
Appendix I: Loglinear Analysis 
 
 
Loglinear analysis is used to analyze the relationship between three or more 

categorical variables.  Unlike, for example, linear regression in loglinear analysis 

there is no dependent variable that is predicted.  Instead, it is the cell frequencies that 

are predicted. 

 

We saw in Chapter 8 that it can be very difficult to interpret contingency tables when 

analysing the association between three or more variables, for the number of possible 

models that could fit the data rises alarmingly, and the best fitting model cannot easily 

be determined by sifting through a series of separate Chi Square tests. 

 

Loglinear analysis was developed to cope with this problem.  It allows us to interpret 

in a systematic way the relationships between a number of categorical variables by 

fitting imaginary models of relationships between them in an attempt to represent the 

patterns in the data.  The aim is to find the simplest model that fits the data 

satisfactorily such that the predicted cell frequencies are not significantly different 

from the observed cell frequencies. 

  

MODELS AND EFFECTS  

  

In any crosstabulation the cell frequencies are the result of a number of effects.  In a 

two-way crosstabulation, for example, there are three effects that between them 

determine the individual cell values:  

 

• The grand mean.  This is the average cell frequency count. 

   

• The main effect of each variable.  The frequencies in each cell of a contingency 

table are constrained by the row and column marginal totals.  If we look at Table 

I:1, for example, we can see that 158 people smoked (the second row marginal), 

and 139 people reported that their mothers had smoked (the second column 

marginal).  These figures clearly set limits on the possible cell count in cell D (it 

could not possibly exceed 139, for example).  Indeed, we saw in Chapter 8 that it 



is possible to calculate from these marginal totals the number of cases we would 

expect to find in cell D, if there were no association between the two variables 

(i.e. the null hypothesis model).  The effect that each of the variables has in 

determining the cell values is called the main effect. 

 

• The association effect between the variables.  This is the contribution that the 

association between the variables makes to each cell frequency.  In the example 

above, the strength of association between being a smoker and having friends who 

smoke determines how far the actual (observed) frequency in cell E diverges from 

the expected frequency.  We saw in Chapter 8 that the strength of this effect can be 

measured through odds ratios. 

 

If we construct a model that includes all three of these effects, we end up with what is 

called a saturated model.  Because all of the effects that determine the cell 

frequencies are included, our model will exactly reproduce the observed cell counts.   

 

This, however, is completely pointless!  We already know the frequencies in each 

cell.  What we want to know is which effects are having the greatest impact on these 

frequencies, and which are having only a tiny influence.  The task, in other words, is 

to find a simplified model � one that removes as many effects as possible while still 

coming close to predicting all the cell frequencies accurately (i.e. predicted cell 

frequencies should not be significantly different from observed cell frequencies, even 

though we have simplified the model). 

 

We could for example, try removing the association effect between the two variables.  

We would then be left with a model that includes just the effects of the grand mean 

and the main effects.  If we found that this model still fitted the observed data 

adequately, we might then decide to try to simplify the model even further by 

removing, say, both of the main effects so that the only effect we were left with was 

the grand mean.  This radically simplified  model would predict individual cell counts 

purely from the overall number of cases (i.e. it would predict that the observed 

frequencies in each of the cells would be equal to the average cell count) � an unlikely 

result in practice. 



 

Loglinear modelling is simply a procedure that calculates the coefficients for all of the 

effects that explain the observed cell values, and then seeks the model with the fewest 

effects that fits the observed data.  

 

Estimating the parameters for the effects 

 

In loglinear analysis the first step is to calculate the contribution that each effect 

makes in accounting for the observed cell frequencies.  The logic involved in this 

procedure is a bit like working out the relative quantities of each ingredient needed to 

make a cake.   

 

Imagine that we wanted to produce a similar cake to the one that had been purchased 

from the local cake shop.  We might know that the cake consists of five ingredients: 

water, flour, chocolate, eggs and sugar. However, before we can make the cake we 

need to know the exact quantities required of each of the ingredients.   

