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ABSTRACT: This paper analyses the application of Radial Basis Function (RBF) networks in grade interpolation. These 
networks are a very unique member of the family of Artificial Neural Networks. RBF networks have such theoretical 
properties that establish them as a potential alternative to existing grade interpolation techniques. Their suitability to the 
problem of grade interpolation will be demonstrated in this paper both theoretically and through a number of case studies 
from real and simulated mineral deposits.  
 
1 INTRODUCTION 

This paper gives an analysis of a very unique 
type of Artificial Neural Networks, the Radial Basis 
Function networks (RBF) and their suitability to the 
problem of grade interpolation. RBFs were initially 
used for solving problems of real multivariate 
interpolation. Work on this subject has been 
extensively surveyed by Powell (Powel 1981). The 
theory of RBFs is one of the main fields of study in 
numerical analysis (Powel 1992, Singh 1992). 

RBF networks are very simple structures. Their 
design is in essence a problem of curve fitting in a 
high-dimensional space. Learning in RBF networks 
means finding the hyper-surface in multi-
dimensional space that fits the training data in the 
best possible way. Function approximation and 
pattern classification are the main areas of RBF 
networks application. One of the main advantages of 
RBF networks lies in their strong scientific 
foundation. RBFs have been motivated by statistical 
pattern processing theory, regression and 
regularisation, biological pattern formation, and 
mapping in the presence of noisy data (Powel 1992). 
Therefore, RBF networks have inherited a wide 
range of useful theoretical properties, which have 
been used to provide solutions to a much wider 
range of problems than the RBFs themselves. 

 
2 THEORETICAL FOUNDATION 

The basic principles of Radial Basis Functions 
and of the derived networks will be discussed in this 
section. For the purposes of this paper, the 
discussion will concentrate to the theory behind the 
use of RBFs for interpolation problems and not for 
pattern classification. The transition from the 
original RBF methods for interpolation to RBF 
networks will also be analysed. 

2.1 Multivariable Interpolation 
 RBFs were first introduced to the problem 

of multivariable interpolation as an approach to 
dealing with irregularly positioned data points. The 

problem of multivariable interpolation is as follows (Powel 
1981): 

 
Given m different points },...,2,1;{ mixi = in nℜ , and m 

real numbers },...,2,1;{ mifi = , one has to calculate a 

function s from nℜ  to ℜ  that satisfies the interpolation 
conditions 
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The choice of s from a linear space that depends on the 

positions of the data points forms the approach of radial basis 
functions. RBFs have the general form: 
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Where φ is the basis function from +ℜ to ℜ  and the norm 

of nℜ is Euclidean. Several interpolation methods have been 
considered in which s has the form: 
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With the condition of the matrix 

( ) ,,...,2,1,, mjixxA jiij =−= φ  

being non-singular, the interpolation condition above 
defines the coefficients { }mii ,...,2,1; =λ  uniquely. The 
matrix A is normally called the interpolation matrix. These 
methods have a very useful property, proved by Micchelli 
(1986), that, if the data points are different then, for all 
positive integers m and n, A is always non-singular. This 
theory applies to many choices of φ. However, in the case of 
the basis functions of the form 

( ) 0, ≥= rrr lφ  
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Multiquadratics: 
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Inverse Multiquadratics: 
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Thin Plate Splines: 
( ) ( )rrr ln2=φ , ℜ∈r  

It should be noticed that multiquadratics and 
thin plate splines decrease by moving away from the 
centre of the basis function, while Gaussian and 
inverse multiquadratics increase. The thin plate 
splines are interpolating functions derived by 
variational methods (Duchon 1977, Meinguet 1979).  

 

2.2 The Hyper-Surface Reconstruction Problem 
The interpolation technique described above 

suffers from a very serious problem: If the number 
of data points in the training sample is greater than 
the number of degrees of freedom of the underlying 
physical process, then fitting as many RBFs as the 
number of data points leads to over-determination of 
the hyper-surface reconstruction problem 
(Broomhead and Lowe 1988). This is known in 
neural network terms as overfitting or overtraining. 
Allowing an RBF network to reach this stage means 
degradation of its generalisation performance. 

