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ABSTRACT: This paper introduces a neural network approach to the problem of ore grade
estimation. The system under consideration consists of three neural network modules each
responsible for a different area of the deposit, depending on the sampling density. Octant and
quadrant search is used as a way of presenting input patterns to the modules. Both radial basis
function networks and multi-layered perceptrons are used as the building blocks of these
modules. An iron ore deposit provides the training and testing data for both the neural
network system and kriging, and the results from the two approaches are compared.

Keywords: ore grade estimation, neural networks, radial basis functions, function
approximation.

INTRODUCTION

The problem of grade estimation is quite complicated due to the very complex
and, sometimes, not very well understood processes of  orebody deposition. Most of
the approaches to date, including the most important – geostatistics, have been based
on certain assumptions about the spatial distribution of ore grades within the orebody.
Efforts to limit the effects of these assumptions have led to far more complicated
methods requiring a large amount of knowledge in order to be effectively applied.

This paper presents a new method for grade estimation based on modular
neural network (MNN) systems. It is not the first neural network based approach to
this problem. In the past, Wu and Zhou (1993), Clarici et al (1993) and Burnett (1995)
have applied neural network techniques to grade and reserve estimation with some
success. The system considered in this paper introduces some major changes in the
overall network architecture and particularly on the way samples are presented to the
system.

As in the other neural network approaches, the proposed system treats the
relationship between the location of a sample and its grade as a complex function,
only this time the function is broken down to simpler mappings of grades and
distances from sample points surrounding each point considered and its own grade.
The surrounding points are selected through octant and quadrant search leading to a
completely direction oriented system following the paradigm of geostatistical
variography. However, there is no need for calculating experimental variograms and
therefore this approach requires considerably less knowledge. Radial Basis Function
(RBF) networks learn the directional behaviour of grade data out of the given training
samples. At the same time, a Multi-Layered Perceptron (MLP) learns the distribution
of grades over the complete training set and is used for estimating grades at points in
the borders of the deposit area where there are no surrounding points to provide any
directional information.



FUNCTION APPROXIMATION USING RADIAL BASIS FUNCTION
NETWORKS

Function approximation is one of the areas where RBF networks have been
applied with success (Broomhead and Lowe, 1988; Lee and Kil, 1988; Moody and
Darken, 1989a, 1989b; Leonard, Kramer and Ungar, 1992a, 1992b; Park and
Sandberg, 1993). The model of RBF networks is motivated by the characteristics
found in many parts of biologic nervous systems and also by work on interpolation
with radial basis functions (Powell, 1987). Poggio and Girosi (1990) provide a more
in-depth discussion on the approximation properties of RBF networks. The kind of
input-output mapping from a set of examples, as in the case of grade estimation from
limited number of samples, can be regarded as synthesising an approximation of a
multi-dimensional function or, in the words of Girosi and Poggio (1990), solving the
problem of hypersurface reconstruction.

FIGURE 1: Basic structure of radial basis function network. The value of the bias unit in the
hidden layer is set to 1.

The structure of an RBF network is that of a feedforward, single hidden layer,
fully interconnected network with locally tuned hidden units (Figure 1). All hidden
units simultaneously receive the n-dimensional real-valued input vector x (Hassoun,
1995). A non-linear basis function φj is centred around each hidden unit weight vector
µj which also has an adaptable range of influence σj (also called the width of the
receptive field in the input space for this unit). The output of the hidden unit j, hj is
given as a radial function of the distance between each pattern vector and each hidden
unit weight vector, hj=φj (||x-µj||/σj) (Lowe, 1995). The output of the RBF network is a
scalar product between the vector of hidden unit outputs and the weight vector
attached to output unit k, λk, as yk (x)= Σ hj (x)λk . Key issues to the performance and
accuracy are the choice of  φj , the number of basis functions used, their location, and
their width.

