E3-238: Home Work 3 (Due 23/10/03)

1. Design a two-stage OP-AMP shown in Fig. 1. Determine W, L for all devices and the value of compensation capacitor (Cc) for the following specifications:
Open loop gain > 2500
Phase Margin > 45°
Static power dissipation < $330 \mu \mathrm{~W}$
Slew rate : As high as you can achieve.
(Design guideline: For the maximum slew rate, try and utilize entire static power budget to bias the first and second stage. I.e. you have a total of $100 \mu \mathrm{~A}$ bias current budget. You can allocate $60 \mu \mathrm{~A}$ to M 5 and $30 \mu \mathrm{~A}$ to M7. Use rest of the $10 \mu \mathrm{~A}$ for MB1, MB2 branch and MB3, MB4, MB5 branch. Then use appropriate W and L for first and second stage to get required gain. Then use appropriate Cc and nulling transistor for pole splitting and zero cancellation).

Characterize the following parameters through SPICE simulation:
A. Determine the systematic input offset voltage if any. (Note: If you use Vdd=3.3V and $\mathrm{Vss}=0 \mathrm{~V}$, then you should ideally get Vout $=1.65 \mathrm{~V}$ for $\operatorname{Vin} 1=\mathrm{Vin} 2=1.65 \mathrm{~V}$. This is equivalent to putting $\mathrm{Vdd}=1.65 \mathrm{~V}$, $\mathrm{Vss}=-1.65 \mathrm{~V}$ and then the ideal case would be Vout $=0$ for Vin1=Vin2 $=0 \mathrm{~V}$. In order to get the offset with Vdd=3.3V, use Vin $1=1.65 \mathrm{~V}$ and sweep Vin2 around this value to make Vout $=0$). For all the subsequent questions, bias the OP-AMP using external DC voltage to cancel this offset.
B. Plot open loop differential gain versus frequency (both magnitude and phase plot) using AC simulation. What is the unity gain bandwidth and what is the phase margin through simulation? What is the frequency of the dominant pole?
C. Plot open loop common mode gain and CMRR versus frequency
D. Using pole-zero analysis obtain all the poles and zeros of the OP-AMP for "differential response". Is this consistent with the results obtained in 2?
E. Characterize the step response of the OP-AMP and thereby obtain the slew-rate. Obtain the step response for the following step inputs at Vin2:
a. $1 \mu \mathrm{~V}(\mathrm{~b}) 1 \mathrm{mV}(\mathrm{c}) 1 \mathrm{~V}$
F. Obtain PSRR (as a function of frequency)
G. Connect a variable capacitance load at the output of the OP-AMP. Find the C_{L} at which the phase margin vanishes to zero.
(Fig. 1 is in the second page)

M1-M4: Diff amp (I amplifying stage)
M5 : pormroviden Iss for Diff Amp.
MBI and MB2: Form Current minor ialang with M5 to produce ISS
M6-M7: II auplifigis stage
M_{z} : Nulling transistor
C_{C} : Compensation capacitor
MB3-MB5: Biasing transistors for $M z$
$V_{V_{N 1}}:$ Inverting I/r $(-)$ VINE
2. Use the two stage OP-AMP designed in 1. for comparator application. Suppose that the NMOS input transistors have mismatch in their threshold voltage. The transistor M1 has 5\% higher VTH0 than nominal and transistor M2 has 5\% lower VTH0 than nominal. (Create two more SPICE model files for NMOS transistor CMOSN_SLOW and CMOSN_FAST corresponding to these two values of VTHO. All other
parameters will remain similar to nominal model. Then, in your SPICE input file, M1 and M2 must reference these new model files instead of nominal model file.).

When Vin2 $=1.65 \mathrm{~V}$, the comparator transfer function with respect to Vin1 will not be symmetric about 1.65 V due to the transistor mismatch. Estimate the minimum input differential voltage that can be amplified correctly (for both Vin<1.65 case and Vin>1.65V case).

