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Abstract

Semi-supervised clustering algorithms partition a given
data set using limited supervision from the user. In this pa-
per, we propose a clustering algorithm that uses supervision
in terms of relative comparisons, viz.,x is closer toy than
to z. The success of a clustering algorithm also depends
on the kind of dissimilarity measure. The proposed clus-
tering algorithm learns the underlying dissimilarity mea-
sure while finding compact clusters in the given data set.
Through our experimental studies on high-dimensional tex-
tual data sets, we demonstrate that the proposed algorithm
achieves higher accuracy than the algorithms using pair-
wise constraints for supervision.

1. Introduction

Semi-supervised clustering algorithms partition a given
set of data points using additional supervisory information.
The most popular form of supervision used in clustering al-
gorithms is in terms of pairwise constraints viz., whether
two points belong to the same cluster or not. The con-
straints derived from the feedback given in terms of similar
data points is calledmust-linkand of dissimilar data points
cannot-linkconstraints. However, the points in cannot-link
constraints may actually lie in wrong clusters and still sat-
isfy the cannot-link constraints. When the pairwise feed-
back is generated from the labeled part of the training set,
the must-link constraints would mislead the clustering algo-
rithm if the points in the constraint belong to two different
clusters of the same class.

In this paper, we consider supervision to be available in
terms of relative comparisons:x is close toy than toz.
We refer to the relative comparisons astriplet constraints.
We propose a clustering algorithm that not only consid-
ers the triplet constraints but also simultaneously learns the
dissimilarity measure underlying the given data set. We
use SVaD measures [8] to model the dissimilarity between

data points. The proposed algorithm is called as theSemi-
Supervised SVaD(SSSVaD, pronounced as “triple SVaD”)
algorithm. Our experiments show that the proposed algo-
rithm performs better than MPCK-Means algorithm [5, 3],
the most recent semi-supervised clustering algorithm that
uses pairwise constraints.

In many practical scenarios, large set of unlabeled data
and a small set of labeled data are available and supervisory
information for semi-supervised clustering is obtained from
the small set of labeled data. Once we assume a set of la-
beled data, relative comparisons can be obtained from any
three points from the set if two of them belong to a class dif-
ferent from the class of the third point. One may note that
triplet constraints give more information on the underlying
dissimilarity measure than the pairwise constraints.

The type of clusters determined by the clustering algo-
rithm is dependent on the assumed dissimilarity measure.
Quite a few efforts have been aimed toward learning dis-
tance measures for improving the performance of clustering
algorithms [8, 5, 3, 9, 6, 12]. These algorithms can be cate-
gorized into unsupervised and semi-supervised algorithms.

Most of the semi-supervised clustering algorithms also
learn the distance measure. The majority of these algo-
rithms use pairwise feedback. For example, Xing et. al. [12]
propose an algorithm to learn distances from the pairs of
points that are similar or dissimilar to each other and use
the new distance for clustering. In [5, 3], the authors as-
sume pairwise constraints where the pairs of instances be-
longing to same or different clusters. Whereas, Pedrycz et.
al [9], use labels on the subset of training data to learn the
underlying metric.

Relative comparisons were first used in [10] to learn dis-
tance measures using SVMs. The problem of learning a
distance metric from the triplet constraints has been for-
mulated as a quadratic optimization where the triplet con-
straints would directly become the constraints in the opti-
mization problem.



2. Notation

Let U = {x1, . . . , xn} be the set of unlabeled data.
The relative comparisons is assumed to be given in terms
of triplets τi = (xi

1, xi
2, xi

3); i = 1, 2, . . . , r which imply
that xi

1 is more similar (or less dissimilar) to xi
2 than to

xi
3 for i = 1, 2, . . . , r. Note thatxi

k, k = 1, 2, 3 and
i = 1, 2, . . . ,m belong toU . Let λi represent the cluster
label ofxi.

SVaD measure represents a general class of dissimilarity
measures in which the weights associated with various di-
mensions vary within the feature space. In this work, we use
the SVaD measure as the dissimilarity measure and learn the
weights associated. LetW = {w1, . . . , wK} be the set of
K weights corresponding toK regions. And, letg1, g2, . . .,
andgm bem dissimilarity measures. Then, the SVaD mea-
sure ofx from y is defined as

dC
W (x, y) ≡

m∑
l=1

wjlgl(x, y), if y ∈ Rj .

