
1 INTRODUCTION  

This paper presents a complete system for grade es-
timation based on a very unique type of Artificial 
Neural Networks (ANNs), the Radial Basis Function 
(RBF) networks. ANN technology is introduced to 
more engineering problems as new network models 
and learning algorithms are being developed and 
older models prove their value on real and some-
times critical applications. Grade estimation, as it 
will be discussed in the following paragraphs, is one 
of the problems that can be approached successfully 
by ANNs and specifically by RBF networks. ANNs 
have several properties that establish them as a po-
tential approach for grade estimation, such as: 
nonlinearity, adaptivity, generalization, and uniform-
ity of analysis and design. 

The modular neural network system for grade es-
timation, GEMNET II, presented in this paper has 
been developed over the past three years at the 
AIMS Research Unit of the University of Notting-
ham. The main objectives of the development of 
GEMNET II were defined as follows (Kapageridis 
1999): 
 

• To find a suitable neural network architec-
ture for the problem of grade estimation. 

• To take advantage of the function approxi-
mation properties of artificial neural net-
works. 

• To break down the problem of grade estima-
tion into less complex functions that can be 
modelled using these properties. 

• To integrate the developed neural network 
architecture in a system which will be user-
friendly and flexible. 

• To provide means of validating the results of 
this system. 

• To minimise the knowledge required for us-
ing the system. 

• To compare the performance of the system 
with existing grade estimation techniques on 
the basis of estimation properties, usability 
and time requirements. 

2 RADIAL BASIS FUNCTION NETWORKS 
AND THE ILL-POSED PROBLEM OF GRADE 
ESTIMATION 

RBF networks inherit all those properties that make 
artificial neural networks a potential solution to the 
problem of grade estimation. They are however 
more suitable to this problem than other architec-
tures due to their function approximation properties 
which are unique. RBF networks offer solutions to 
ill-posed problems, i.e. problems that do not satisfy 
one of the following conditions (Tikhonov & Ar-
senin, 1977; Morozov, 1993; Kirsch, 1996): 

 
• Existence. For every input vector x ∈ ℵ, there 

does exist an output y = f(x), where y ∈ ℘. 
• Uniqueness. For any pair of input vectors x,t ∈ 

ℵ, we have f(x) = f(t) if, and only if, x = t. 
• Continuity. The mapping is continuous, that is, 

for any ε > 0 there exists δ = δ(ε) such that the 
condition ρχ(x,t) < δ implies that ρy(f(x),f(t)) < ε, 
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where ρ(.,.) is the symbol for distance between 
the two arguments in their respective spaces. The 
property of continuity is also referred to as sta-
bility. 

 
It is fairly straightforward to prove that the prob-

lem of grade estimation from exploration data is an 
ill-posed problem. Concentrating on the conditions 
of uniqueness and continuity, it is quite clear that the 
grade values as presented by the exploration data do 
not satisfy any of these two conditions. As far as 
uniqueness is concerned, there are always two input 
vectors representing two different grade samples that 
have the same grade (within a certain accuracy) 
while having different spatial co-ordinates, volume, 
or distance from the point of mapping. Therefore the 
condition of uniqueness is not satisfied. 

Continuity is the one requirement of the conven-
tional estimation techniques that makes them fail or 
not even apply to several cases of grade estimation. 
There is no doubt that the grade values presented 
through drillhole samples from an orebody do not 
satisfy the condition of continuity. This is a common 
problem that leads to the use of very simple and not 
particularly reliable methods of grade estimation. 

In order to solve the ill-posed problem of grade 
estimation from exploration data, RBF networks can 
be used as they are based on a method that was de-
veloped specifically for solving this type of prob-
lems. This method is called regularisation and was 
proposed by Tikhonov in 1963. The idea behind 
regularisation is to stabilise the solution by embed-
ding prior information about it (Haykin, 1999). 
Commonly the prior information involves the as-
sumption that the input-output mapping is smooth, 
in the sense that similar inputs correspond to similar 
outputs. This is an assumption that can be and has to 
be applied if RBF networks are to be used for grade 
estimation. 