Following the original formulation of Broomhead and Lowe (1988), there is a
set of input/output pairs of input/target patterns representing data from an unknown
smooth surface. During learning, the network centres basis functions on samples
randomly selected or uses clustering for the choice of centres. The width of the
receptive field of these functions is adjusted to improve performance, and the number
of centres also changes to improve the overall approximation. The local fit performed
by RBF networks leads to good generalisation from each training example. It should
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be noted though, that the input data is never sufficient to reconstruct uniquely the
mapping in regions where data are not available.

MODULAR NEURAL NETWORK STRUCTURE FOR GRADE
ESTIMATION

The system under development consists of three individual estimation
modules. There is also a data pre-processing module that receives the original X-Y-
Grade values from the available samples. This module performs octant and quadrant
search on these samples and builds training and validation sets for two of the
estimation modules. In essence, the pre-processing module partitions the data set into
three parts (Figure 2). During octant and quadrant search, the deposit area around
each point considered is divided into sectors, e.g. in the case of octant search the
sectors will be: WNW (West-North-West), NNW, NNE, ENE, ESE, SSE, SSW, and
WSW. Clearly, the points qualifying from the octant search (i.e. have 8 surrounding
points, one in every sector) do qualify for quadrant search as well (i.e. have 4
surrounding points).

FIGURE 2: Partitioning of the data set according to the number of neighbour points available
to each point under consideration – areas shown are not representative of the actual

percentages.

Three data sets are built, one for each estimation module. Each record in the
octant and quadrant training sets contains grade and distance from the surrounding
points as the input fields and the grade at the estimation point as the output field for
the network(s). For example, a record in the quadrant training set would look like this:

NW_grade, NW_distance, NE_grade, NE_distance, SE_grade, SE_distance, SW_grade, SW_distance, Target_grade

The third training data set is actually the complete data set of samples as entered in
the pre-processing module.

Figure 3 shows a schematic diagram of the overall structure of the modular
neural network system. The two RBF network modules, octant and quadrant, contain
9 and 5 radial basis function networks respectively. In the octant module, there are 8
RBF networks each responsible for one of the eight sectors, and each having two
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inputs (grade, distance) and one output (target grade). The outputs of the eight RBF
networks are directed to a final RBF network that gives the final estimate. In other
words, the final RBF network learns to combine the individual estimates in order to
provide a more accurate estimate. The quadrant module follows the same formulation
with the difference of having only four RBF networks for each of the four sectors
(NW, NE, SE, SW).

The parameters of these individual RBF networks vary from sector to sector.
This is due to the varying complexity of the mapping that each one is trying to
achieve. In the octant module, the number of centres, i.e. basis functions, varies from
4 to 10, while in the quadrant module this varies from 10 to 17. The number of centres
is determined during training based on the minimum error achieved on the validation
set. The non-linear function used is the multi-quadratic: φ(d) = (d2 + c2)1/2, where d is
the distance from the centre and c is a smoothing parameter. The initial location of
centres is on selected samples from the input set. The main difference between the
sector RBF networks and the final RBF networks, apart from the number of inputs, is
in the error distance measuring technique. In the sector RBF networks, Euclidean
distance is used, while in the final networks the City Block distance (Minkowski
metric of power one) is used. This was found to improve performance during training
and validation.

FIGURE 3: General structure of the developed modular system. Details of each module are
not shown.
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The X-Y-Grade module is based on a multi-layered perceptron with two
inputs, fourteen hidden layer units and one output. Training is performed using the
steepest descent algorithm. The bipolar sigmoid activation function (tanh) is used in
the hidden and output units. The network weights are updated after every complete
pass of patterns.

APPLICATION OF THE MODULAR NEURAL NETWORK SYSTEM
– AN IRON ORE DEPOSIT CASE STUDY

The system described above was trained and tested on a simulated iron ore
deposit taken from a geostatistical study (Clark, 1979). Table 1 shows the 50 samples
used for training and validating the system. From a geostatistical point of view, the
simulated deposit has a range of 100m, a sill of 25% Fe, and no nugget effect. The
semi-variogram is spherical. These parameters were used to obtain results from
kriging.