 

Once we have calculated these quantities and made an accurate copy of the cake, we 

might decide to have a go at making a cake that tastes and looks the same but involves 

fewer ingredients.  This is akin to the next step in loglinear modelling, but let us not 

run ahead of ourselves. 

 

• The equivalent of the cake in loglinear analysis is the contingency table 

• The equivalent of the ingredients are the effects 

• The equivalent to the quantities of the ingredients are the coefficients for the 

effects.  

 

Just as we know the ingredients in our cake, so we know what the effects are that 

determine the cell counts in a crosstabulation.  If we want to remove one of these 

effects, we must first calculate the contribution that it makes to the cell counts so that 

this can be taken out of the model when predicting cell counts.  In other words we 

must know the coefficient for each effect. 

 



Calculating coefficients for effects in a bivariate table 

 

With a bivariate crosstabulation, calculating the effects is straightforward.  Taking the 

crosstabulation between respondents� smoking behaviour and mothers� smoking 

behaviour as our example (see Table I:1), the grand mean effect, the two main effects, 

and the association effect are calculated as follows: 

 

Table I:1: The observed frequency counts for the crosstabulation of respondents� 
smoking behaviour by mothers� smoking history 
 

Smoked in last week? * MUMSMOKE Crosstabulation

Count

 A  109   B  63 172
 C  82   D  76 158

191 139 330

no
yes

Smoked in
last week?
Total

No Yes
MUMSMOKE

Total

 
 

• The grand mean effect is the average cell count based on the geometric mean.  To 

obtain this we take the fourth root of the product of the cell counts: 

 

( )4 D cell C cell B cell A cell ×××  

 

This calculation can be simplified by taking its natural logarithm.   

 

Logarithms have the advantage of transforming mathematical functions into 

simpler mathematical functions.  For example, multiplication of two natural 

numbers is achieved by simple addition of their logs, and division of natural 

numbers is similarly accomplished in logarithms by simple subtraction.  Logging 

thus transforms products into sums and divisions into subtractions. 

 

 

 

If we do this, the equation becomes: 

 

Log (grand mean) = =××× )D cell logC cell logB cell logA cell (log25.0  



 

Log (grand mean) = 0.25(4.69 + 4.41 + 4.14 + 4.33) = 4.39  

 

• The main effect for mumsmoke on cell A is the product of cells A and B divided by 

the product of cells C and D.  Thus: 

 

( )4 D) cell C cell/()B cell A cell ××  

 

The log transformation of this equation simplifies the equation to: 

 

Log (main effect of mumsmoke for cell A) 

= =−−+ )D cell logC cell logB cell logA cell (log25.0  0.156 

 

This is the main effect of mumsmoke for cell A, where the value of mumsmoke is 

�no�.  The main effect of this variable for cell B, where the value is yes, will be the 

same as for cell A, but with the opposite signs between the logs. 

 

• The main effect for var00003 (whether the respondent smoked in the last week) for 

cell A is calculated in much the same way: 

 

=−+− )D cell logC cell logB cell logA cell (log25.0 0.024 

 

• The association effect is the fourth root of the odds ratio of the two variables: 

 

( )4 C) cell B cell/()D cell A cell ××  

 

 

 

 

The log transformation of this equation simplifies the equation to: 

 



Log (association effect for cell A) 

= =+−− )D cell logB cell logB cell logA cell (log25.0 0.118 

 

If we add all of these effects together we obtain the log cell frequency for cell A: 

 

Log (cell A) = 4.39 (grand mean effect) + 0.156 (main effect for MUMSMOKE) + 

0.0347 (main effect for var00003) + 0.118 (association effect) = 4.688 

 

If we take the anti log of this in order to �unlog� it we obtain: 

 

Cell A = e4.688 = 109 

 

What we have seen here is that through some relatively straightforward (although 

somewhat lengthy) calculations we have been able to calculate the contribution that 

each effect makes to the overall cell count.  These contributions are referred to as the 

coefficients for each effect. 

 

Calculating coefficients of effects with more than two variables 

 

Unfortunately, it becomes far more difficult to calculate coefficients when we move 

to the analysis of the relationship between three or more variables because the number 

of effects increases as the number of variables is added.   

