E3-238: Home Work 1 (Due 5/9/03)

For this home work and all the subsequent home work assignments, you will be using the AMI $0.7 \mu \mathrm{~m}$ technology offered through Europractice/MOSIS.
The typical N and P transistor models are enclosed. (Note that there are two flavours of PMOS transistors in this technology: high $\mathrm{Vt}(-1.00 \mathrm{~V})$ which can go down to $0.7 \mu \mathrm{~m}$ channel length and low $\mathrm{Vt}(-0.75 \mathrm{~V})$ which can go down to $1.2 \mu \mathrm{~m}$ channel length). Choose the power supply voltage as 3.3 V .

Design a common source amplifier with a low frequency gain of 50 for the following 4 different configurations. Indicate the required DC biasing conditions and the transistor sizes for each of the configurations:

1. Resistance load
2. Diode connected NMOS load
3. Current source load (PMOS)
4. Current source load with source degeneration

Note: Low frequency gain implies, the capacitance can be neglected in gain calculation
Analysis to be performed using SPICE (for all the configurations):

1. Using DC analysis (.DC or .OP) verify whether you get required output bias current and voltage for your input DC biasing condition. Generate a table indicating the SPICE results vs. your expected results.
2. Using AC small signal analysis (.AC) obtain the gain (both magnitude and phase) vs frequency plot. What is the unity gain bandwidth? Submit the plots.
3. Using Pole-Zero analysis (.PZ) obtain poles and zeros of transfer function. Can you approximate it as a single pole transfer function? If so, how does the value of dominant pole compare with the 3DB frequency value from the plots in part 2.
4. Estimate the non-linearity using the harmonic analysis. This can be done with transient analysis (.TRAN) followed by the Fourier analysis (.FOUR). Define the input to be a sine wave with frequency 1 MHz . Perform the analysis for 4 different peak to peak input amplitude: $1 \mathrm{mV}, 5 \mathrm{mV}, 10 \mathrm{mV}, 50 \mathrm{mV}$. (The Amplitude that you specify in the SPICE input deck will be half of peak to peak amplitude). Note that the transient analysis should be performed for at least one cycle, i.e. in this case you can perform the analysis for $1 \mu \mathrm{~s}$. Further the maximum step size should be less than 0.01 times the period of the input, i.e. in this case specify the step size (TSTEP) and maximum step size (TMAX) to be 10ns. Compare the 4 different configurations in terms of the harmonic distortion. Submit a table comparing the harmonic distortion for the 4 different input amplitudes. Also submit the plot showing output waveform for an input peak to peak amplitude of 50 mV .
