PRINCÍPIOS DE BIOESTATÍSTICA

- Instrumento de organização e interpretação dos dados
- Ferramenta imprescindível no teste das hipóteses científicas
- Faz uma avaliação adequada da variabilidade observada em processos biológicos
 - indivíduos reagem de forma diferente a estímulos idênticos
 - mesmo indivíduo apresenta variações em momentos diferentes

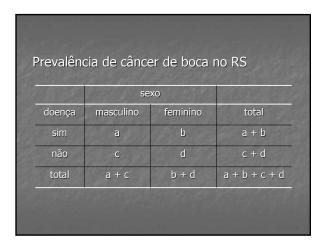
IMPORTÂNCIA

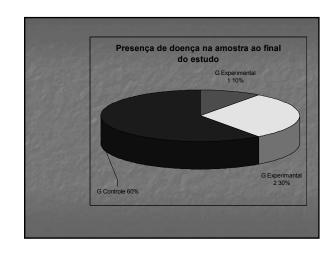
- Elaboração de planejamentos experimentais
- Projetos de pesquisa
 - cálculo amostral
- Avaliação crítica de trabalhos científicos
- Pré-requisito para profissionais da saúde
 - Pesquisador X Clínico

PERGUNTAS

- Os resultados não foram obtidos ao acaso?
- O tratamento testado foi realmente mais eficiente?
- Existe associação entre as variáveis do estudo?
- A amostra foi representativa?
- Os métodos empregados foram adequados às variáveis?

RESPOSTAS


- diferença estatisticamente significante
- p > 0.01
- nível de significância de 5%
- □ estudo com poder de 80%
- dados pareados, quantitativos e de distribuição paramétrica
- ANOVA *Analysis of Variance*


VARIÁVEIS

- ponto de partida para qualquer uso de estatística
- dados referentes a uma determinada característica de interesse, coletados em uma amostra
- classificação escala sobre a qual a variável é medida
 - determinante para a escolha do tratamento estatístico a ser empregado
 - antes da realização do estudo

Cla	assificação das	Variáveis
Qualitativas	Medidas numa escala nominal	sexo, cor, presença ou ausência
Ordinais	Medidas numa escala ordinal	grau de instrução, índice classificatório (0, 1, 2, 3)
Quantitativas	Medidas numa escala numérica	idade, peso, medidas lineares, nº de dentes

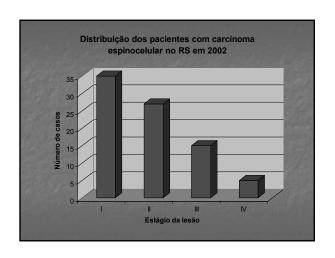
Variável	Qualitativa
 medida em escala nominal categorias que podem ser dicot descritos em forma de porcenta proporção apresentação tabelas de contingência gráfico de barras, pizza 	

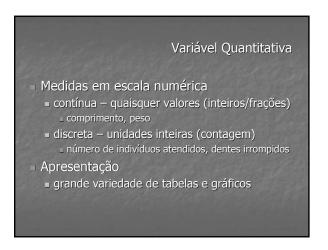
Variável Ordinal ■ Dados distribuídos em categorias ■ Categorias – apresentam ordenação natural ■ Mutuamente excludentes ■ Mede diferentes estágios de uma doença ■ Classificação de carcinomas (I a IV) ■ grau de evolução da lesão – IV pior que I

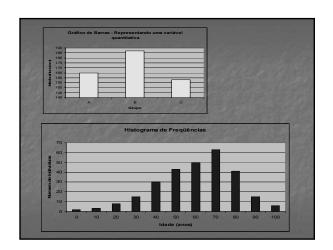
■ são usados números inteiros
■ descritos na forma de porcentagem ou proporção
■ apresentação

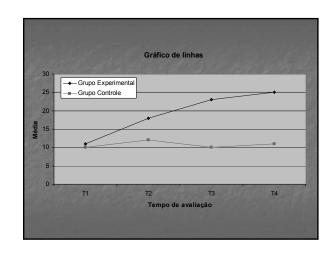
Tabela representativa variável ordinal – Freqüência de corpos de prova de acordo com o grau de infiltração marginal, segundo o material empregado