The problem of learning the hyper-surface 
defining the output in terms of the input can be 
either well-posed or ill-posed. These terms have 
been in use in applied mathematics for over a 
century. An unknown mapping f between a domain 
X and an output range Y (both taken as metric 
spaces) is considered. Reconstructing this mapping f 
is said to be well-posed when the following three 
conditions are satisfied ( Tikhonov and Arsenin 
1977, Morozov 1993, and Kirsch 1996): 

 
Existence: for every input vector Xx∈ there is 

an output y = f(x), where Yy∈ . 
Uniqueness: for any pair of input vectors x, t ∈ 

X, f(x) = f(t) only if x = t. 
Continuity: also referred to as stability, 

continuity requires for any ε > 0 there will exist δ = 
δ(ε) so that if ρx (x, t) < δ then ρy(f(x),f(t)) < ε, where 
ρ(⋅,⋅) is the distance between two arguments in their 
respective spaces (Haykin 1999). 

 
A problem is ill-posed when any of these 

conditions is not satisfied. Normally, a physical 
phenomenon such as an orebody deposition, is a 
well-posed problem. Learning from drillhole data is, 

however, an ill-posed problem because (Kapageridis 1999): 
 

• For any pair of input vectors x, t there can be f(x) 
= f(t) even when x ≠ t. 

 
• It is well known that drillhole and other physical 

samples from mineral deposits contain large 
amounts of noise and imprecision leading to the 
possibility for the neural network to produce an 
output outside the range Y for a specified input. 
That means violation of the continuity criterion. 

 
The second of the reasons has a more serious impact to 

solving the problem, as lack of continuity means that the 
computed input-output mapping does not represent the true 
solution.  

The issues of hyper-surface reconstruction with RBFs 
being an ill-posed problem and leading to overfitting need to 
be addressed. A number of methods have been developed for 
making an ill-posed problem into a well-posed one, as well as 
preventing overfitting. The most important one, 
regularisation, will be discussed in the following paragraph. 

2.3 Regularisation 
Regularisation is a method developed by Tikhonov (1963) 

for solving ill-posed problems. Its use has been mostly 
explored in approximation theory. Regularisation aims at 
overcoming the lack of continuity of an ill-posed problem by 
means of an auxiliary nonnegative functional embedding prior 
information about the solution. Such information is commonly 
the assumption that similar inputs correspond to similar 
outputs. Tikhonov’s theory involves two terms: 

 
Standard Error Term: denoted by E(F), represents the 

standard error or distance between the desired response (target 
output) di and the actual response yi for the training example i 
= 1, 2, …,N. The standard error term is defined as: 
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Regularising Term: denoted by Ec(F), provides the means 

for embedding geometrical information about the 
approximating function F(x) to the solution. This term is 
defined as: 

 
2

2
1)( FFEc D=  

 
where D is a linear differential operator. It is in this 

operator that prior information about the form of the solution 
is embedded and therefore its selection depends on the 
problem at hand. 

Regularisation provides a way of reducing the number of 
basis functions when fitting RBFs by adding a penalty term 
described above as the regularising term (Ripley 1995). The 
principle of regularisation is the following: 
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Find the function Fλ(x) that minimises the Tikhonov 
functional E(F), defined by 

 
E(F) = Es(F) + λEc(F) 

 
Where λ is a positive real number called the 

regularisation parameter. The choice of λ is very 
crucial as it controls the balance of contribution 
from the sample data and the prior information. It 
can also be seen as an indicator of the sufficiency of 
the given data samples to specify the solution to the 
above minimisation problem. 

The implementation of the regularisation theory 
leads to the regularisation network (Poggio and 
Girosi 1990). As shown in Fig. 1, it consists of three 
layers. The first layer consists of a number of input 
nodes equal to the dimension mo of the input vector 
x. The second or hidden layer consists of non-linear 
nodes connected directly to all the input nodes. The 
number of hidden nodes equals the number of 
samples N.  