[^0]```
+UB = 1E-21 UC = 4.667652E-11 VSAT =9.5E4
+A0 =0.9331753 AGS =0.1339124 B0 =0
+B1 =0 KETA =-2.746786E-5 A1 =0
+A2 = 1 RDSW = 1.573286E3 PRWG =6.719929E-6
+PRWB =-1E-3 WR = 1 WINT =6.065442E-8
+LINT =2.87042E-8 DWG =-1.268839E-8 DWB = 1.654199E-8
+VOFF =-0.15 NFACTOR =0.6887273 CIT =0
+CDSC =0 CDSCD =0 CDSCB =0
+ETA0 =0.08 ETAB = -0.07 DSUB = 0.56
+PCLM = 1.0175962 PDIBLC1 =0.032818 PDIBLC2 = 2.506552E-3
+PDIBLCB =-1E-6 DROUT = 0.6067512 PSCBE1 = 3.356583E8
+PSCBE2 = 5E-5 PVAG =0.0168906 DELTA =0.01
+ALPHA0 = 5E-7 BETA0 =26 RSH = 65
+MOBMOD = 1 PRT = 159.2464225 UTE =-1.9522848
+KT1 =-0.4126334 KT1L = 7.244799E-9 KT2 = 2.671323E-3
+UA1 = 8.353648E-11 UB1 =-2.12098E-19 UC1 =-5.6E-11
+AT =3.3E4 NQSMOD =0 WL =0
+WLN = 1 WW =0 WWN =1
+WWL =-5.30182E-20 LL =0 LLN = 1
+LW =0 LWN = 1 LWL =0
+AF = 1 KF =3E-28 CAPMOD =2
+CGDO =4E-10 CGSO = 4E-10 CGBO = 3.35E-10
+CJ = 5E-4 PB =0.73 MJ = 0.35
+CJSW =2.8E-10 PBSW =0.8 MJSW =0.21
* leakage
*+DIOLEV = 2 JS = 1.3E-07 JSW =7E-14
* leakage temperature
*+LIS=3 XTI=2 N = 1
* Area computation, then junc cap and junc leakage computation
*+ALEV = 3
DCAPLEV = 0
* Access resistance equations
*+ RLEV = 4
* channel charge partition
+XPART = 0
* Elmore constant
+ELM = 5
* HIGH VT , MINIMUM CHANNEL LENGTH IS 0.7 micron
.MODEL PMOS PMOSHVT LEVEL = 49
+TNOM =27 TOX = 1.75E-8 XJ =3E-7
+NCH = 1.7E17 NSUB = 4E16 VTH0 = -1.00
+K1 =0.563991 K2 =0 K3 = 16.3317811
+K3B =-2.9202228 W0 = 1.23464E-6 NLX = 9.69545E-8
+DVT0W = D DVT1W =0 DVT2W =-0.032
+DVT0 = 3.5648008 DVT1 =0.3898843 DVT2 =-0.0284121
+VBM =-10 U0 =235.7724356 UA =2.964616E-9
+UB = 1.419129E-18 UC =-7.00385E-11 VSAT = 1.1E5
+A0 =0.4590784 AGS =0 B0 =0
+B1 = 1.407805E-9 KETA =-0.047 A1 =0
+A2 = 1 RDSW = 3E3 PRWG =2.024978E-3
+RSH =94 PRWB = 7.428781E-5 WR = 1
+WINT = 10.669321E-8 LINT = 1.9089522E-8 DWG =-1.478082E-8
+DWB = 1.561823E-8 ALPHA0 =0 BETA0 = 30
+VOFF =-0.126 NFACTOR =0.7324039 CIT =0
+CDSC =0 CDSCD = 7.69E-4 CDSCB = 8.2E-4
+ETA0 =9.999059E-4 ETAB =-1.999936E-4 DSUB =0.998946
+PCLM =2.6025265 PDIBLC1 = 1 PDIBLC2 = 2.853174E-4
+PDIBLCB = 0 DROUT = 0.3837047 PSCBE1 =4.249266E8
+PSCBE2 = 5E-5 PVAG = 3.8222424 DELTA =0.01
+MOBMOD = 1 PRT =216.4347715 UTE =-1.2989809
+KT1 = -0.4521998
+KT1L =-2.091783E-8 KT2 =-0.040013
+UA1 = 3.100822E-9 UB1 =-1E-17 UC1 = -8.35439E-11
```