Use input series cancellation and then estimate the minimum input differential voltage that can be amplified correctly (for both Vin <1.65 case and Vin $>1.65 \mathrm{~V}$ case)

Use output series cancellation and then estimate the minimum input differential voltage that can be amplified correctly (for both Vin<1.65 case and Vin>1.65V case)

The Design is a two stage OPAMP as per the given problem. In order to meet the power dissipation criteria the currents are also chosen as suggested. The design flow used for the $1^{\text {st }}$ stage and $2^{\text {nd }}$ stage is described below.

$1^{\text {st }}$ Stage

The first stage of op-amp is a differential input, single ended output with active current load. The sizes and overdrive voltages have been chosen as follows:

MB1: To support $5 \mu \mathrm{~A}$ current with $\mathrm{V}_{\mathrm{g}}=1 \mathrm{v}$, the calculated W / L was $3.5 / 13.5$, but as observed in the results the current is half then expected, which is due to mobility degradation (since high V_{sg}) so the W / L were increased to $3.5 / 27.5$ which gives $\mathrm{I}_{\mathrm{d}}=5.014 \mu \mathrm{~A}$.

MB2: Since $\mathrm{Id}=5 \mu \mathrm{~A}$ and since its G and D are shorted which were also connected to gate of other (Current Mirror) transistors, so V_{gs} is chosen as 180 mV which yields $\mathrm{W} / \mathrm{L}=11 / 3.5$

M5: Since $\mathrm{I}_{\mathrm{d}}=60 \mu \mathrm{~A}$ and $\mathrm{Vgs}=180 \mathrm{mv}$ the calculated W / L was $132 / 3.5$ (12 times MB2), but the I_{d} obtained with this W / L was $64.46 \mu \mathrm{~A}$, so W / L was reduced to $123 / 3.5$ (which is later adjusted to $121.9 / 3.5$ to meet offset requirement as explained later) to obtain $\mathrm{I}_{\mathrm{d}}=59.23 \mu \mathrm{~A}$.

M1, M2: This are differential pair transistors and I_{d} from each one is $30 \mu \mathrm{~A}$, one requirement for them is to reduce mismatch which can be done by larger W / L, the V_{t} is more since they are affected from body effect. Here we require the output at drain of $\mathrm{M} 2(\mathrm{M} 1)$ as 2.2 v in order to drive the $2^{\text {nd }}$ stage so correspondingly W/L were chosen as $42 / 3.5$.

M3, M4: In the current source load transistor also $\mathrm{I}_{\mathrm{d}}=30 \mu \mathrm{~A}$ and $\mathrm{V}_{\mathrm{sg}}\left(=\mathrm{V}_{\mathrm{ds}}\right)=1.1 \mathrm{v}(\mathrm{M} 3)$ was chosen so sizes were calculated to be $116 / 3.5$ But from simulation V_{sg} was 1.24 V . So they were resized to $123.5 / 3.5$.

The output voltage of this stage is taken at 2.2 V to get the final output at 1.65 V . After simulation it was found to be 2.077 V . The gain for first stage is 184 .

Transistor	W/L	$\mathrm{I}_{\mathrm{d}}(\mu \mathrm{A})$		$\mathrm{V}_{\mathrm{gs}}(\mathrm{V})$	$\mathrm{g}_{\mathrm{m}}(\mu \mathrm{A} / \mathrm{V})$	
	Calculated	Simulated	Calculated	Simulated	Simulated	Simulated
MB1	$3.5 / 27.5$	$3.5 / 13.5$	5	5.014	2.3	7.266
MB2	$11 / 3.5$	$11 / 3.5$	5	5.014	0.95	45.02
M5	$132 / 3.5$	$121.9 / 3.5$	60	58.48	0.95	470.4
M1, M2	$42 / 3.5$	$42 / 3.5$	30	29.24	1.062	222.6
M3, M4	$116 / 3.5$	$123.5 / 3.5$	30	29.24	1.244	228.7

Table-1
$\underline{2}^{\text {nd }}$ Stage
In order to get $A_{v}>2500$ the second stage needs to have a gain of at least $2500 / 184>15$. The current for $2^{\text {nd }}$ stage is set to $30 \mu \mathrm{~A}$. Transistor sizes:

M7: Size of M7 $=66 / 3.5$ (6 times MB2), but is sized to $57 / 3.5$ (actually is later adjusted to make output at 1.65 v)