It may be noted thatdC
W is not symmetric. Moreover,

weighted Euclidean and weighted cosine distance measures
are special cases of SVaD measure. For a detailed discus-
sion on SVaD measures, refer to [8].

3. Problem Definition

Given a set of unlabeled samples and triplet constraints,
the objective of SSSVaD is to find a partition of the data
set along with the parameters of SVaD measure that min-
imize the within-cluster dissimilarity (the traditional clus-
tering measure) at the same time satisfying as many triplet
constraints as possible. We translate the triplet constraints
into an appropriate objective function which is minimized
along with the within cluster dissimilarity measure. In the
following subsection, we derive this objective function.

3.1. Relative Comparisons

As stated above, the objective is to minimize the num-
ber of unsatisfied triplet constraints. We approximate the
number of unsatisfied triplet constraints by the sum of the
extent to which the constraints are not satisfied to make
the objective function differentiable. Each triplet constraint
τi = (xi

1, xi
2, xi

3) implies that

dC
W (xi

3, xi
1) > dC

W (xi
2, xi

1). (1)

Let,

eW,C(τi) =
{

0 if dC
W (xi

3, xi
1)− dC

W (xi
2, xi

1) > 0,
1 Otherwise.

Then, the task of the learning process includes the mini-
mization ofE (which is the number of dissatisfied inequal-
ities) defined as:

E(W,C) =
r∑

i=1

eW,C(τi).

Note thatE(W,C) represents the number of unsatisfied
triplet constraints.

In this paper, we convert the constraints into an ap-
propriate objective function and minimize it along with
within cluster dissimilarity measure. LetuC

W (τ i) =
h(dC

W (xi
3, xi

1)− dC
W (xi

2, xi
1)), for i = 1, . . . ,m where,

h(z) =
{

−z if z < 0,
0 otherwise.

Note thatuC
W (τ i) approximateseW,C(τi). The cumulative

error is then defined as in (2).

JT (W,C) =
m∑

i=1

uC
W (τ i). (2)

Let I(W,C) = {i : uC
W (τ i) > 0} denote the set of inequal-

ities not satisfying (1). Then,

JT (W,C) =
∑

i∈I(W,C)

[dC
W (xi

2, xi
1)− dC

W (xi
3, xi

1)].

From the definition of the dissimilarity measure, we get

JT (W,C) =
∑

i∈I(W,C)

m∑
l=1

wjil[gl(xi
2, xi

1)− gl(xi
3, xi

1)],

for xi
1 ∈ Rji

.

3.2. Overall Objective Function

Let JU (W,C) represents the within-cluster dissimilarity
measure i.e., the sum of the dissimilarity measures of all the
data points from their closest centroids. Then,

JU (W,C) =
n∑

i=1

m∑
l=1

wλilgl(xi, cλi
).

whereλi is the cluster label ofxi determined by

arg min
j

dC
W (xi, cj). (6)

The overall objective function that captures both the
within-cluster dissimilarity and triplet constraints is given
by

J(W,C) = JU (W,C) + γT JT (W,C), (7)
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whereγT reflects the relative importance ofJT (W,C). One
way to avoid trivial solutions to the above optimization
problem is to impose the normalization conditions onwjl.
The normalization conditions are given by

m∑
l=1

wjl = 1 for all j. (8)

Moreover, regularization term is needed to be added to the
objective function to avoid weights drifting toward unit vec-
tors. We consider entropy measure for regularization in this
paper. Thus, the overall objective function would become:

J(W,C) = JU (W,C) + γT JT (W,C)

+δ
K∑

j=1

m∑
l=1

wjllog(wjl) +
K∑

j=1

αj(
m∑

l=1

wjl − 1), (10)

whereαj are Lagrangian multipliers andδ represent rela-
tive importance given to the regularization term. Ideally,
δ should be specific to each cluster and needs to be esti-
mated from the data as in [7]. We have experimented with
this strategy and found that it does not help in improving
the performance. Hence, we made it the same for all the
clusters.