 

• With two variables we only had to consider the grand mean effect, the main 

effects for two variables and the single association effect.   

 

• With three variables, there are three main effects (one for each variable), three 

association effects (one for each pair of variables) and one interaction effect (the 

effect that the three-way relationship between the variables has on the observed 

cell count).  

 

There are no simple formulae that can be used to calculate all of these effects.  

Instead,  SPSS uses a method known as iterative proportional scaling which is an 



algorithm similar in nature to that used for calculating the coefficients in logistic 

regression.   

 

In simple terms, the procedure works by the �try-it-out-and-see� method of making a 

series of progressively better guesses at the coefficients for each of the effects 

required to produce the cell frequencies for the saturated model (i.e. the observed 

frequencies).  Eventually the algorithm will end when the observed cell frequencies 

can be estimated accurately from the coefficients for each of the effects. 

 

Why �loglinear�? 

 

In loglinear analysis the cell frequencies that are predicted are logged.  There are two 

good reasons for doing this: 

 

• One is that it makes calculations easier.  Logarithms turn multiplication into sums.  

In principle, it would be possible to calculate the coefficients for the effects that 

predict the cell counts directly (i.e. without logging), but as we saw when 

calculating the coefficients, an additive model makes things easier and a lot more 

manageable when trying to predict the cell frequencies.   

 

• Secondly, logging the cell frequencies ensures that the model predicting the cell 

frequencies is an additive one.  This parallels other statistical techniques such as 

multiple regression and ANOVA, for these linear techniques are, of course, 

additive.   

 

Because it is an additive model, the equation for the loglinear model closely 

resembles the multiple regression equation.  The equation predicting the log cell 

frequency for cell A ( )(ALog ) in the two way crosstabulation in Table I:1, for 

example, is: 

 

 
ABBAALog 1111)( µµµµ +++=  

 



µ is the log of the grand mean.  It is a constant that applies to all cell values.  
A

1µ is the log of the main effect for non-smoking respondents 
B
1µ  is the log of the main effect for non-smoking mothers 
AB

11µ  is the log of the effect of the association between non-smoking respondents and 

non-smoking mothers 

 

On the right hand side of the equation are the logged effects that predict the logged 

frequency count.  The µ  (mean parameter) terms are analogous to the a and b terms in 

the linear regression equation (Y = a + bX).  They represent all that we need to know 

to predict the cell frequency, for if we add all of the coefficients for all of these effects 

together then we obtain the predicted frequency for that cell.  In fact, in the last 

section where we calculated the coefficients for the two-way crosstabulation we used 

this equation to calculate the cell frequency for cell A. 

 

MODELS AND MODEL FITTING WITH THREE VARIABLES 

 

Once we have calculated all of the coefficients, we can set about the task of model 

fitting. The aim, remember, is to find the simplest possible model which estimates cell 

frequencies that are not significantly different from the observed frequencies. 

 

In a two-way categorical analysis, we test only one model (the no association model, 

based on the null hypothesis).  With three tables, however, the number of possible 

models that we might test increases because the number of effects increases.  In fact 

there are 19 models of relationships that could fit the data with three variables!  The 

difficulty involved in manually selecting the simplest one of these models that best 

fits the data is the primary reason for using loglinear analysis. 



 

Table I:.2 Some of the models of relationships between variables that can be 
fitted to data with three variables  
  
Model Model description Corresponding loglinear equation 
A*B*C Interaction (saturated) ACABCBAFa 1111111)log( µµµµµµ +++++=  

ABCBC
1111 µµ ++  

A*B + B*C 
+ A*B 

No interaction, pairwise 
association 

BCACABCBAFa 111111111)log( µµµµµµµ ++++++=
 

A*B Pairwise association 
between A and B only 

ABCBAFa 11111)log( µµµµµ ++++=  

A+B+C No interaction and no 
association 

CBAFa 111)log( µµµµ +++=  

 

 

Four of the models that might fit the data in a three-variable loglinear analysis are 

shown in Table I:2.  For each of models that are fitted to the data there is a 

corresponding loglinear equation. 