 

 
Figure 1: Regularisation network (Haykin 1999). 

 
The activation function used in the hidden nodes 

is a Green’s function G(x, xi). One of the most 
common Green’s functions is the multivariate 
Gaussian function: 
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where xi denotes the centre of the function, σi its 

width or receptive field, and wj the unknown 
coefficients. These coefficients are defined as 
follows: 
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The minimising solution, denoted as Fλ(x), is 

given by: 
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The solution reached by the regularisation network exists 

in an N-dimensional subspace of the space of smooth 
functions, the set of Green’s functions constituting the basis 
for this subspace (Poggio and Girosi 1990). As Poggio and 
Girosi point out, the regularisation network has three useful 
properties: 

 
• It is a universal approximator as it can 

approximate arbitrarily well any multivariate 
continuous function, given sufficient number of 
hidden nodes. 

• It has the best-approximation property, i.e. given 
an unknown non-linear function f, there always 
exists a choice of coefficients that approximate f 
better than all other choices. 

• It provides the optimal solution. In other words, 
the regularisation network minimises a functional 
that measures the solution’s deviation from its true 
value as represented by the training data. 

 
3 RADIAL BASIS FUNCTION NETWORKS 

The structure described above as the regularisation 
network has a very important weakness: as the number of 
functions depends initially to the number of training samples, 
the network produced can be very expensive in computational 
terms. This can be easily understood by considering the 
computation of the network’s linear weights, which requires 
inversion of a very large matrix. Therefore there is a need for 
reducing the complexity of the network leading to an 
approximation of the regularised solution.  

This is achieved by the introduction of a simplified 
version of the regularisation network, the generalised radial 
basis function network. From this point on, it will be assumed 
that RBF networks are generalised RBF networks. RBF 
networks involve searching for a sub-optimal solution in a 
lower-dimensional space. This solution approximates the 
regularised solution discussed before. 

3.1 RBF Structure 
Figure 2 illustrates the basic structure of the (generalised) 

RBF network. The first obvious difference between this 
network and that of Fig. 1 is in the number of hidden layer 
basis functions. In the RBF network there are m1 RBFs, 
typically less than the number of training samples, while in the 
regularisation network there were N RBFs, with N equal to the 
number of training samples. Other structural differences 
include the number of weights being also reduced to m1, and 
the introduction of a bias applied to the output unit. 
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Figure 2: Structure of generalised RBF network. 

 
Significant differences, not so obvious from the 

figures, concern the centre positions and receptive 
fields of the RBFs as well as the linear weights 
associated with the output layer. These are all 
unknown parameters and have to be learned by the 
RBF network during training. In the regularisation 
network, only the linear weights are unknown and 
require training. In the next paragraph, the function 
of the RBF network will be further analysed. Special 
attention is given to the way of initially positioning 
the RBF centres during initialisation and the RBF 
learning algorithms. 

3.2 RBF Initialisation and Learning 
For an RBF network to be able to receive 

training samples and function as a hyper-surface 
reconstruction network, a number of its parameters 
need to be calculated. These parameters include: 

 
• The linear weights between hidden and 

output layer. 
• The bias to the output units. 
• The centres of the hidden layer RBFs. 
 
There are a number of methods for RBF network 

initialisation and learning. The most common 
methods are: 

 
Random Centre Selection: it is the simplest of 

the methods. The centres are randomly chosen from 
the training data set. It is a common method used 
when the training data represent well the problem at 
hand. Learning using this approach is concentrated 
in adjusting the linear weights between the hidden 
and output layer. This is achieved using the 
pseudoinverse method (Broomhead and Lowe 
1988). The weights are calculated using the formula 
below: 

 
dGw +=  

 

where d represents the target output vector in the training 
data set. G+ is the pseudoinverse of matrix G, defined as 

   
}{ , jigG =  

 
where gi,j is the output of RBF i when presented with input 

vector j. Golub and Van Loan (1996) provide an in depth 
discussion over the computation of a pseudoinverse matrix. 