4. The Learning Algorithm

As in the SVaD learning algorithm [8], the overall objec-
tive function given in (10) can be optimized using an algo-
rithm similar toK-Means Algorithm (KMA) except that in
each iterationwjl also need to be updated. The proposed
algorithm (SSSVaD) starts with unit weights and random
cluster assignments, and updatesC, W andΛ in each iter-
ation, whereΛ = {λ1, . . . , λn}. It can be shown that SSS-
VaD is an instance of alternating optimization (AO) algo-
rithms [4]. AO algorithms partition the search dimensions
into various sets of dimensions and in each iteration, they
optimize the objective function with respect to each set of
dimensions keeping the other sets of dimensions constant.

We expand the expression forJ(W,C) in (10) to make
the following observations easily understandable.

J(W,C) =
n∑

i=1

m∑
l=1

wλilgl(xi, cλi)

+
∑

i∈I(W,C)

m∑
l=1

wjil[gl(xi
2, xi

1)− gl(xi
3, xi

1)]

+
K∑

j=1

δj

m∑
l=1

wjllog(wjl) +
K∑

j=1

αj(
m∑

l=1

wjl − 1). (13)

It may be noted that the update ofΛ is straight forward.
GivenC andW , the objective function is optimized by as-
signing the points to the cluster represented by the nearest
centroid, viz., as given in (6). Here, the nearest centroid is
computed using dissimilarity with the givenC andW . We
explain ways to updateC, andW in the sequel.

4.1. Update of Centroids

The update of centroid depends on the nature ofgl. Let
x, y ∈ <m andx = (x1, . . . , xm) andy = (y1, . . . , ym).
For Euclidean SVaD, in whichgl(x, y) = (xl − yl)2 the
centroid update equation is same as that of KMA, i.e.,

cjl =
1

|Rj |
∑

xi∈Rj

xil

In other words,cjl given above optimizesJ(W,C) whenW
andΛ are kept constant. Similarly, in case of cosine SVaD,
in whichgl(x, y) = (1/m− xl · yl),

cjl =
1

|Rj |
∑

xi∈Rj

x′
il

where,x′
il = wjlxil. It is not necessary that the update

equation for the centroids is in closed form. In fact, exis-
tence of such a close form could potentially decide the use
of a particulargl. In cases where a particulargl is more
appropriate for a given data set and a closed form update
equation does not exists, one can use gradient descent ap-
proach to find the optimizing centroids in each iteration.

4.2. Update of Weights

Let,
V U

jl =
∑

xi:λi=j

gl(xi, cj) (16)

and
V T

jl =
∑

i∈I(W,C)

xi
1∈Rj

(
gl(xi

2, xi
1)− gl(xi

3, xi
1)
)
. (17)

Then, differentiatingJ(W,C) as in (13) with respect towjl

and equating it to zero, we get, after some algebra,

wjl = exp

(
−(V U

jl + γT V T
jl + αj)

δ
− 1

)
. (18)

Applying the normalizing condition, solving forαj and
substituting the value ofαj in the above equation, we obtain

wjl =
exp

(
−(V U

jl + γT V T
jl )/δ

)
∑m

p=1 exp
(
−(V U

jp + γT V T
jp)/δ

) . (19)
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Input:
1: Set of unlabeled points, U = {x1, . . . , xn}
2: Number of Clusters, K
3: Type of distance measure gl

4: Relative qualitative feedback, τi,
i = 1, . . . , m

5: Parameters: γT , η < 1, ρ(0) < 1

Output:
Partitioning of the data set U in terms
of Λ, and the parameters C and W that
minimizes J(W, C)

SSSVaD Algorithm:
1: Set t=0
2: Randomly assign the data points to K

clusters
3: Compute the centroid of each cluster cj

4: Determine the set of unsatisfied in-
equalities I(W, C)

5: Compute the intermediate weights w′
j for

j = 1, . . . , K using (19)
6: Update the weights as wj(t + 1) = (1 −

ρ(t))wj(t) + ρ(t)w′
j for j = 1, . . . , K

7: ρ(t + 1) = ηρ(t), t = t + 1
8: Reassign the data points to the cluster

with the nearest centroid
9: Go to STEP 3 until the termination cri-

teria is satisfied

Figure 1. SSSVaD Algorithm

It may be noted that, in case of Euclidean SVaD measure,
V U

jl is equal to the variance oflth attribute of data points
in the jth cluster. According to (19), the weight oflth di-
mension injth cluster,wjl is inversely proportional to the
dimension’s variance in the cluster. Moreover,V T

jl is equal
to the cumulative error alonglth dimension among all the
unsatisfied triplet constraints whosex1 is in thejth cluster.
It is quite natural to decrease the weight of the dimension
whose contribution to the error is high. This is reflected in
(19).