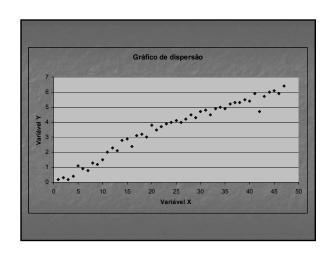
Graus de microinfiltração marginal

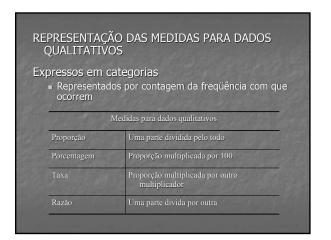

O 1 2 3


Material


A 2 5 2 1


B - 3 7

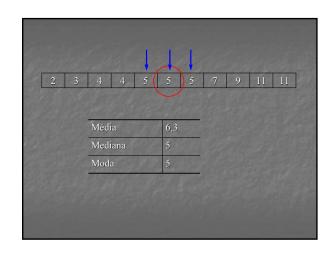

C 1 2 3 4



REPRESENTAÇÃO DAS MEDIDAS PARA DADOS QUÁNTITATIVOS

- Expressos por valores numéricos
- Representam os dados de forma resumida
- Mostram a distribuição dos valores dentro conjunto de dados
 - MEDIDAS DE TENDÊNCIA CENTRAL
 - Representam o ponto central de uma distribuição

 MEDIDAS DE DISPERSÃO
 - - _ Distribuição dos valores em torno do seu ponto médio

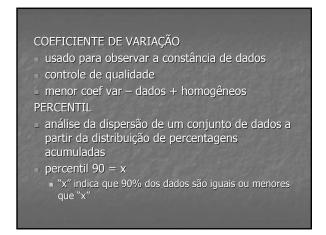

Medidas de tendência central	
Média	Soma dos dados dividido pelo número de dados
Mediana	Valor localizado no centro dos dados ordenados
Moda	Valor que ocorre com maior frequência

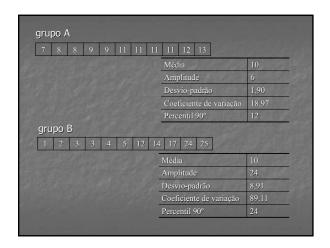
MÉDIA

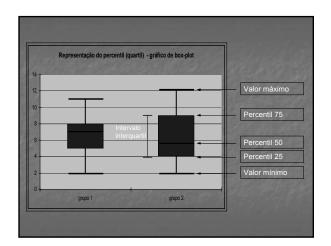
- sensível a valores extremos
 - **MEDIANA**
- menos sensível a valores extremos estes não são considerados
- pode ser usada para dados *ordinais*

MODA

- indicação valor mais comum em uma
- pode ser usada para dados *qualitativos*


MEDIDAS DE DISPERSÃO Medidas de dispersão


AMPLITUDE


- não fornece noção dos valores do conjunto
- não mostra a distribuição dos dados

DESVIO-PADRÃO

- mostra o grau de variação dos dados
- considera o afastamento de cada dado em relação à média do conjunto

ESTIMATIVA DE VARIABILIDADE DE UMA MÉDIA – ERROPADRÃO DA MÉDIA E INTERVALO DE CONFIANÇA

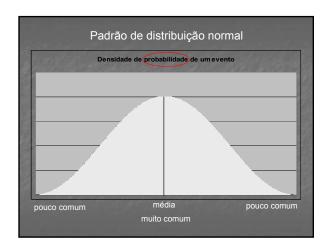
AMOSTRA – corresponde a um conjunto
de dados que representa uma população

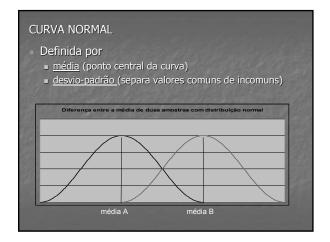
Média amostra – não exatamente igual à
da população – esperado

amostras – mesma população – diferentes
variação no tamanho da amostra
variabilidade dos dados obtidos

