ELEMENTARY LEVEL ROBOTIC VISION

Abstract : Our project deals with the most widespread application of computer vision systems : Robotic Vision. We deal with visual recognition by a simple Industrial-level robot (with a single robotic arm) of various elementary objects. The word ‘elementary’ here signifies objects with a distinct, preferably single, color and a shape that is more or less invariant to viewing from different angles. We have used Intel’s OpenCV (Open Computer Vision) library for all the image manipulating functions owing to their robustness and ease. Instead of using the inbuilt pre-defined functions for Image processing, we have preferred working from the basic and manipulating the image from its raw format using matrix manipulation. Also, the program developed does not deal (as yet) with how to pass on commands to the robot and this interface development is a separate work altogether.
Introduction :
Computer Vision for robots can be aptly defined as the scientific investigation of artificial systems for perception from images or, in general, multi-dimensional data. The theories and models of computer vision are applied to the construction of computer vision systems, examples of which are :
 Controlling processes (e.g. an industrial robot or an autonomous vehicle).

 Detecting events (e.g. for visual surveillance)
· Computer-Human Interaction
Our project deals with the first major application i.e. Robotic Controlling Processes. The objective to start of was to develop a detection software for elementary objects (moving). The following section deals with the approach.
Suggested Approaches :
We wanted to generalize the environment in which the robot works and not assume any specific situations. So we postulated the following approaches, each with its simplifying assumptions :
· 3D Model Based : It is the most restrictive of the approaches. When 3D data of the object is already in the database or can be generated by taking few quick shots of the object from different orientations. This means that when the robot views the object from different directions it knows its orientation with respect to the object. Once it recognizes the object it could manipulate that whether it is moving away or towards the object and then make necessary changes in its movement controls. One inherent assumption is the fact that the object remains in the same horizontal plane as the one in which the 3D database of images was compiled. The other assumptions are as follows :
- The rate of taking of images sufficient enough to ensure that the object is always in the image.

- There are no obstacle in between the object and the robot.
- The processing time is small enough to significantly affect the direction taken by the robot.
Even though the assumptions are very difficult to achieve practically, there are obvious advantages as well :
- Very accurate method keeping in mind the ambiguity involved in object detection from shape, color etc
- No constraints of color homogeneity required as was mentioned earlier.
- No shape constraints are necessary. This method will work for all shapes.

Limitation of this approach :

- The calculation and the recognition of the object from the 3D database of the object might take time as it involves scaling up/down all or some of the images from the database and matching them with the image currently captured
- To accommodate the above, a higher-than-usual speed processor would be required which is difficult to achieve in the case of the usual embedded microprocessors.
 - The 3D data of the object should be compiled beforehand or generated impromptu somehow

· Non 3D Model Based : The 3D model is not at our disposal. The general algorithm for this method would be the following :

- Take a sequence of images of the object. Identify the object in the recently taken picture.

- Decide direction of motion of the robot from the position of the object.

- Vertical span of the object is taken as the measure of proximity of the object.

- Variations in the vertical size of the object image determines whether object is coming closer or farther.
The inherent assumptions are as follows :

- The sequence of images taken is at such a sufficient rate that the object remains in the field of vision of the camera.
- The color homogeneity of the object
- There is no obstacle in between the robot and the object.
The one big benefit is that all the calculations involved are simple and therefore no big processing unit needs to be used and simple microprocessors could do the job.

The limitations are as follows :

- The classical methods of object detection need to be employed and optical noise is a big hindrance. For this, the luminous intensity of the room needs to be maintained at a good and consistent level
· Maze based implementation : The above two methods have a common limitation which cannot be ignored in practical situations : absence of obstacles in the room. To counteract this problem, an entirely new approach is envisioned – The positioning of the camera. Instead of keeping it on the robot, it could be placed someplace stationary treating the robot and the object as equal-level entities, e.g. : The camera could be fixed on the ceiling which is perfectly acceptable as the working environment of the robot is a fixed space. Thus the problem degenerates to the classic maze problem with the robot being the ‘mouse’ and the object being the ‘cheese’ (target!), the only difference being that it is a moving target. Below is a classical maze illustration

[image: image2.png]

 The image processing is much simpler in this case. The assumptions are as follows :
 - All the objects are color coded and different in color with the floor.

 - The view coverage of camera is sufficient enough to cover the whole room span or at least the area in which the object is supposed to move.
 - Only the robot and the required object are in motion and other objects (obstacles) are stationary.
Technical Implementation :
Any of the approaches can be followed depending on the resources on hand, but the object detection part remains essentially the same. The technical implementatiopns are as follows :

· OpenCV is used and the programming is done In Microsoft Visual C++ (Any other IDE can be used but VC++ allows very organized handling of workspaces and projects).
· OpenCV can interface with various types of digital cameras, but for ease of implementation a simple webcam is preferred (typically a 2 Mega Pixel variety).