```
+AT =3.289E4 NQSMOD =0 WL =0
+WLN = 1 WW = 0 WWN = 1
+WWL =-2.33876E-20 LL =0 LLN = 1
+LW =0 LWN = 1 LWL =0
+CAPMOD = 2 CGDO = 1.0E-10 CGSO = 1.0E-10
+CGBO =3.35E-10 CJ = 6.0E-4 PB =0.9
+MJ =0.51 CJSW =3.6E-10 MJSW =0.35
+AF =1 KF = 5.0E-30
* leakage
*+DIOLEV = 2 JS = 1.4E-7 JSW = 9E-14
*+LIS = 3 XTI = 0.5 N = 1
* other switch
*+XPART = 0
*+DCAPLEV = 0
*
 ALEV = 3 RLEV = 4
 ELM =5
```

```

* LOW VT , MINIMUM CHANNEL LENGTH IS }1.2\mathrm{ micron
* C07MA & C07MD P TYPICAL MODELS
* RELEASE 3.1 (FOR MORE INFORMATION, READ THE MODELS.INFO FILE)
*
* Revision 04
* Update of leakage model, ZN, 29/09/99

*
*
.MODEL PMOS PMOSLVT LEVEL = 49
+TNOM = 27 TOX = 1.75E-8 XJ =3E-7
+NCH = 1.7E17 NSUB = 4E16 VTH0 =-0.75
+K1 =0.5763327 K2 =-7.618274E-5 K3 = 12.5198711
+K3B =-2.0178793 W0 = 1E-6 NLX = 2.8637E-7
+DVT0W =0 DVT1W =0 DVT2W =-0.032
+DVT0 = 1.2931187 DVT1 =0.2232876 DVT2 =-0.05
+VBM =-10 U0 =240.0573045 UA = 3.136845E-9
+UB = 8.554621E-19 UC =-8.15437E-11 VSAT = 1.1E5
+A0 =0.4590784 AGS =0 B0 =0
+B1 = 1.407805E-9 KETA =-0.047 A1 =0
+A2 = 1 RDSW = 3.175369E3 PRWG =-1E-3
+PRWB = 3.030043E-5 WR =1 WINT = 1.231493E-7
+LINT =2.1605E-9 DWG =-2.015732E-8 DWB = 1.475983E-8
+RSH =94 ALPHA0 =0 BETA0 = 30
+VOFF =-0.1403129 NFACTOR =0.7291071 CIT =0
+CDSC = 0 CDSCD = 0 CDSCB =2.2E-4
+ETA0 =9.999059E-4 ETAB = -1.999936E-4 DSUB =0.998946
+PCLM =2.6025265 PDIBLC1 = 1 PDIBLC2 = 2.853174E-4
+PDIBLCB = 0 DROUT = 0.3837047 PSCBE1 = 4.249266E8
+PSCBE2 = 5E-5 PVAG =3.8222424 DELTA =0.01
+MOBMOD = 1 PRT = 216.4347715 UTE =-1.2989809
+KT1 =-0.4521998 KT1L =-2.091783E-8 KT2 =-0.040013
+UA1 = 3.100822E-9 UB1 =-1E-17 UC1 =-8.35439E-11
+AT =3.289E4 NQSMOD =0 WL =0
+WLN = 1 WW =0 WWN = 1
+WWL =-3.26045E-20 LL =0 LLN = 1
+LW =0 LWN = 1 LWL = 0
+CAPMOD =2 CGDO = 1.0E-10 CGSO = 1.0E-10
+CGBO =3.35E-10 CJ = 6.0E-4 PB =0.9
+MJ =0.51 CJSW = 3.6E-10 MJSW =0.35
+AF = 1 KF = 5E-30
* leakage
*+DIOLEV = 2 JS = 1.4E-7 JSW =9E-14
*+LIS = 3 XTI =0.5 N = 1
* other switch
+XPART = 0
*+ALEV = 3 RLEV = 4
*+DCAPLEV = 0
+ELM = 5
```


## E3-238: Home Work 1

Table 1.


Table 2.

| Configuration | Pole frequency $(\mathbf{H z})$ | Zero frequency $(\mathbf{H z})$ |
| :---: | :---: | :---: |
| Resistive load | 3 M | 40 M |
| Diode connected load | 3.4 M | 12 M |
| Constant current source load | 60 K | 500 K |
| CCS source degeneration | 900 K | 8 M |

Table 3.

| Harmonic <br> Distortion | Resistor load | Diode load | Current <br> source | CS with source <br> degeneration |
| :---: | :---: | :---: | :---: | :---: |
| $1 \mathrm{mv}(\mathrm{p}-\mathrm{p})$ | 0 | 0 | 0 | 0 |
| $5 \mathrm{mv}(\mathrm{p}-\mathrm{p})$ | 0 | 0 | 0 | 0.14 |
| $10 \mathrm{mv}(\mathrm{p}-\mathrm{p})$ | .004 | 0 | 0.026 | 0.184 |
| $50 \mathrm{mv}(\mathrm{p}-\mathrm{p})$ | .207 | 0.89 | .09 | 0.179 |
|  |  |  |  |  |
| Bandwidth | 9.27 M | 254.86 M | 118.1 K | 1.37 M |
| UGB | -- | -- | 1.926 M | 71.58 M |

(Small values in $m$ and $\mu$ have been assumed to be 0 )
In table 2 the pole and zero frequency have been tabulated from the transfer function(magnitude/phase) plots which is an approximation.

In the simulations performed, since the Id equation that is used in theoretical calculations is of second order while the one used by simulator is of higher order, the current varies and due to which the dc operating point also shifts. Also Since the exact values of parameters like $\lambda, \beta, \gamma$ etc. is not known accurately. These parameters also vary with bias conditions. The Vth and Id in turn depend upon these parameters so the accurate calculations for the dc operating point is difficult to be done theoretically. This is valid for almost all configurations. Specific reasoning that apply to the given problems are as follows