4.3. SSSVaD Learning Algorithm

We summarize the algorithm in Figure 1. The SSSVaD
algorithm takesU , K, type ofgl, τi, γT , η andρ(0) as input.
The algorithm starts with random cluster assignments to the
data points. And, in each iteration,C, W andΛ are updated.
The only difference of the proposed algorithm with that of
AO algorithms is in the way the weights are updated. In AO
algorithms, the weights are updated such that they optimize
the objective function as in (19). We have experimented
with this way of updating the weights and observed that the
algorithm either converges to a bad solution or oscillates

between two solutions. Hence, we update the weights as
explained below. Once the optimizing weight vectorw′ for
each cluster is computed using (19), the current weight vec-
tor is updated such that it is only slightly moved towardw′

instead of making it equal tow′. The amount of movement
is controlled by the learning rateρ(0) and momentum,η.
After a termination condition is reached, typically comple-
tion of a fixed number of iterations, the algorithm outputs
Λ, C andW .

5. Comparison with MPCK-Means Algorithm

In this section, we compare the effect of pairwise con-
straints and triplet constraints as supervision in clustering.
We do this by comparing SSSVaD and MPCK-Means [5],
the most recent semi-supervised algorithm using pairwise
constraints. In our experiments, we also use MPCK-Means
with a random cluster initialization - this version of MPCK-
Means is referred to as rMPCK-Means.

Even though it is easier to generate pairwise constraints
from a small set of labeled samples, the number of pairwise
constraints that can be obtained is quite smaller than the
number of triplet constraints. In other words, given a set of
labeled samples, triplet constraints capture more informa-
tion than pairwise constraints.

MPCK-Means uses must-link constraints which repre-
sent points belonging to the same cluster. However, if the
constraints are generated from the class labels, these con-
straints could be misleading especially when a particular
class has more than one cluster in it. Similarly, cannot-link
constraints are not sufficient conditions, because two data
points can lie in incorrect clusters and still satisfy the con-
straints.

It may be noted that computing the weight updates (17)
needs onlyτil, l = 1, . . . ,m from each tripletτi where
τil = gl(xi

2, xi
1) − gl(xi

3, xi
1). Therefore,τjl need not be

computed in every iteration. Whereas, in MPCK-Means,
the weight updates involve more computation. Thus, the
weight updates in SSSVaD are faster than that in MPCK-
Means.

In SSSVaD, the process of cluster assignments is the
same as in K-Means algorithm. However, in case of MPCK-
Means, the cluster labels explicitly figure in the objective
function involving pairwise constraints. Hence, an iterative
algorithm needs to be used to find an optimal cluster assign-
ments for each data point. This makes the MPCK-Means
slower.

6. Experiments & Comparisons

We performed our experiments on the 20NewsGroup
Dataset [1]. Similar to [11], we considered random
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samples of two subsets of the data set -Binary, Multi10.
Binary has 250 documents each fromtalk.politics.mideast
and talk.politics.misc. Multi10 has 50 documents each
from alt.atheism, comp.sys.mac.hardware, misc.forsale,
rec.autos, rec.sport.hockey, sci.crypt, sci.electronics,
sci.med, sci.space, and talk.politics.gun. The documents
are represented using a set of vocabulary terms. Vocabulary
sets are generated by stopword removal, stemming and
thresholding on the frequency of occurrence of terms. The
size of the vocabulary used to represent the documents in
Binary data set is about 4000 and Multi10 about 2800. We
use normalized term frequency vectors to represent the
documents.