 
Self-Organised Centre Selection: The learning method 

described above requires a data set representative to the 
problem at hand. Randomly selected centres do not 
necessarily reflect accurately the distribution of the data 
points. To overcome this problem, a clustering algorithm is 
used that creates homogeneous groups of data from the given 
data set. There are a number of clustering algorithms, 
however, in the case of RBF networks, the k-means clustering 
algorithm is the most commonly used (Duda and Hart 1973). 
Moody and Darken (1989) describe the use of k-means 
clustering algorithm. The number of centres k is set in 
advance. With the number of centres set, the algorithm 
proceeds with the following steps (Bishop 1995): 

 
I. The values of the initial RBF centres tk(0) are set 

randomly. These values need to be different between 
them. 

II. A vector x is selected from the data set and passed to 
the algorithm. The index k(x) of the best-matching 
centre for the vector is calculated using the minimum-
distance Euclidean criterion: 

 

1,...,2,1,)()(minarg)( mkntnxxk kk
=−=  

 
where tk(n) is the kth centre at iteration n.  

III.  The RBF centres are adjusted using the following rule: 
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where η is the learning-rate parameter receiving values 
between 0 and 1. This parameter controls the speed of 
learning, i.e. the degree of adjustment on the particular 
network parameter, in this case, the RBF centres.  

IV.  The iteration pointer n is increased by 1 and the 
algorithm loops back to step II. This process continues 
until the centres become stable. 

The self-organised stage described above is followed by a 
supervised learning stage, which allows the calculation of the 
linear weights between the hidden and output layer. The 
overall approach depends largely on the initial selection of 
centres. Several enhancements to the initial centre selection 
have been introduced in order to avoid the situation where 
some initial centres get trapped in regions of the input space 
with low density of data points (Chen 1995, Chinunrueng and 
Sequin 1994). This learning method is used in the 
development stages of RBF networks for the problem of grade 
interpolation.  
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Orthogonal Least Squares: the OLS algorithm 

involves sequential addition of new RBFs to a 
network, which starts with a single basis function. 
Each new RBF is positioned to each data point and 
the linear weights are calculated for each position. 
The centre that gives the smallest residual error is 
retained. This way the number of RBFs increases 
step by step. The selection of a candidate data point 
for centre positioning is done by constructing a set 
of orthogonal vectors in the space S spanned by the 
hidden unit activation vectors for each training 
pattern. The data point that produces the greatest 
reduction in the residual error is chosen as the 
location of the new RBF centre. It is important to 
stop the algorithm well before every data point is 
selected to ensure good generalisation. 

 
Supervised Centre Selection: the basis of this 

method is the least-mean-square algorithm (LMS). 
A supervised learning process based on the LMS 
algorithm sets all the free parameters of the RBF 
network. The LMS algorithm takes the form of a 
gradient descent procedure. Initially, a cost function 
is defined as follows: 
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 where N is the number of training samples, 

and ej is the error defined as: 
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where Ci is the norm-weighting matrix. The 

method aims at minimising E by adjusting the free 
parameters of the network, the weights wi, the 
centres ti, and the receptive fields 1−Σ i . The 
adjustments to these three parameters are calculated 
below (Haykin 1999): 

 
Linear Weights Adjustment: 
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Centres Position Adjustment: 
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Receptive Fields Adjustment: 
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The update rules for the three parameters, based on the 

three learning-rate parameters η1, η2, and η3, are given below: 
 
Linear Weights Update Rule: 
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Centres Positions Update Rule: 
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Receptive Fields Update Rule: 
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It should be noticed that this gradient-descent procedure 

for RBF networks does not involve error back-propagation.  
 
Regularisation Based Learning: the final RBF learning 

method described is based on regularisation theory. Yee 
(1998) provides the justification for this RBF design 
procedure that is based on four main elements: 

 
A radial-basis function, G, admissible as the kernel of a 

mean-square consistent Nadaraya-Watson regression estimate 
(NWRE) (Nadaraya 1964, Watson 1964). 