## CS Amplifier with Resistive load (Fig.1)

Reasoning: Since $A_{v}=g_{m} R_{d}$ and $g_{m}=2 I_{d} /(V g s-V t h) \& R_{d}=\left(V_{d d}-V_{\text {out }}\right) / I_{d}$, both oppose each other for same $I_{d}$. larger $R_{d} \& g_{m}$ is desired but $R_{d}$ is limited by output swing \& $g_{m}$ limited by $I_{d}$. So there is maximum beyond which we can't increase $A_{v}$. If we increase one of these, other decreases since both are related to $\mathrm{I}_{\mathrm{d}}$. The UGB couldn't be found since the transfer response didn't cross 0 db .

CS Amplifier with Diode connected load (Fig.2)
Reasoning: In active load (diode connected) common source amplifier the large gain is not possible. We know that current through the load is same as current through driver transistor i.e. $\mathbf{I}_{\mathbf{D M 1}}=\mathbf{I}_{\mathbf{D M} 2}$ Also the small change in the current requires the large voltage drop across the diode. The output voltage is given by $\mathbf{V}_{\text {out }}=\mathbf{V}_{\text {dod }}-\mathbf{V}_{\text {dsload }}$ So as the $\mathrm{V}_{\text {DSload }}$ increases Vout decreases so gain reduces. Now in this case the gain depends on W/L ratio of driver and Load. If we increase the W/L of driver to increase the gain, the current will also increase, responded by increase in $V_{\text {DSload. }}$. So by increasing W/L after one value does not reflect much in the gain. The UGB couldn't be found since the transfer response didn't cross 0db.

## CS Amplifier with current source (PMOS) load (Fig.3)

Reasoning: The current is very low so the bandwidth as well as UGB also decreases. $\mathrm{V}_{\mathrm{DS}}$ is also high so there is clipping for ac signaling. It is quite sensitive to bias as well as Width variations. Thus the bias point and $\mathrm{I}_{\mathrm{d}}$ also varies therefore the gain is sensitive to input swings. Thus there is nonliterary in this circuit. As the BW for this circuit is small soothe transient response at 1 Mhz . is not settled as is clear in fig. 3 a .

## Current source load with source degeneration (Fig.4)

Reasoning: The gain is less sensitive to the bias variations compared to the current source (PMOS) load configurations then too the variation in gain is significant for 10 mv change in gate overdrive for driver NMOS.


Fig. 1 CS amplifier with Resistive Load (a) Transient response for $\mathrm{V}_{\mathrm{in}(p-\mathrm{p})}=50 \mathrm{mv}$. \& freq. $=1 \mathrm{Mhz}$.
(b) Magnitude and Phase plot w.r.to freq.


Fig. 2 CS amplifier with Diode as a Load (a) Transient response for $\mathrm{V}_{\mathrm{in}(\mathrm{p}-\mathrm{p})}=50 \mathrm{mv} . \&$ freq. $=1 \mathrm{Mhz}$.
(b) Magnitude and Phase plot w.r.to freq.


Fig. 3 CS amplifier with Current source load (PMOS) (a) Transient response for $\mathrm{V}_{\mathrm{in}(\mathrm{p}-\mathrm{p})}=50 \mathrm{mv}$. \& freq. $=1 \mathrm{Mhz}$. (b) Magnitude and Phase plot w.r.to freq.


Fig. 4 CS amplifier with Current source load with source degeneration (a) Transient response for $\mathrm{V}_{\mathrm{in}(\mathrm{p}-\mathrm{p})}=50 \mathrm{mv} . \&$ freq. $=1 \mathrm{Mhz}$. (b) Magnitude and Phase plot w.r.to freq.


[^0]:    * C07MA \& C07MD N TYPICAL MODEL
    * 
    * RELEASE 3.2 (FOR MORE INFORMATION, READ THE MODELS.INFO FILE)
    * 1, Nature NDMOS model added,
    * Subcircuit NNDMOS4 defining the NNDMOS model
    * 2, polydiode model added, model name is DPL.
    * 
    * Update of leakage models by ZN, 29/09/99
    *******************************************************************************
    * 

    .MODEL NMOS NMOS LEVEL $=49$

    + TNOM $=27 \quad$ TOX $=1.75 \mathrm{E}-8 \quad \mathrm{XJ}=2.5 \mathrm{E}-7$
    $+\mathrm{NCH}=1.7 \mathrm{E} 17 \quad \mathrm{NSUB}=4 \mathrm{E} 16 \quad$ VTH0 $=0.76$
    $+\mathrm{K} 1=0.8219166 \mathrm{~K} 2=-8.54312 \mathrm{E}-3 \mathrm{~K} 3=11.1089581$
    + K3B $=-1.9786631$ W0 $=1 \mathrm{E}-6 \quad$ NLX $=3.751355 \mathrm{E}-8$
    + DVT0W $=0 \quad$ DVT1W $=0 \quad$ DVT2W $=-0.032$
    + DVT0 $=5.2254747$ DVT1 $=0.590721$ DVT2 $=-0.05$
    $+\mathrm{VBM}=-5 \quad \mathrm{U} 0=635.6142994$ UA $=1.983902 \mathrm{E}-9$