We generate the pairwise and triplet constraints using la-
bels of the small percentage of training samples. The triplet
constraints are generated by finding (x1,x2,x3) from the la-
beled subset such that the class labels ofx1 andx2 are the
same and different from that ofx3. The must-link constraint
pairs (x1,x2) are generated such that the class labels ofx1

andx2 are the same. Similarly, the cannot link constraints
(x1,x2) are generated such that the class labels ofx1 andx2

are different.
We compare the performance of SSSVaD algorithm

against MPCK-Means, rMPCK-Means, SVaD and K-
Means Algorithm (KMA). MPCK-Means augments the
pairwise constraints using transitive closure and use the
augmented set of constraints in initializing the centroids and
updating the weights. However, in this paper, we unifor-
maly initialize SSSVaD, rMPCK-Means and SVaD with the
clusters obtained using KMA. The results reported here are
obtained by averaging the accuracies over10 random ini-
tializations of KMA. For MPCK-Means, we use the pub-
licly available code at [2].

Throughout the experiments, we use weighted Euclidean
distance measure, viz.,gl(x, y) = (xl − yl)2. Since we use
the normalized frequency vector, the Euclidean measure is
similar to the cosine measure.

6.1. Results

We compare the performance of the algorithms varying
the number of possible partitions (clusters) and the amount
of supervision (percentage of labeled samples). Figures 2
and 3 compare the performance of the five algorithms on
Binary, Multi5 and Multi10 data sets respectively. In most
cases, we observe a noticeable improvement in the clus-
tering accuracies using SSSVaD algorithm over other algo-
rithms.

Effect of number of clusters: Part (a) of the Figures 2
and 3 show the performance of different algorithms with
increasing number of clusters. The optimal number of clus-
ters for a given problem depends on the data distribution.
It can be seen that forBinary1 (Figure 2), which has two

Figure 2. Performance of SSSVaD, MPCK-
Means, rMPCK-Means, SVaD and K-Means on
Binary data set with varying (a) number of
clusters and (b) percentage of labeled sam-
ples.

highly overlapping classes, the accuracy attains a maximum
and then falls with increasing number of clusters. How-
ever, forMulti10 data set, the performance improves as the
number of clusters increases.Multi10 is a typical exam-
ple of the problems that are difficult to cluster because of
the large number of classes. MPCK-Means performs best
only when the number of classes is identical to the number
of clusters and its accuracy falls as the number of clusters
increases. This is expected, as the pairwise constraints are
often misleading and confusing when the number of clus-
ters is greater than the number of classes.

Effect of the amount of supervision: Part (b) of the
Figures 2 and 3 show the performance of the different algo-
rithms as the size of the labeled data increases. Note that the
accuracies of KMA and SVaD do not change with the size of
the labeled samples. It can be observed that with increasing
supervision, the performance of SSSVaD improves signifi-
cantly as compared to that using MPCK-Means in the case
of Binary data set. In case of Multi10, MPCK-Means per-
forms slightly better than SSSVaD at 15% of labeled sam-
ples.

MPCK-Means and rMPCK-Means: Note that
rMPCK-Means, which uses KMA for initialization, could
not show an improvement in accuracies with increasing
number of labeled samples. Thus, the real success of
the MPCK-Means algorithm seems to be through the
deterministic cluster initialization which considers the
augmented closure of all the constraints.
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Figure 3. Performance of SSSVaD, MPCK-
Means, rMPCK-Means, SVaD and K-Means on
Multi10 data set with varying (a) number of
clusters and (b) percentage of labeled sam-
ples.

7. Summary and Conclusions

In this work, an attempt has been made to use lim-
ited supervision for obtaining improved clustering perfor-
mance. The SSSVaD algorithm uses a generalized dissimi-
larity measure (SVaD) and supervision in the form of rela-
tive comparisons. The use of SVaD helped to identify com-
pact partitions in the data set by learning the inherent met-
ric. Also, the joint objective function for SSSVaD helps in
obtaining a closed form solution for the parameter updates.
This makes the implementation of the algorithm much more
simpler. The overall objective function was compactly de-
signed so that these triplet constraints could be used effec-
tively. The proposed algorithm was compared with a similar
semi-supervised algorithm, MPCK-Means, that uses pair-
wise constraints. The efficiency of relative comparisons
over pairwise constraints was established through exhaus-
tive experimentation. The results demonstrate both precise-
ness and robustness of the proposed SSSVaD algorithm.

We have used KMA to initialize the cluster centers in
all the algorithms. It is shown in pairwise constraint case
that initialization using the augmented constraints would
improve the performance. We would like to explore the
ways to initialize the centroids using triplet information. We
would also like to investigate the performance of SSSVaD
on non-textual datasets.
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