A common for all centres, input norm-weighting matrix, 
1−Σ , with entries 

),...,,(
021 mhhhdiag=Σ  

 
where h1, h2, …, hmo are the bandwidths of a consistent NWRE 
kernel G for each dimension of the input space. These 
bandwidths are given as the product of the sample variance of 
the ith input variable estimated from the available training 
data and a scale factor determined using a cross-validation 
procedure. 

Regularised strict interpolation for the training of the 
linear weights using the following equation: 

 
dIGw 1−+= )( λ  

 
where G is Green’s matrix and I is the N-by-N identity matrix. 

The choice of the regularisation parameter λ and the scale 
factors is achieved using a method such as the common cross-
validation (CV). Generally, larger values of λ lead to larger 



Mine Planning and Equipment Selection 2002 
noise in measuring the parameters. In a similar 
manner, the larger the values for a specific scale 
factor, the less important is the associated input 
dimension for the variation of the network output in 
relation to variations in the input. In other words, the 
scale factors can be used for ranking the significance 
of the input variables and can aid the reduction of 
the input space dimensionality. 
 
4 FUNCTION APPROXIMATION WITH RBF 
NETWORKS 

In this section, the discussion continues with an 
evaluation of the function approximation 
capabilities of RBF networks. It will be shown that 
the range of RBF networks is broad enough to 
uniformly approximate any continuous function. 
The effects of the input space dimension and the 
amount of input data on the RBF network 
approximation properties will also be analysed. 

4.1 Universal Approximation 
The universal approximation theorem for RBF 

networks, as stated by Park and Sandberg (Park and 
Sandberg 1991), opened the way for their use in 
function approximation problems, which were 
commonly approached using Multi-Layered 
Perceptrons. The work of Park and Sandberg (1991, 
1993), Cybenko (1989), and Poggio and Girosi 
(1990)  led to a new model for function 
approximation based on generalised RBF networks. 
Specifically, the theorem can be stated as below: 

 
Let G:Rmo→R is an integrable bounded function 

such that G is continuous and 
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Let ℑG denote the family of RBF networks 

consisting of functions F:Rmo→R represented by 
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where σ > 0, wi ∈ R and ti ∈ Rmo for i = 1, 2, …, 

m1. For any continuous input-output mapping 
function f(x) there is an RBF network with a set of 
centres { } 1

1
m
iit =  and a common receptive field σ > 0 

such that the input-output mapping function F(x) 
realised by the RBF network is close to f(x) in the Lp 
norm, p ∈ [1,∞]. 

 
The universal approximation theorem provides 

the theoretical basis for the design of RBF networks 
for practical applications.  

4.2 Input Dimensionality 
A very critical issue in the use of RBF networks as 

function approximators is the dimension of the input space 
and its effect on the intrinsic complexity of the approximating 
function(s). It is generally accepted that this complexity 
increases exponentially in the ratio mo/s, where mo is the input 
dimensionality and s is a smoothness index of the number of 
constraints imposed on the approximating function. Therefore, 
for the RBF network to be able to achieve a sensible rate of 
convergence, the smoothness index s needs to be increased 
with the number of parameters in the approximating function. 
However, the space of approximating functions attainable 
with RBF networks becomes increasingly constrained as the 
input dimensionality is increased (Haykin 1999). 

Increased dimensionality also has a great effect on the 
computational overhead caused during training of the RBF 
network. The dimension of the input space has a direct control 
over the RBF network architecture – the number of input 
nodes, the number of RBFs, and consequently, the number of 
linear weights between hidden and output layer. Therefore, 
any increase in the input dimensionality causes an increase in 
computer memory and power requirements, and an almost 
certain increase in development time. The most common ways 
of addressing the high input dimensionality for a given 
problem are to identify and ignore the inputs that do not 
contribute considerably to the output or to try to combine 
inputs that present a high correlation. Another way of 
reducing the input dimensionality, which is not always 
applicable though, is to try and break a complex problem into 
a number of low dimensionality problems that can be more 
effectively addressed using RBF networks. 