M6: The Common Source amplifier is designed to provide $\mathrm{I}_{\mathrm{d}}=30 \mu \mathrm{~A}$, sufficient gain and $\mathrm{V}_{\mathrm{o}}=1.65 \mathrm{v}$. Firstly we simply size it to be same size to that of M6 (since Id is same for both) i.e. 116/3.5

Transistor	W / L		$\mathrm{I}_{\mathrm{d}}(\mu \mathrm{A})$		$\mathrm{V}_{\mathrm{g}}(\mathrm{V})$	$\mathrm{g}_{\mathrm{m}}(\mu \mathrm{A} / \mathrm{V})$
	Calculated	Simulated	Calculated	Simulated	Simulated	Simulated
M6	$116 / 3.5$	$115.5 / 13.5$	30	29.33	1.224	229.5
M7	$57 / 3.5$	$57 / 3.5$	30	29.33	0.95	252.2

Table-2
Differential Gain, $\mathrm{A}_{\mathrm{oL}}=93.71 \mathrm{~dB}\left(\mathrm{~A}_{\mathrm{v} 1}=-184\right.$ and $\left.\mathrm{A}_{\mathrm{v} 2}=-229\right)$
Phase Margin $(P M)=-47^{\circ} \quad f_{3 d b}=34.67 \mathrm{KHz}, \quad f_{u}=72.44 \mathrm{MHz}$
The poles are observed at $\quad \mathrm{p}_{1}=34.67 \mathrm{KHz} \quad \mathrm{p}_{2}=3.6 \mathrm{MHz}$

Pole Splitting and Zero Cancellation:

As observed the PM was negative, to make it positive we performed pole splitting and Zero Cancellation using C_{c} and R_{z} (realized as Mz) as mentioned below:

By formula $\mathrm{C}_{\mathrm{c}}=\mathrm{g}_{\mathrm{m} 1} /\left(2 \pi f_{\mathrm{u}}\right)$ where f_{u} is the unity gain freq. By simulation $\mathrm{g}_{\mathrm{m} 1}$ was $222.6 \mu \mathrm{~A} / \mathrm{V}$. Now we can set f_{u} at the location of second pole (p_{2}) (to make the PM of $A_{o L}$ approx 45°). To give a little more margin f_{u} was set to 3 MHz . C_{c} was then calculated as 11.8 pF . The obtained PM was quite low i.e. 1.57° with $\mathrm{f}_{\mathrm{u}}=8 \mathrm{MHz}$.
Due to presence of Zero at frequency $\mathrm{g}_{\mathrm{m} /} / \mathrm{C}_{\mathrm{c}}, \mathrm{f}_{\mathrm{u}}$ of the opamp and location of the zero occur close together. Since the zero is in the right half S plane, PM is further degraded. So Zero cancellation is done using R_{z} in series with C_{c}.

The value of R_{z} can be approximated to $1 / \mathrm{g}_{\mathrm{m}}$ (where g_{m} from simulation was $229.88 \mu \mathrm{~A} / \mathrm{V}$) i.e. 4.35 k . With $\mathrm{R}_{z}=4.35 \mathrm{k}$ and $\mathrm{C}_{\mathrm{c}}=12 \mathrm{pF}$ when the PM obtained was 74.5°, which is $>45^{\circ}$. So we adjusted R_{z} and C_{c} as 2.5 pF and 4.35 k and got $\mathrm{PM}=51^{\circ}$.

Since R_{z} is realized with PMOS transistor in triode region in which the channel resistance, $R_{z}=1 /\left(\beta\left(V_{s g}-V_{\text {thp }}\right)\right)$ so setting it to $1 / \mathrm{g}_{\mathrm{m} 6}$ (to track the inverse of $\mathrm{g}_{\mathrm{m} 6}$ over PVT variations), we sized Mz as the same dimensions of M6 i.e. $(\mathrm{W} / \mathrm{L})_{\mathrm{Mz}}=116 / 3.5$.