- Padrão de variação das médias (distribuição normal) ERRO PADRÃO
 Determinação do EPM

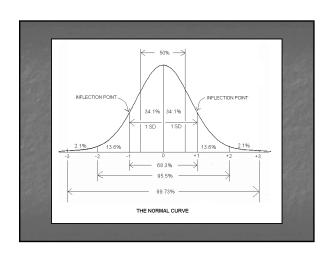
 tamanho da amostra
 dispersão dos dados


 Princípios básicos


 j amostra ↑ variabilidade menos representativa é a média (↑ EPM)
 ↑ amostra ↓ variabilidade mais representativa é a média (↓ EPM)
- INTERVALO DE CONFIANÇA
 Representa valores limites (I e S) localizada "verdadeira" média da população
 IC 95% médias de diferentes amostras incluem a "verdadeira média" 95% das vezes

- *IC 95% de 18,4 21,7* probabilidade de 95% de a média da população estar neste intervalo
- Tamanho do IC indica a representatividade da média encontrada na amostra para a população
- IC grande média pouco representativa

PROBABILIDADE E TESTE DE HIPÓTESES


- busca por estabelecimento de inferências sobre a população
- nem todas inferências estarão corretas
- pesquisador definir o risco assumido
- base princípios probabilísticos
 - distribuição normal

CONSIDERAÇÕES EM RELAÇÃO À VARIABILIDADE DE UMA AMOSTRA

- Qualquer distribuição
 - ao menos 75% dos valores localizados entre a média e ±2 dp
- Se distribuição normal
 - aproximadamente 68% dados entre µ e ±1 dp
 - <u>aproximadamente 95% dados entre μ e ±2 dp</u>
 - aproximadamente 99,7% entre *m* e ± 3 dp

TESTE DE HIPÓTESES

- Comparação de 2 amostras
- Existe diferença? Não é devido ao acaso?
 - H₀ não há diferença
 - H₁ há diferenca
- □ Teste estatístico rejeita uma e aceita outra
- Modelos bicaudais
 - área de significância (rejeição) 0,05 –
 α=5%
 - = 0,025 à direita de +1,96 σ
 - = 0,025 à esquerda de -1,96 σ

NÍVEL DE SIGNIFICÂNCIA

- α risco assumido pelo pesquisador
 - inferência estatística
- probabilidade de rejeitar a H₀ quando ela é verdadeira
- 0,05 (5%)
- **= 0,01 (1%)**
- 0,001 (0,1%)

VALOR DE PROBABILIDADE

- Valor de *p*
- Probabilidade do resultado ser devido ao acaso
- □ se p < α − H $_0$ rejeitada − amostras ≠
- se $p > \alpha H_0$ aceita amostras =
 - p ≤ 0,05 (para α=5%)
 - p ≤ 0.01 (para α=1%)
 - p ≤ 0,001 (para α=0,1%)

TESTES ESTATÍSTICOS

- NATUREZA DA VARIÁVEL
 - Paramétrica X Não paramétrica
- CLASSIFICAÇÃO DA AMOSTRA
 - Dependente (pareada) X Independente (nãopareada)
- NÚMERO DE GRUPOS
 - 2 ou mais de 2
- TIPO DE INFERÊNCIA DESEJADA
 - comparar grupos
 - medir associação entre variáveis
 - medir variabilidade na obtenção de dados

BIBLIOGRAFIA SUGERIDA

Callegari-Jacques MS. Bioestatística — Princípios e Aplicações. Artmed, Porto Alege 2003.

Zar JH. Bioestatistical Analysis. 4ed Prentice Hall, Upper Saddle River 1999.

Susin, Rösing. Praticando Odontologia Baseada em Evidências. 1999

Estrela. Metodologia Científica, Ensino e Pesquisa em Odontologia. 2001

http://br.geocities.com/adersongegler