It is necessary before carrying on to the applica-
tion of RBF networks for grade estimation to exam-
ine their architecture and general operation. RBFs 
were initially used for solving problems of real mul-
tivariate interpolation. Work on this subject has been 
extensively surveyed by Powell (1990). The theory 
of RBFs is one of the main fields of study in nu-
merical analysis (Powel 1981). RBF networks are 
very simple structures. Their design is in essence a 
problem of curve fitting in a high-dimensional 
space. Learning in RBF networks means finding the 
hyper-surface in multi-dimensional space that fits 
the training data in the best possible way. The uni-
versal approximation theorem for RBF networks, as 
stated by Park and Sandberg (1991), opened the way 
for their use in function approximation problems, 
which were commonly approached using Multi-
Layered Perceptrons. The work of Park and 
Sandberg (1991, 1993), Cybenko (1989), and Poggio 
and Girosi (1990) led to a new model for function 

approximation based on generalised RBF networks. 
Specifically, the theorem can be stated as below: 

 
Let G:Rmo→R is an integrable bounded function such 
that G is continuous and 
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where σ > 0, wi ∈ R and ti ∈ Rmo for i = 1, 2, …, m1. For 
any continuous input-output mapping function f(x) there 
is an RBF network with a set of centres { } 1

1
m
iit =  and a 

common receptive field σ > 0 such that the input-output 
mapping function F(x) realised by the RBF network is 
close to f(x) in the Lp norm, p ∈ [1,∞]. 

 
The universal approximation theorem provides the 
theoretical basis for the design of RBF networks for 
practical applications. 
 A typical RBF network consists of three layers, an 
input layer, a single hidden layer, and an output 
layer. The processing elements in the hidden layer 
are quite different from other typical examples of 
ANNs like the Multi-Layered Perceptron (MLP). 
Each processing element is a Radial Basis Function 
with a varying receptive field and a varying centre 
location. These two parameters together with the 
linear weights of the connections between the hidden 
and output layer and the bias to the output are ad-
justed during training in order to provide the best 
possible mapping between the input vectors (e.g. 
drillhole samples) and the required output (grade). 

3 GRADE ESTIMATION WITH GEMNET II 

The ANN approach for grade estimation underly-
ing the design of GEMNET II is based on RBF net-
works that treat the estimated variable (grade) as a 
hypersurface in the input vector space (Kapageridis 
1999). This space takes two very distinctive forms: 

 
• The 3D co-ordinate space of the drillhole sam-

ples; 
• The space formed by the grade, distance, and 

volume of neighbouring samples. 
In other words, GEMNET II treats grade as a func-
tion of the three spatial co-ordinates and the volume 
of drillhole samples or as a function of the grade, 
distance, and volume of neighbouring samples. This 
is achieved  using a number of RBF networks each 
with a different function, the outputs of which are 
combined to provide a single grade estimate. The 
system comprises three RBF network modules re-
sponsible for the estimation and a data processing 



and control module that generates the training pat-
terns for the networks by applying a search method 
developed specifically for GEMNET II. 
 It was necessary to develop a simplified 3D search 
method in order to cope with the geometrical charac-
teristics of exploration sampling schemes. After con-
sidering a number of schemes, the author decided to 
use the simple search method shown in Fig. 1 (Ka-
pageridis & Denby 1998). 
 
 

 
Figure 1. Simplified 3D search scheme used in GEMNET II.  