To bias Mz we also need to use MB3, MB4, MB5 transistors in series, by setting I_{d} in MB3-5 branch $=5 \mu \mathrm{~A}$, the dimensions were

$$
(\mathrm{W} / \mathrm{L})_{\mathrm{MB} 3}=4 / 3.5 \quad(\mathrm{~W} / \mathrm{L})_{\mathrm{MB} 4}=21.4 / 3.5, \quad(\mathrm{~W} / \mathrm{L})_{\mathrm{MB5}}=11 / 3.5 .
$$

Using these values the PM obtained was 35.67°. In order to make $\mathrm{PM}>45^{\circ}, \mathrm{C}_{\mathrm{c}}$ and Mz were varied, so finally we got PM as 55.26° at $(\mathrm{W} / \mathrm{L})_{\mathrm{Mz}}=85 / 3.5(\mathrm{Ron}=2.52 \mathrm{k})$ and $\mathrm{C}_{\mathrm{c}}=12 \mathrm{pF}$.

In order to meet output voltage, gain, PM the transistor sizes were frequently changed which resulted into difference in the following ratio

$$
\frac{(\mathrm{W} / \mathrm{L}) 3}{\overline{(\mathrm{~W} / \mathrm{L}) 6} 6}=\frac{(\mathrm{W} / \mathrm{L}) 4}{(\mathrm{~W} / \mathrm{L}) 6}=\frac{(\mathrm{W} / \mathrm{L}) 5}{2 *(\mathrm{~W} / \mathrm{L}) 7}
$$

This ratio should be mate in order to minimize the systematic offset, so the transistor sizes were tuned to meet this ratio as close as possible without affecting other parameters. The final sizes of this transistors are thus as shown in the table 1 .
Total I_{d} obtained is $97.75 \mu \mathrm{~A}$ and Static Power Dissipation of $322.26 \mu \mathrm{~W}$.

1. Characterization of parameters SPICE simulation:

(A) Systematic input Offset Voltage Calculation

After tuning the transistors the output observed was 1.415 V , which is less than 1.65 V . So an external bias of $4.92 \mu \mathrm{~V}$ is required at Vin2 to cancel the offset voltage (This value is obtained by using Vin $1=1.65 \mathrm{~V}$ and sweeping Vin2 around this value). The frequency response remains nearly the same as in fig. 4 .
(B) The open loop differential gain versus frequency (both magnitude and phase plot) is as shown in fig.4.
The open loop gain (at DC) is $93.57 \mathrm{~dB}, \mathrm{f}_{\mathrm{u}}$ (unity gain bandwidth) obtained is 3.14 Mhz ; Dominant Pole (p_{1}) is 63 Hz , and the PM is $180+(-124.74)=55.26^{\circ}$.
(C) The open loop common mode gain and CMRR versus frequency are plotted as shown in fig. 5 and fig. 6 respectively. The $\mathrm{A}_{\text {оцсм }}($ at DC) is -816.4 m dB and CMRR is 94.57 dB .
(D) The poles and zeroes observed from the open loop frequency response of differential gain are as follows:

$$
\mathrm{P}_{1}=63 \mathrm{~Hz} . \quad \mathrm{Z}_{1}=5.36 \mathrm{Mhz} . \quad \mathrm{P}_{2}=31.62 \mathrm{Mhz} . \quad \mathrm{Z}_{2}=316.2 \mathrm{Mhz} .
$$

As can be observed the dominant pole is at 63 Hz . And the first Zero is at a frequency greater then f_{u}.
(E) Step response of the OP-AMP for $1 \mu \mathrm{~V}$ (b) 1 mV , and (c) 1 V are as plotted in fig. 7 and fig.8. The PSRR is given in table 3. (Theoretically it should be $\mathrm{I}_{\mathrm{ss}} / \mathrm{Cc}=5 \mathrm{~V} / \mu \mathrm{s}$). It is observed that as the magnitude of step input falls the Slew Rate as drops.