  

• The first model that is fitted is the saturated model where all 3 variables interact 

with each other (commonly written as A*B*C).  This model mirrors the extent of 

the interaction exactly as in the data because it includes the effects of all the 

terms in calculating the expected value.  The fact that all of the effects are 

included can be seen in the loglinear equation for the model which includes the 

effects of the grand mean( µ ), the main effects of each variables ( CBA
111 ,, µµµ ), 

each of the pairwise association effects ( BCACAB
111111 ,, µµµ ) and the three-variable 

interaction effect ( ABC
11µ ). Since all of the effects have been carried over into the 

model table, the cell frequencies are identical to the observed frequencies and the 

table will obviously fit the observed data perfectly. 

 

• The next model is pairwise association between A and B, B and C and A and C, 

with no interaction between the three variables.  This model is fitted to the data 

without the effect of the interaction term ABC
11µ  being included but all the other 

effects are included. 

  



• The next model is pairwise association between A and B only.  To predict the cell 

values with this model, we include the effect of the association between variables 

A and B, plus the main effects of each of the three variables. 

 

• The last model in Table I:2 is the model of no association (A+B+C).  This 

includes all of the main effects but does not include the pairwise associations or 

the interaction term.  

 

Loglinear analysis involves trying to fit these and other models to the data in order to 

find the best fitting, most parsimonious model.  The model fitting procedure in SPSS 

does this by starting with the saturated model (which fits perfectly).  It then tries to 

simplify by removing the interaction term (i.e. fitting the pairwise association model).  

If this fits it tries to fit an even simpler model with one of the associations removed. It 

continues removing the effects until it finds a model that does not fit the data 

satisfactorily.  It then returns to the last model that did fit satisfactorily, and this is our 

final model.  

 

Selecting the best fitting model using measures of significance 

 

If you are primarily concerned with exploring relationships in the data, it is often 

convenient to let the computer select the best fitting model automatically.  However, 

if you are testing hypotheses about the relationships between variables, you should 

choose the best fitting model manually.  Your theory might dictate, for example, that 

a variable, pair of variables or interaction must stay in the model even if this effect is 

not significant.  Similarly, you might decide to choose a slightly less parsimonious 

model than the one the computer selects because it fits the data substantially better.    

 

To see how manual model fitting works, let us take an example from Chapter 8, 

where we ended up running a three-way cross tabulation between smoking behaviour 

and mother�s smoking history, controlling for gender.  Our results suggested that there 

may be an interaction between these three variables � in particular, that the 

relationship between respondents� smoking behaviour and mothers� smoking 



behaviour depends upon their gender.  It seemed that males were more likely to 

smoke if their mothers had smoked, but this was not true for females. 

 

Using loglinear modelling, we can now analyze these patterns of association much 

more rigorously.  Instead of the three-way smoke*mumsmoke*gender relationship, 

for example, we might want to test whether the three pairwise associations of 

smoke*mumsmoke, smoke*gender and mumsmoke*gender fit the data without the 

need for the interaction term.  

 

To determine whether the cell frequencies predicted by each model adequately fit the 

observed data, we use a test, not dissimilar to the Chi Square test, called the log-

likelihood ratio (often referred to as 2G ).  Just as with chi square, we can derive the 

statistical significance from its value once the number of degrees of freedom is taken 

into account.   

 

A perfectly fitting model would have a 2G  of 0 and 100 per cent significance 

(because the model and the data are identical).  On the other hand, a high 2G  and a 

low level of significance (for example, p = 0.01) represents a poor fitting model and 

should therefore be rejected.  What we want is the simplest model that is not 

significantly different from the observed data.  By �not significantly different� what is 

conventionally meant is a model with a significance level of 0.05 or more.   

 

Table I:3 shows how well a range of models fit the observed relationship between 

respondents� smoking behaviour, mothers� smoking behaviour and gender.  The 

models are ordered in a hierarchy starting with the most complex model first (the 

saturated model), followed by successively simpler models where the model cell 

frequencies are estimated using fewer and fewer effects: 

.  

• The best fitting model is obviously the saturated model ( 2G  of 0 and 100 per cent 

significance).   