TABLE 1: Samples taken from a simulated iron ore deposit (Clark, 1979).
Easting Northing %Fe Easting Northing %Fe

0 170 34.3 5 195 33.9
10 40 35.5 20 105 32.5
15 135 28.6 25 155 29.6
55 145 29.4 50 40 30.6

125 20 41.5 155 15 40.4
175 50 36.8 145 125 30.1
120 180 33.4 130 185 35.3
160 175 36.0 175 185 41.1
240 185 30.2 220 90 28.5
260 115 33.2 205 0 40.1
235 15 33.7 265 65 24.4
365 60 34.3 390 65 31.6
285 110 35.3 325 105 39.5
345 115 31.0 310 150 34.8
335 170 27.4 385 165 29.9
325 195 33.9 325 220 37.8
350 235 37.6 375 215 29.8
290 230 39.9 200 230 37.4
10 390 27.2 55 375 27.4
85 380 34.2 395 245 36.5
50 270 30.2 165 355 40.8

200 280 30.4 270 285 32.9
400 355 39.9 365 340 40.0
360 335 40.0 330 320 44.1
335 310 40.6 330 290 41.4

After training with the above data set, each of the sector RBF networks has
learned the relation between the grade and distance of the neighbouring point in its
sector and the target grade. Figure 4 shows the activation graph of the WSW sector
RBF network of the octant module. Clearly, the activation increases with increasing
neighbour grade (WSW G) and decreases with increasing neighbour distance (WSW
D). There are however areas where this changes slightly showing the ability of RBF
networks to map with more detail due to the local fit performed. Also the speed
advantage of RBF networks over MLPs was once more confirmed. RBF networks
required a few seconds to train while the MLP required a couple of minutes.

In order to test the system and to provide a comparison with kriging, 41 points
on a diagonal grid were chosen to provide with some target grades. This test set was



again partitioned, only this time the sub-sets did not contain one another. In other
words, the three modules were tested on different points and there was no overlapping
of the test areas, as happened during training.

FIGURE 4: Activation graph of WSW sector radial basis function network, showing the
learned relation to the grade (WSW G) of and distance (WSW D) from neighbour points in

this sector.

Figure 5 shows the test data fit performed by both the MNN system and
kriging. It is quite obvious that both methods tend to underestimate in high grade
areas. The reason for this, at least in the case of the MNN, is because these areas are
close to the borders of the deposit where the MLP is providing the estimates. The
MLP module seems to give estimates close to the average grade. From the 41 test
points, the MNN system is more accurate on 22 of them while kriging is doing better
on the rest. The absolute error levels were the same with a very small advantage of
MNN over kriging (0.2%).

FIGURE 5: Data fit comparison graph for the MNN system and kriging.

Figure 6 shows contour maps of the actual and estimated grades as well as error levels
for the two methods. Kriging and the MNN seem to perform better in different
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regions except for a part in the south-west of the deposit where they both perform
badly. Lack of  enough training samples is the main reason for the high error level
areas produced. The MNN system seems to map better the low grade area on the
north-west region while kriging did better on the south-east.

FIGURE 6: Top - Contour maps of actual grades (a), modular neural network estimates (b),
and kriging estimates (c), Bottom –Contour map of absolute error difference showing where

the MNN system (blue) performs better than kriging (red) (d), MNN absolute % error (e), and
kriging absolute % error (f).

CONCLUSIONS AND FUTURE CONSIDERATIONS

This paper has shown how a modular neural network system developed for ore
grade estimation can be applied on a randomly sampled deposit. The system was
described and its main components were analysed. A basic discussion on the theory
behind the neural networks used was also given. The results from both the MNN
system in development and kriging were given showing that neural networks can
actually provide comparable results with geostatistics while requiring far less
knowledge to be effectively applied.

Further research to be carried out in the AIMS Research Unit will include the
integration of the Validity Index network  (VI-net) as proposed by Leonard et al
(1992a, 1992b). The VI-net is an extension of RBF networks that calculates the
reliability and confidence of its output and indicates local regions of poor fit and
extrapolation. The VI-net will be an addition to the current architecture. Further tests
on different deposits will also be carried out for further optimisation of the current
system.
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