4.3 Comparison of RBF Networks with Multi-Layer 
Perceptrons 

Comparison of RBF networks with MLPs is inevitable 
since they are both used for similar applications and both are 
universal approximators. This comparison also leads to better 
understanding of these two ANN architectures. The 
differences between the two architectures are both structural 
(concerning the topology of the network) and functional 
(concerning the operation and use of the network): 

 
Structural Differences: 

• RBF networks have a single hidden layer. MLPs 
can have more than one hidden layers. 

• Hidden units in RBF networks are different from 
the output units. MLP hidden units are similar to 
the output units. 

 
Functional Differences: 

• RBF networks construct local approximations to 
non-linear input-output mappings, while MLPs 
construct global approximations. 

• The output layer of an RBF network is always 
linear, while the MLP output layer can be non-
linear depending on the application. 

• RBF hidden units calculate the Euclidean norm 
between the input vector and their centre, while 
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MLP hidden units compute the inner 
product of the input vector and their 
synaptic weight vector. 

• MLPs exploit the logistic non-linearity 
to create combinations of hyperplanes to 
dissect pattern space into separable 
regions. RBF networks dissect pattern 
space by modelling clusters of data 
directly and, therefore, are more 
concerned with data distributions. 

 
5 RBF NETWORKS FOR GRADE 
INTERPOLATION 

Two main principles – hypotheses have been 
accepted during the development and application of 
RBF networks to grade interpolation: it can be 
approached as a hypersurface reconstruction 
problem in the spatial co-ordinates input vector 
space, and grades are the numerical representation 
of a localised phenomenon (ore deposit) - grades 
themselves present localised behaviour. 

It is generally accepted that the input space 
characteristics as well as its components play a very 
important role in the performance of neural 
networks. The input dimensionality controls to a 
great extent the overall complexity of the neural 
network topology as well as the amount of training 
data required to bring the network performance to 
acceptable levels. Therefore it is very important to 
select the inputs from the available data in a way 
that will help reduce the complexity of the network 
and at the same time provide the right information 
for the network to be trained on. 

5.1 Case Studies in 2D Co-ordinate Space 
The input space defines the way of approaching 

the required task, in this case grade interpolation. 
Using the sample co-ordinates, for example, in two 
dimensions (easting and northing) as inputs to a 
network with the output being the grade of the 
sample means that grade is treated as a surface in the 
2D co-ordinate space. This approach seems to be the 
most popular among researchers dealing with this 
problem and gives very good results in case studies 
where the samples are given on a 2D plane instead 
of a full 3-dimensional space. 

A single RBF network architecture with two 
inputs (the sample’s co-ordinates) and one output 
(the sample’s grade) is sufficient to model the grade 
of a 2D grade distribution. The number of RBFs in 
the network‘s hidden layer varies with the 
complexity of the required mapping and with the 
number of available samples. The number of RBFs, 
their location in the 2D input space, and their 
receptive field are the main training parameters. 

Results from two of the numerous 2D case 
studies completed with this simple RBF network 
architecture are given in the following figures. The 
simple structure of the network allows the 

visualisation of the RBF locations in the same space with the 
samples or the estimated values giving a clear understanding 
of how the network works. The estimated values have a 
number of reliability measures assigned to them. 
 

 
Figure 3: Actual and estimated Fe grades using RBF network, 
kriging, and inverse distance methods. 
 

 
Figure 4: Actual and estimated Cu grades using RBF 
network, kriging, and inverse distance methods. 
 

Comparison with the inverse distance method and kriging 
is made on the basis of samples hidden completely from the 
RBF network training process and excluded from the input 
data available to these methods. The number of excluded 
samples varied upon the total number of samples available. 