 

• However, the simpler model that excludes the interaction effect also fits the data 

satisfactorily with a significance level of 0.150.   



 

• If we simplify the model further by removing the association between mothers� 

smoking behaviour and respondents� gender (model 3), the fit of the model 

actually improves.   

 

• Just meeting the conventional criteria of a fitting model are the alternative two-

way associations (models 4 and 5).  However, these models are no simpler than 

model 3, and the fit is worse.   

 

• Models 6 to 8 predict the cell frequencies using the parameters for one of the 

pairwise associations and the main effect for the third variables.  These all fail to 

predict the observed data accurately (p < 0.05).  Similarly, the no interaction 

model (model 9), where only the main effects of the three variables are included, 

also fails to fit the data satisfactorily (p < 0.05).  

 

Table I:3: A table showing the goodness of fit of a range of models fitted to the 
observed data of the relationship between respondents� smoking behaviour, 
mothers� smoking history and gender 
 
Model DF 2G  Significance 
1. A*B*C 0 0 1 
2. A*B + A*B + B*C 1 2.1 0.150 
3. A*C + A*B 2 3.4 0.181 
4. A*B + B*C 2 5.9 0.051 
5. A*C + B*C 2 5.9 0.051 
6. A*C + B 3 7.9 0.049 
7. A*B + C  3 7.9 0.049 
8. B*C + A 3 10.5 0.016 
9. A + A + C  4 12.3 0.015 
Key: 
A = Respondents� smoking behaviour 
B = Mothers� smoking behaviour 
C= Respondents� gender 
 

Now we have to make a choice over which model to choose.  There are six that meet 

the level of significance we set, or are very close to it.  Models 6 and 7 are the 

simplest models, using the fewest parameters to predict the cell frequencies, but the fit 

of these models is not very good.  Models 4 and 5 are slightly more complex in that 

they include two pairwise associations.  In spite of this, the fit of these models is 



barely any better than models 6 and 7.  Model 3, on the other hand, is no more 

complex than models 4 and 5, and only slightly more complex than models 6 and 7, 

yet it fits the data much better than any of these models ( 2G  of 3.4 with 2 df and 

0.181 per cent significance).  Therefore, model 3 is the best fitting model using the 

fewest set of parameters.   

 

Our conclusion, therefore, is that a model including just two associations (between 

respondents� smoking behaviour and the respondents� gender, and between 

respondents� smoking behaviour and mothers� smoking behaviour) fits the data 

satisfactorily.  In contrast in Chapter 8, we do not need gender to mediate the 

relationship between the respondents� smoking behaviour and their mothers� smoking 

behaviour..   

 

Residuals 

 

It is important when fitting models to remember that that the log-likelihood ratio only 

measures the overall fit of the expected cell counts with the observed cell counts.  

Therefore, it is always a good idea to examine the cell-by-cell residuals to see how 

well the model fits for each cell, for there may be one or two cells where the model 

fits the data poorly.  In SPSS these residuals are given in standardized form and, in 

general, the convention is that any residual larger than 2 suggests the expected model 

cell counts do not fit the observed data well. 



 
Table I:4: A crosstabulation showing the standardized residuals for the model 
fitted to the observed data  
 

 
The standardized residuals for Table I:4 refer to the pairwise association model � 

A*C+A*B � that was found to be the best fitting model.  We can see that all of the 

model cell counts fall safely within 2 standardized residuals of the observed counts.  

However, we can also see that the model expects more male smokers with mothers 

who do not smoke to be smokers than the observed data shows, and it also expects 

fewer female smokers with mothers who do not smoke to smoke than actually do 

smoke.  This suggests that there is some evidence that gender does affect the 

association between respondents� smoking behaviour and that of their mothers.  

However, this effect is not large enough to warrant the rejection of the simplified 

model 3 (in Table I:3) in favour of model 1 (where the effect of gender on the 

association between respondent smoking and mother�s smoking is included). 