 
 
There are only six sectors in this scheme: upper, 

lower, north, south, east, and west. These sectors are 
defined by the intersection of four planes: two 
planes vertical to the XZ plane at ±45° dip, and two 
planes vertical to the YZ plane at ±45° dip. In other 
words, these sectors look like pyramids of square 
base with their top at the estimation point. The ad-
vantage of this search scheme is not just the fact that 
it is very simple and affordable in computation 
terms. With this scheme, the drillhole where the cur-
rent training point belongs is always within two op-
posite sectors. This allows easier control of the 
number of samples selected from this drillhole, 
which can help improve the results of estimation. 
Another advantage of this scheme is that it can han-
dle any inclination of the orebody or the drilling 
scheme. 
 The data processing and control module accepts 
data in ASCII form and creates training pattern files 
for the RBF networks. The formation of training pat-
terns is based on the search method described. Basi-
cally, for every training sample in the dataset, one 
neighbour sample is chosen from every sector – the 
one closest to the training sample. The grade of the 
neighbour sample, its distance from the training 
sample and its length are written as inputs on the 
training pattern file of the network responsible for 
the specific sector, while the training sample grade is 
written as the require output. Clearly, in some occa-
sions there are no neighbour samples in some of the 

sectors. In those cases, the training sample is marked 
for estimation with the module that is trained on 
sample co-ordinates. 
 The first module consists of six RBF networks 
each trained on samples from one of the six sectors 
of the 3D search scheme. These networks have three 
inputs (neighbour sample grade, distance from the 
point of training/estimation, and neighbour sample 
volume) and one output (target grade at the point of 
training/estimation) (Fig.2). 
 
 

 
Figure 2. RBF network of the first module. 

 
 

 The second module is a single RBF network 
trained on the outputs of the six RBF networks of 
the first module (Fig. 3). This network performs the 
necessary averaging of the individual estimates is 
necessary as it was clear in some case studies that 
some of the RBF networks of the first module were 
consistently producing estimates closer to the actual 
values while others were consistently far from them. 
The number of hidden units normally varies between 
six and nine. 

The third module is a single RBF network that ac-
cepts 3D data in the form of vectors with four di-
mensions (easting, northing, elevation, and volume) 
and produces one output (target grade) (Fig. 4). This 
network replaces one or more of the RBF networks 
of the first module in the case were there are no 
neighbour samples in some of the search scheme 
sectors. The network of this module is however 
trained on all samples regardless of the results of the 
search process.  

 
Figure 3. RBF network of the second module. 

 
 



 
Figure 4. RBF network of the third module. 

 
 
After training is complete the saved topologies are 

used for estimation. During training this is done on 
the basis of drillhole samples hidden from the train-
ing process in order to validate the learned map-
pings. During estimation the drillhole samples are 
mostly targeted on the training and validation proc-
ess. Cross validation is used for testing the validity 
of the learned mappings and for comparing with 
other grade estimation techniques. 

4 APPLICATION OF GEMNET II TO REAL 
EXPLORATION DATA 

The case studies presented in this paper are the final 
tests of the GEMNET II architecture. Their purpose 
was to demonstrate the full potential of the approach 
and provide a complete comparison with other esti-
mation techniques. They are presented in order of 
increasing complexity and difficulty. The number of 
available samples increases as well as the structural 
complexity of the deposits. The data used in these 
case studies come from real deposits. In some of 

them the 3D co-ordinates of the samples have been 
changed without affecting their relative locations. 
These studies are ideal for geostatistics and in fact 
have been used for demonstrating grade/reserve es-
timation using computer software. However, no re-
sults have ever been published using this data other 
than the papers written by the author during this pro-
ject (Kapageridis et al 1999a, 1999b, Kapageridis 
1999). 

The deposits in the four case studies that follow 
present a complex 3D structure (Fig. 5). They all 
come with a complex geological model, which is 
used for constraining the estimation process. This 
geological model in some cases becomes even more 
complicated by the presence of faults and other dis-
continuities. This factor makes grade estimation an 
even more challenging task. In all of the case stud-
ies, a complete geostatistical study has been per-
formed including the methods of kriging and inverse 
distance, the results of which are presented in this 
paper together with the study of GEMNET II appli-
cation.  