5.2 Case Studies in 3D Co-ordinate Space 
Estimation in 3D co-ordinate space is more complex and 

presents problems when a single-network approach is 
considered. The complexity of the mapping is, in most cases, 
beyond the limits of a single RBF network. There are cases 
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when a single network is sufficient, but in most 
cases the mapping needs to be broken down into 
smaller and easier tasks, leading to a modular 
architecture consisting of several RBF networks. 
Such an architecture has been developed by the 
author (Kapageridis 1999) and tested in several case 
studies from real deposits. Modular architectures 
have been developed and tested by others with 
success (Burnett 1995). 

The results presented in the graphs below were 
obtained using the GEMNet II architecture. 
GEMNet II is a modular neural network system 
designed by the author to receive drillhole 
information from an orebody and perform grade 
estimation on a block model basis.  

GEMNet II consists of three modules of Radial 
Basis Function (RBF) networks. The first module 
includes six RBF networks each one trying to model 
the grade’s spatial variability in a certain direction in 
space. second module consists of a single RBF 
network with four inputs and one output. It is 
trained using the x, y, z co-ordinates and sample 
length as inputs and the sample grade as output. In 
essence, this module ‘learns’ the spatial distribution 
of grades. The third module also consists of a single 
RBF network. This network receives the 
outputs/grade estimates from the first and second 
module’s networks and performs a final weighting 
to produce a single estimate. 
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Figure 5: Scatter diagrams of estimated vs. actual 
copper and gold grades using inverse distance (ID2), 
kriging, and GEMNet II. 

 
 

6 CONCLUSIONS 
RBF networks, as most of the ANN structures, have 

certain properties that establish them as a natural choice for 
grade estimation. However, RBF networks also have a number 
of additional useful properties that give them an advantage 
over other ANN architectures for this specific problem.  

The first of these properties is that RBF networks 
construct local approximations to input-output mappings. It is 
well known that a mineral deposit is a localised phenomenon. 
Modelling of a deposit’s grade in 3D space using drillhole 
data can be considered to be a problem of hypersurface 
reconstruction in 3D space, with this hypersurface consisting 
of a number of zones that need to be locally approximated. 
Deposits commonly present a localised behaviour; i.e. points 
within one area of a deposit close to each other tend to have 
similar grades. Clearly, this area very rarely extends to the 
entire deposit and, therefore, the approach of fitting RBFs in 
cleverly chosen locations can be advantageous. These 
locations are found by clustering of the drillhole data in order 
to identify these areas of similar grade behaviour. 

RBF networks provide an approach to dealing with ill-
posed problems due the properties that they inherit from 
regularisation theory. Grade estimation is an ill-posed 
problem, even though the underlying phenomenon – the 
orebody deposition – is well-posed. As was shown, 
reconstructing a deposit’s grade as a hypersurface in the space 
derived from the drillhole data information, is an ill-posed 
problem, hence RBF networks should be the choice of ANN 
for this task. 

RBF networks also allow the calculation of reliability 
measures, such as the extrapolation measure and confidence 
limit. Due to the localised nature of approximation performed 
by RBF networks, it is possible to measure the local data 
density for a given point x in the input space as an index of 
extrapolation (Leonard et al. 1992b). Confidence limits for the 
model prediction can also be calculated from the local 
confidence intervals developed for each RBF unit using a 
weighted average of the latter. These reliability measures were 
first introduced by Leonard et al. (1992a, 1992b) incorporated 
in a new ANN architecture that computes its own reliability, 
called the Validity Index network (VI). Leonard et al. used a 
two-stage approach based on data densities derived using 
Parzen windows (Parzen 1962), and an interpolation formula 
used for determining the densities at arbitrary test points. 
These measures are now standard to most of the commercial 
neural network simulators that provide RBF network 
development options. 

Finally, another advantage of RBF networks over other 
ANN architectures that is derived from their theoretical 
properties, is their speed of development. In the case of low 
input dimensionality, RBF networks’ learning is expected to 
be a lot faster than in any other ANN architecture used for the 
same problem. The author approached grade estimation using 
an input space of maximum four dimensions (Easting, 
Northing, Elevation, and sample Length), a number low 
enough for the networks to be very fast to develop. 
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