 

 

Smoked in last week? * MUMSMOKE * gender

59 35 94
59.6 34.4 94.0

-.6 .6
-.1 .1
41 27 68

35.3 32.7 68.0
5.7 -5.7
1.0 -1.0

100 62 162
94.9 67.1 162.0

50 28 78
49.4 28.6 78.0

.6 -.6

.1 -.1
41 49 90

46.7 43.3 90.0
-5.7 5.7

-.8 .9
91 77 168

96.1 71.9 168.0

Count
Expected Count
Residual
Std. Residual
Count
Expected Count
Residual
Std. Residual
Count
Expected Count
Count
Expected Count
Residual
Std. Residual
Count
Expected Count
Residual
Std. Residual
Count
Expected Count

no

yes

Smoked in
last week?

Total

no

yes

Smoked in
last week?

Total

gender
female

male

No Yes
MUMSMOKE

Total

 



Measuring the strength of effects 

 

We saw in Chapter 8 how the results of a Chi Square test are influenced by sample 

size.  The same is true of the G2 test in loglinear modelling.  Had our sample size been 

twice as large, model 3 would not have fitted the data adequately, and the only model 

that we could have chosen would have been the model of interaction (confirming our 

speculation in Chapter 8). 

 

With a large sample size, even relatively small effects (for example, weak 

associations or weak interactions) enter the model.  One way of dealing with this 

problem is to report the coefficients for each of the effects as well as the best fitting 

model.  The coefficients tell us the impact on the cell frequencies of each effect and 

are not affected by sample size.  For our example the coefficients are as follows: 

 

Grand mean ( µ ) = 3.686 

Main effect for whether the respondent smokes( A
1µ ) = 0.0324 

Main effect for whether the mother smoked ( B
1µ ) = 0.1655 

Main effect for whether gender ( C
1µ )= -0.0255, 

The association effect between respondent smoke and mum smoke ( AB
11µ ) = 0.1067 

The association effect between respondent smoke and gender( AC
11µ ) = 0.1214 

The association effect between mum smoke and gender( BC
11µ ) = 0.0665 

The interaction between all three variables ( ABC
111µ ) = -0.0804 

 

What each of these coefficients is doing is informing us by how much each of the 

effects is increasing or decreasing the predicted cell value.  The larger the coefficient, 

the larger the impact of the effect on the cell frequencies.  For example, the grand 

mean logged cell value is 3.686; adding the coefficient main effect of variable A 

increases the predicted cell value by log 0.0324; adding the coefficient main effect of 

variable B increases the predicted cell value by 0.1655; and so on. 

 

Comparing the relative strength of these effects, we can see in our example that the 

most important effect (disregarding the grand mean) in predicting the cell frequency is 



the main effect for smoking behaviour of mothers (0.1654), followed by the 

association between respondents� smoking behaviour and gender (0.1214).  We can 

also see why the effects for the association with gender and the three-variable 

interaction were both left out of the model, for the coefficients are both relative small 

(0.0665 and �0.0804 respectively). 

 

MODELLING MORE THAN THREE VARIABLES 

 

Fitting models with more than three variables follows exactly the same procedure as 

we have covered so far.  The only difference is that you will have more models to 

select from.   

 

For example, with four variables the most complex model (i.e. saturated model) is the 

four way interaction model � A*B*C*D.  Less complex models include three three-

way interactions (A*B*C + A*B*D + B*C*D) and two three-way interactions with 

an association (e.g. A*B*C + A*B*D + B*C).  As you can see, with four variables 

there are many, many possible models to choose from.  However, the logic of finding 

the simplest model that fits satisfactorily follows what has been described earlier. 

 

RUNNING A LOGLINEAR PROCEDURE IN SPSS 

 

The loglinear procedure can be found in the �Analyze� menu bar under �Loglinear�. 

There are three loglinear procedures that you can choose from but you are likely to 

find the �Model Selection� procedure the most useful. To run the procedure you must 

select the categorical variables you wish to analyze and define the range of the values 

for each of them. Unless you select specific models that you wish to fit to the data, 

when you run the procedure it will automatically select the best fitting model for you. 

If you wish to examine the coefficients, these can be obtained by ticking the box next 

to �Parameter estimates� in the �Options� dialog box. 

 

 