The four copper/gold deposits used for testing the 
estimation performance of GEMNET II have very lit-
tle in common. Except from the type and possibly 
the way they have been formed, these deposits pre-
sent a very different 3D picture and a very different 
estimation task. Their size and geometry varies sig-
nificantly as does the grade distribution suggested by 
the available samples. 

The available samples for each of the four depos-
its vary in number considerably. The drilling geome-
try is also different as is the assaying procedure. 
These differences ensured that GEMNET II would be 
tested on very different conditions and data and that 
the results would reflect its performance over a wide 
range of problems. Table 1 gives the main character-
istics of the four deposits presented in this paper. 

 
Table 8.1: Main characteristics of the four deposits used for 
testing the final GEMNET II architecture. 

Code name MAC_DEMO THOR SME GEOST_GOLD 
Number of 

samples 
1361 3612 10,656 30,211 

Estimated 
grades 

Au, Cu Au Cu Au 

Number of 
orebodies 

1 4 5 1 
 
 

 



 
 

 
 

 
 

 
Figure 5. 3D views of the four copper/gold deposits used in the 
case studies (top to bottom: macdemo, thor, sme, geostat_gold) 
(screenshots from VULCAN/Envisage). 

 
 

The measures of performance for the three ap-
proaches compared were the mean absolute error, 
the data fit diagram (scatter plot), and the estimated 
vs. actual grade distribution diagram. For GEMNET 
II, a guide to the quality of the produced estimates, 
the reliability indicator values, is also shown in 
slices through the estimated block model. The reli-
ability indicator gives the variance of the individual 
estimates from the different RBF networks used by 
GEMNET II. The idea behind the reliability indicator 
is that the more the RBF networks disagree on one 
particular estimate the less reliable is the final esti-
mate produced by the system. 

The following table (Table 2) summarises the re-
sults on all four case studies for the three approaches 
tested. GEMNET II was running from VUL-
CAN/Envisage version 3.4. Geostatistics were run-
ning also from the same environment using GSLIB. 
Therefore the same computational overhead from 
VULCAN has been present while the various ap-
proaches were tested. GEMNET II has been inte-
grated in VULCAN/Envisage in order to become 
more user friendly, more complete, and easier to 
compare its results with those from the other meth-
ods (Kapageridis et al 1999a). 

 
Table 2. Summary of results from case studies. 
Case 
Study 

Mac_Demo
Au/Cu 

Thor 
Au 

SME 
Cu 

Geostat_Gold
Au 

Actual 
Mean 
Grade 

2.34/4.01 0.9269 0.9154 4.1316 

Kriging 
Mean 
Grade 

2.26/3.72 0.8660 0.8698 3.9014 

ID2 Mean 
Grade 

2.54/3.69 0.8686 0.881 3.9264 

GEMNET 
II Mean 
Grade 

1.96/3.41 0.8291 0.8803 3.8907 

Kriging 
ABS % 

20.47/19.68 19.67 14.77 14.46 

ID2 ABS 
% 

22.47/20.06 23.66 18.33 19.78 

GEMNET 
II ABS % 

18.78/18.9 18.2 14.65 15.04 

 
 

In all four case studies, GEMNET II performed 
very well even in comparison with the other already 
established techniques. It should be noted that in-
verse distance weighting has benefited from the geo-
statistical study that improved significantly the re-
sults obtained with this technique. The performance 
of the three estimators becomes clearer by examin-
ing the data fit and distribution graphs. Examples 
from the first case study are given in the following 
figures (Fig. 6, 7). 
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Figure 6. Data fit diagram of copper grade estimates produced 
by the three approaches. 
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Figure 7. Actual and estimated copper grade distributions. 

 
 
GEMNET II tends to underestimate high-grade 

samples but the overall estimation is not biased or 
affected by extreme values. Generally, the three 
techniques performed reasonably well with no par-
ticular problems. A major difference between them 
was, though, the time required for their application. 