· After the basic image capturing is achieved (very simple in OPenCV), the first two images of the image sequence are taken for analysis. They are converted to 8-bit grayscale.

· Then these images are subtracted pixel-by-pixel to give the resultant ‘difference’ image. Essentially what this image shows an outline of all the objects that have moved in the frame over the time interval in which the images are taken (very small < 1 sec). The outline can be visually discerned and consists of pixels having a higher value (approaching white which has a value of 255).

· This outline provides two very useful sets of information – the shape of the object (more accurately the instantaneous shape as shape is subject to change over time) and the pixels which need to be considered for taking color into account. This is very important as it removes the constraint of color homogeneity over the whole of the object (though not very accurately). Also this difference image captures motion – in that only objects that were moving will be considered for detection. If only the object to be caught by the robot is supposedly moving then this outline is enough for object detection

· But in the general case you’ll have ‘rogue’ objects also in the image – objects that are moving and/or approximately have the same color. Thus the parameters of the object which have to checked in order for successful detection are :

1) Color

2) Shape

3) Size

Each of the parameter detections are discussed below :

1) Color : If it is known that the required object is the only one moving then the specific RGB value need not be provided beforehand. The outline of the object can be used : Some or all pixels in the outline can be taken and the RGB values averaged out over the constituent images. If the RGB values are provided, then it is a simple matter to isolate areas of the image over which the RGB values match

2) Shape : If color matching isolated more than one areas of the image then shape is the next deterministic criteria. If the object is moving, then the outline provides a good estimate. But actual implementations have shown that grayscale images are hampered by noise – even the slightest movements in the background prove to be very detrimental. So in the case we know the color (average RGB value) we can get an outline or at least a polygon which is characteristic to the object. This is done dividing the whole image into smaller blocks and taking the average RGB value of each. Based on their closeness to the given RGB value (within a tolerance), each block is assigned a rating – Higher the rating, more likely is it to be a part of the object. Note that the size of the block is critical – Too large blocks result in greater number of false hits, too small blocks increase the space complexity dramatically. Then the property of an outline point (or block) is utilized – Lower average ratings on one side and higher average ratings on the other. To eliminate the likelihood of selection of ‘rogue’ points the scanning is done twice, once row by row and next column by column. This increases the probability of selection of a correct block. Once all these blocks are chosen their centre points are joined together to get an outline polygon. This polygon remains approximately same as the robot moves near to or far from the object. Two polygons are deemed similar if the lines constituting them have similar slopes.

3) Size : This is a very unreliable source of information for the object as the size of the object is bound to change in an unpredictable manner as the object moves. The only point of reference is the initial image (when the object is present in the frame), for which the Region of Interest (ROI) for the object has to be known. For the following pictures in the image sequence, the previous image is taken as reference for size as it can decrease/increase only by a very small amount. Size, in this context, is defined as the number of blocks which have registered an average RGB value close to that of the specified value or calculated value (See: Shape desc.).
 Source Code Excerpts :
int transition[320][240]; (1)

/*for (i=0;i < width;i++)

for (int j=0;j < height;j++)

transition[i][j] = 0;*/

int arrw = 320;

int arrh = 240;

for (i=0;i < arrw ;i++) {

for (int j=1;j < arrh-1; j++) {

int a = scanmatrix[i][j-1]; (2)

int b = scanmatrix[i][j+1];

if (scanmatrix[i][j] >= 2) {

if (a<=1 || b<=1)

transition[i][j] = 1;

 if (a<=1 && b<=1)

transition[i][j] = 0;

}

}

}

for (i=0;i < arrw;i++) {

for (int j=1;j < arrh-1; j++) {

int a = scanmatrix[j-1][i]; (3)

int b = scanmatrix[j+1][i];

if (scanmatrix[j][i] >= 2) {

if (a<=1 || b<=1)

transition[j][i] += 1;

 if (a<=1 && b<=1)

transition[j][i] -= 1;

}

}

}

(1) Binary Matrix for the blocks assigning possible outline blocks ‘1’
(2) Row-by-Row Checking for outline points

(3) Column-by-column checking for outline points (as a double check)

float redf=0;

float greenf=0;

float bluef=0;

float num=0;

for (int i= 0;i < sub->width;i++) {

for (int j = 0; j < sub->height;j++) {

 int y = (int)((uchar*)(sub->imageData + sub->widthStep*j))[i]; (1)

if (y > 50) {

num++;

redf += (float)((uchar*)(temp1->imageData + temp1- >widthStep*j))[i*3+2]/100; (2)

greenf += (float)((uchar*)(temp1->imageData + temp1->widthStep*j))[i*3+1]/100;

bluef += (float)((uchar*)(temp1->imageData + temp1->widthStep*j))[i*3]/100;

}

}

}

int red1 = (int)redf*100/num;

int blue1 = (int)bluef*100/num;

int green1 = (int)greenf*100/num;

(1) ‘sub’ is the difference matrix of the two initial grayscale images
(2) Extracting red, green, blue values from the image matrix
[image: image1]