations, which in our

case are just J̈=�J̇. In the figures of the trajectories of Sec. V, the integral lines of the Jacobi fields
can be easily recognized as the circles of radii �i given by Eq. �23� and centered around the axes
with coordinates

z2i,2i−1 =
2Ri

2

�i
2 arcsin��i�i

2Ri
� −

Ri�i

�i
�1 −

�i
2�i

2

4Ri
2 �1/2

.

The radii become zero as the trajectories approach the conjugate locus at z2i,2i−1= tf
2Ri

2 /2�ki.
However, for other gauges the z2i,2i−1 depend on 	i, as can be recognized in Fig. 11. In Fig. 13, the
Jacobi field is shown schematically in span��2i−1 ,�2i
.

FIG. 12. �Color online� Sections of the unit sphere and the corresponding wave front for n odd, in span��2i−1 ,�2i ,�0
 for
	i=0.
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A point xc is called a cut point along a geodesic going from x0 to xt, if the geodesic ceases to
be minimizing after xc, i.e., the length of the geodesic is greater than the distance between x0 and
xt. A well known result10 states that if xc is the cut point of x0 along a geodesic �=x�t�, 0� t

�, then at least one of the following statements holds: �i� xc is the first conjugate point of x0

along �; �ii� there exist at least two minimizing geodesics from x0 to xc. In the step-2 case under
consideration, both statements hold since at the first conjugate point an infinite number of trajec-
tories coincide.

A particularly interesting case are those geodesics joining the origin �x0 ,z0�= �0,0� at t=0
with the point �0,zf�, for n even �and R�n/2�+1=0 for n odd�, at t= tf �0, for certain zf =z�tf� not
fixed but given by the constraints. Clearly these are �circular� loops in span��2i−1 ,�2i−1
.

Proposition: For n even and commensurable frequencies � j =2�kj / tf, with kj being nonzero
integers, there is an infinite number of trajectories starting at the origin �x0 ,z0�= �0,0� and ending
at the axis �xf ,zf�= �0,zf�. Further,

zf = �
j=1

�n/2�
� j�2j ∧ �2j−1,

where the �i� j = � itfRj
2 /� j are the nonzero eigenvalues of zf. For n odd, the same holds if

R�n/2�+1=0.

FIG. 13. The Jacobi field on span ��2i−1 ,�2i
 vanishes at the origin of the trajectory �broad line�, given by the intersection
with the thin circle �given here only as a visual aid�.
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Proof: From the theorem of Sec. V, to have xf =0, for n even. It is necessary that tf�i are all
integer multiples of 2�, or for n odd if additionally R&#63728;n/2&#63739;+1=0 �i.e., x̄n=0, for all
times�. Then, all frequencies are integer multiples of the frequency 2� / tf, say, �i=ki2� / tf, for
�ki , i=1, . . . ,n /2
, a set of nonzero integers. In that case, since the initial speeds ẋ0 are arbitrary
�with �ẋ0�n=0 for n odd�, there are infinitely many geodesics joining both points. It is simple to
recognize in the aforementioned theorem that only the matrix elements �zf�2j−1,2j = tfRj

2 /� j are
nonzero, where the subindices denote the component in the direction �2j ∧�2j−1. Therefore, for the
even case the quantities �i�zf�2j,2j−1 are the eigenvalues of the matrix zf. In the odd case, there is
an additional zero eigenvalue. �

In Fig. 4, showing a curve on the wave front in the subspace span��2i−1 ,�2i ,�2i−1∧�2i
 the
above results for zf can be interpreted as a subset of the set of points for which the curve touches
the vertical axis. As we can see, this axis is met at an infinite discrete set of points. The first
intersection �the first conjugated point of the origin� of the unit sphere with the vertical axis occurs
for trajectories with frequency 2��i, the second for frequency 4��i, which means that in
span��2i−1 ,�2i
 the circular trajectories are swept twice, and so on. Clearly, there are conjugate
points of the origin arbitrarily near from itself.

VIII. CONCLUSIONS

In this work, we study a class of dynamical systems given in terms of distributions of real
analytic vector fields. We analyze in detail the problem of minimization of kinetic energy for
solution curves of differential systems defined by real polynomial vector fields. For the nilpotent
Lie algebras associated with this problem, a Philip Hall basis is explicitly exhibited. The step-2
case is discussed in detail, the normal trajectories are explicitly written, and some commented
pictured are presented. The sub-Riemannian sphere, the conjugate locus, and the wave front are
calculated for some subspaces.
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