The time requirements for the application of the 
three methods were quite different, even though 
geostatistics were fairly straightforward in these case 
studies. GEMNET II required up to 10 hours to proc-
ess the samples and block model centroids, develop 
the networks and perform grade estimation.  The 
geostatistical studies required up to a week to com-
plete. The time spent for grade estimation using in-
verse distance and kriging, once a geostatistical 
study was complete, was about 15 minutes. 

The integration of GEMNET II inside VULCAN 
allowed the visualisation of the block model esti-
mates, the reliability indicator values, and the loca-
tions of the RBF network centres. Using these visual 
tools it is possible to validate the approach and find 
potential problems that might come from the RBF 
network training or the sampling quality and quan-
tity. 

As shown in the following figures (Fig. 8, 9), the 
block model estimates of GEMNET II as well as the 

reliability indicator values, could be visualised in 
sections and together with any other type of data, 
e.g. a solid model of the orebody or the drillholes, 
using the graphical capabilities of VULCAN.. 

 
 

 
Figure 8. Vertical and horizontal section through block model 
coloured by the gold grade estimates of GEMNET II in VUL-
CAN. 

 
 

 
Figure 9. Vertical and horizontal block model section coloured 
by the reliability indicator values and solid model of the ore-
body. 

 
 
The RBF centres location in the input vector 

space is absolutely crucial to the performance of an 
RBF network. The RBF centres visualisation tool 
has been developed specifically for GEMNET II in 
Envisage and allows the displaying of both the cen-
tres and the training samples of any RBF network 
from the modular architecture. This option loads the 
RBF centres using a special symbol on the screen 
and also the training samples as crosses. The correct 
input space is used, i.e. the 3D real world co-
ordinates space for the third module and the 
neighbour sample grade, distance, and length input 
space for the first module. The following figures 
(Fig. 10, 11) give one example for each module. 



 
 

 
Figure 10. RBF centres of the third module visualised together 
with the solid model of the orebody and the drillholes. 

 
 

 
Figure 11. RBF centres from one of the six RBF networks of 
the first module visualised together with the training samples 
of that module. 

 
 
By looking at the positions of the RBF centres, 

one can decide whether the network initialisation 
procedure is efficient and whether the learned map-
ping is reliable. A well spread distribution of centres 
in the input space with a high density of centres in 
areas where ore grade seems to present a complex 
behaviour suggest that the network has been prop-
erly developed. High density of centres in areas with 
very few or even no samples means that the initiali-
sation and training process needs to be modified. 

 
 

5 CONCLUSIONS 

In this paper an in-depth discussion was given on 
GEMNET II, the integrated system for ore grade es-
timation based on artificial neural networks. The 

benefits of the approach were explained and in par-
ticular the advantages of the integration with the re-
sources modelling package, VULCAN. 

The system has many advanced features that can 
establish it as a commercial product. It provides 
validation tools that can help build confidence to the 
estimates while it removes most of the problems 
found in other grade estimation techniques. 
GEMNET II makes very few assumptions about the 
grade distribution. Its operation does not depend on 
the user’s knowledge of geology, geostatistics, or 
even neural networks. It should be noted though that 
knowledge of neural networks could improve some-
times the results but not significantly. Generally, the 
system adjusts to the data presented to it to achieve 
the best possible estimation. 

Even though it is based on artificial neural net-
works, GEMNET II is not a ‘black box’ approach. 
The technique is fairly understandable as it is based 
on established principles of ore grade spatial behav-
iour. The validation tools provided with GEMNET II 
and the exhaustive monitoring of the network devel-
opment also help the user to understand how it 
works and why. 

In the four case studies presented briefly in this 
paper, GEMNET II performed well in comparison 
with the other already established techniques. The 
results obtained have shown that it is a reliable and 
fast grade estimation system. GEMNET II has shown 
its potential as a valid alternative that can handle 
large amounts of data quickly and without being 
prone to extreme values.  
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