E3-227: Home Work 5 (Due 10/3/03)

Using DIOS process simulator and appropriate processing sequence and parameters, obtain the transistor structure that you had designed in HW-4. Start with a p-type Si wafer with 10^{16} /cm³ doping concentration. You can use the following file as a template:

/usr/packages/ISE/tcad/current/database/GettingStarted/Dios/GettingStarted_advanced/di o.cmd

and modify the flow in this file according to the one given in Table 1 of the enclosed paper which uses disposable spacer technique (pdf file enclosed with this email). In order to control the off state current below $0.1nA/\mu m$, optimize and use an appropriate halo implantation dose. Don't change SSRC condition. You have to generate both NMOS device and PMOS device with this leakage constraint.

- (a) For your optimized device, plot the doping concentration at the same locations as that of HW4.
- (b) For the optimized NMOS and PMOS $0.1 \mu m$ device, tabulate Ion, Ioff, and Vt .

With this process generated device as the reference, perform following simulations only for NMOS transistor:

- (c) For the same set of 5 devices (used in HW4), generate linear and saturation Vt roll-off plots.
- (d) Obtain the DC performance metric for this transistor design, i.e. plot Ioff vs Ion. which is generated through simulation on different channel lengths
- (e) For the drain junction, obtain the junction capacitance as a function of Vd, by sweeping Vd from 0V to 1.5V. Gate, Source and Substrate are at GND. (Note: the junction capacitance is between drain and body terminal).

Submitted By: Agnish Jain M.E. Micro. I^{ST} (021-02172) Hemant Parate M.E. Micro. I^{ST} (021-02195) K. Sreenivasulu M.E.Micro. I^{ST} (021-02125)

Using DIOS process simulator the NMOS transistor has been designed by optimizing halo implantation dose to 3.8e+13 and Energy=7Kev leakage current of 0.0804 nA/µm was obtained (keeping other parameters as given in the paper).

(a)

Fig. (c) Doping Conc. For Y=0.13µm

fig. (d) Doping Conc. For $Y=0.165\mu m$

0.4 0.5

fig.(b) Doping Conc. For Y=0.05µm

(b) For the optimized NMOS and PMOS 0.1µm device, tabulate Ion, Ioff, and Vt .

NMOS							PMOS					
I _{OFF} (pA)		$I_{ON}(\mu A)$		$V_{T}(v)$		$I_{OFF}(A)$		$I_{ON}(A)$		$V_{T}(v)$		
Lin.	Sat.	Lin.	Sat.	Lin.	Sat.	Lin.	Sat.	Lin.	Sat.	Lin.	Sat.	
33.9	80.4	83.2	505	0.359	0.317							

For NMOS and PMOS the graphs are shown below

With this process generated device as the reference, perform following simulations only for NMOS transistor:

	Vt	(v)	Lin	lear	Saturation		
L _g (um)	Vt _{lin} (v)	Vt _{sat} (v)	I _{off} (pA)	Ion(µA)	I _{off} (pA)	I _{on} (mA)	
0.06	0.504	0.466	3.19	100	90	0.535	
0.1	0.359	0.317	33.8	83	80.4	0.505	
0.2							
0.5	0.238	0.223	170	38	279.4	0.32	
1.0	0.281	0.226	27.2	23.0	76.3	0.143	

For the same set of 5 devices the linear and saturation Vt roll-off plots are shown in the fig.(g)

Fig(g) Vt Roll off plot

(d)the plot for Ioff vs Ion. on different channel lengths

(e)For the drain junction, the junction capacitance as a function of Vd is obtained by sweeping Vd from 0V to 1.5V. The graphs for Drain-Subs. Junction cpacitance is shown

Supplement to Home Work -5

Agnish Jain Hemant Parate K. Sreenivasulu

Using DIOS process simulator the PMOS transistor has been designed by optimizing halo implantation dose to $5.35e13/cm^2$ and Energy = 30 Kev leakage current of $0.0919nA/\mu m$ was obtained (keeping other parameters as given in the paper). The readings for NMOS 0.2 μ m are also enclosed with V_t roll off and I_{ON} vs. I_{off} plot.

NMOS						PMOS						
I _{OFF}	(pA)	I _{ON} ((μΑ)	VT	(v)	IOF	_F (pA)	I _{ON}	$I_{ON}(\mu A)$ V		$T_{\rm T}({\rm v})$	
Lin.	Sat.	Lin.	Sat.	Lin.	Sat.	Lin.	Sat	Lin.	Sat.	Lin.	Sat.	
33.9	80.4	83.2	505	0.359	0.317	2.12	91.9	235	65.9	43	307	
1E-10 -				Id_vs_Vg		0 -2.5E+19 -5E+19 -7.5E+19 -7.5E+19 -7.5E+20		5				
1E-15 - 1E-20	· · · · · ·				F	25E+20 -1.5E+20 .75E+20 -2E+20	2 -0.	1	L	<u>1</u>		
0	Fig(a)	I _d vs V _g	char.	1	.5		Fig(b)D	oping C	Conc. at	X=100.	Å	
Fig	(a) Dan	ing Con	va at V-	-0.05	2	Б	ia (d) Da	ning Co	nna at N	7-0.12		

(b) For the optimized NMOS and PMOS 0.1µm device, Ion, Ioff, and Vt . are tabulated:-

Fig(e) Doping Conc. at Y=0.165µm

	Vt	(v)	Lin	lear	Saturation		
L _g (um)	Vt _{lin} (v)	Vt _{sat} (v)	I _{off} (pA)	Ion(µA)	I _{off} (pA)	I _{on} (mA)	
0.06	0.504	0.466	3.19	100	90	0.535	
0.1	0.359	0.317	33.8	83	80.4	0.505	
0.2	0.284	0.261	251.3	67	418	0.469	
0.5	0.238	0.223	170	38	279.4	0.32	
1.0	0.281	0.226	27.2	23.0	76.3	0.143	

Fig(g) Vt Roll off plot

Th.e plot for Ioff vs Ion. on different channel lengths is as shown in the figure

Typical PMOS Device Structure as seen in Tecplot