Voltage	1 v	1 mV	$1 \mu \mathrm{~V}$
SR	$5.55 \mathrm{~V} / \mu \mathrm{s}$	$23.06 \mathrm{mV} / \mu \mathrm{s}$	$.236 \mu \mathrm{~V} / \mu \mathrm{s}$

Table - 3
(F) The Power supply noise in the OP-AMP can come either from V_{dd} or V_{ss} and it has different characteristics in the two cases. So PSRR for corresponding V^{+}and V^{-}variations on V_{dd} and V_{ss} at DC are 108.57 dB and 104.5 dB . They are plotted in fig. 9 and fig. 10 respectively.
(G) By connecting a variable capacitance load $\left(\mathrm{C}_{\mathrm{L}}\right)$ (in pF to nF range) at the output, PM for different C_{L} is noted and the minimum PM obtained by simulation is 5.3° with $\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$.

2. Comparator Circuit:

Due to V_{t} mismatch $\mathrm{g}_{\mathrm{m}}, \mathrm{I}_{\mathrm{d}} \mathrm{G}$ and D voltage of both transistors in differential pairs are not identical and hence gain is different. By fixing the $\mathrm{V}_{\mathrm{in} 1}$ at 1.65 V and changing $\mathrm{V}_{\text {in } 2}$ around the 1.65 V offset voltage was found to be $\mathrm{V}_{\text {off }}=77.81212 \mathrm{mV}$ (exact). This voltage is required at $\mathrm{V}_{\text {in } 2}$ to restore $\mathrm{V}_{\text {out }}$ at 1.65 for $\mathrm{V}_{\text {in } 1}=\mathrm{V}_{\text {in } 2}=1.65 \mathrm{~V}$.
(A) When Vin1 is varied from 0 to 3.3 V , ideally $\mathrm{V}_{\text {out }}$ should switch to 3.3 when $\mathrm{V}_{\text {in2 }}$ crosses 1.65 V , but due to V_{t} variations, $\mathrm{V}_{\text {out }}$ is observed to switch at 1.728 V resulting into $\mathrm{V}_{\text {off }}=78 \mathrm{mV}$. The V_{o} vs. $\mathrm{V}_{\text {in2 }}$ plot is shown in Fig.11. The previous sweep (at +ve input around 1.65 V) also what we got is confirmed from here.
(B) Input Series Cancellation: It is used to perform offset voltage cancellation. Here the OPAMP is used with a capacitor $\mathrm{C}_{\mathrm{o}}=1 \mathrm{pF}$ and 3 switches realized as Pass transistors. $\mathrm{V}_{\mathrm{in} 2}$ varies from $0-3.3 \mathrm{~V}$, the switching is plotted and shown in Fig 12. It can observed that $\mathrm{V}_{\text {out }}=1.6985 \mathrm{~V}$ so $\mathrm{V}_{\text {off }}=48.5 \mathrm{mV}$ which is less than that observed in (a) but could not be removed completely due to charge sharing and discharging of the capacitor due to delay between switching the switches.
(C) Output Series Cancellation: Since $\mathrm{A}_{\mathrm{OL}}>93 \mathrm{~dB}$ and the offset is in few mV so the capacitor have to store $\mathrm{A}_{\mathrm{OL}} * \mathrm{~V}_{\text {off }}$, hence the output goes into saturation and we cannot get the exact value. During the simulation output saturates and hence the offset cancellation can't be observed in this case.

Fig. 1 Circuit Diagram of two stage OPAMP.

Fig. 2 Frequency Response of Differential stage

Freq. Response of 2 stage opamp (without compensation)

$$
\begin{aligned}
& 0.00 \\
& \frac{0}{8}-200 \\
& \frac{8}{8}-400
\end{aligned}
$$

Fig. 3 Frequency Response of cascaded two stages

Fig. 6 CM, DM, and CMRR of OPAMP
Slew Rate Wavefarme

Slew Rate waveform

Fig. 7 Slew Rate Calculations for $1 \mu \mathrm{~V}$ input
PSRR+ va. Freq.
Fig. 8 Slew Rate Calculations for $1 \mathrm{mV}, 1 \mathrm{~V}$ input PSRR- vs. Freq.

Fig. 9 Positive PSRR vs. Freq. plots
comoparator output with Tr mismatch

Fig. 11 Comparator Output with V_{t} mismatch

Fig. 10 Negative PSRR vs. Freq. plots.
input series sancellation

Fig. 12 input series cancellation for Comparator

